Fiora 5fce109ce1 Reorganize carry to store flags separately instead of part of XER
Also correct behavior with regards to which bits in XER are treated as zero
based on a hwtest (probably doesn't affect any real games, but might as well
be correct).
2014-09-24 12:27:47 -07:00

298 lines
7.8 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include <tuple>
#include "Common/BreakPoints.h"
#include "Common/CommonTypes.h"
#include "Core/Debugger/PPCDebugInterface.h"
#include "Core/PowerPC/CPUCoreBase.h"
#include "Core/PowerPC/Gekko.h"
#include "Core/PowerPC/PPCCache.h"
class PointerWrap;
extern CPUCoreBase *cpu_core_base;
namespace PowerPC
{
enum CoreMode
{
MODE_INTERPRETER,
MODE_JIT,
};
// This contains the entire state of the emulated PowerPC "Gekko" CPU.
struct GC_ALIGNED64(PowerPCState)
{
u32 gpr[32]; // General purpose registers. r1 = stack pointer.
u32 pc; // program counter
u32 npc;
// Optimized CR implementation. Instead of storing CR in its PowerPC format
// (4 bit value, SO/EQ/LT/GT), we store instead a 64 bit value for each of
// the 8 CR register parts. This 64 bit value follows this format:
// - SO iff. bit 61 is set
// - EQ iff. lower 32 bits == 0
// - GT iff. (s64)cr_val > 0
// - LT iff. bit 62 is set
//
// This has the interesting property that sign-extending the result of an
// operation from 32 to 64 bits results in a 64 bit value that works as a
// CR value. Checking each part of CR is also fast, as it is equivalent to
// testing one bit or the low 32 bit part of a register. And CR can still
// be manipulated bit by bit fairly easily.
u64 cr_val[8];
u32 msr; // machine specific register
u32 fpscr; // floating point flags/status bits
// Exception management.
volatile u32 Exceptions;
// Downcount for determining when we need to do timing
// This isn't quite the right location for it, but it is here to accelerate the ARM JIT
// This variable should be inside of the CoreTiming namespace if we wanted to be correct.
int downcount;
// XER, reformatted into byte fields for easier access.
u8 xer_ca;
u8 xer_so_ov; // format: (SO << 1) | OV
// The Broadway CPU implements bits 16-23 of the XER register... even though it doesn't support lscbx
u16 xer_stringctrl;
#if _M_X86_64
// This member exists for the purpose of an assertion in x86 JitBase.cpp
// that its offset <= 0x100. To minimize code size on x86, we want as much
// useful stuff in the one-byte offset range as possible - which is why ps
// is sitting down here. It currently doesn't make a difference on other
// supported architectures.
std::tuple<> above_fits_in_first_0x100;
#endif
// The paired singles are strange : PS0 is stored in the full 64 bits of each FPR
// but ps calculations are only done in 32-bit precision, and PS1 is only 32 bits.
// Since we want to use SIMD, SSE2 is the only viable alternative - 2x double.
GC_ALIGNED16(u64 ps[32][2]);
u32 sr[16]; // Segment registers.
// special purpose registers - controls quantizers, DMA, and lots of other misc extensions.
// also for power management, but we don't care about that.
u32 spr[1024];
u32 dtlb_last;
u32 dtlb_va[128];
u32 dtlb_pa[128];
u32 itlb_last;
u32 itlb_va[128];
u32 itlb_pa[128];
u32 pagetable_base;
u32 pagetable_hashmask;
InstructionCache iCache;
};
#if _M_X86_64
static_assert(offsetof(PowerPC::PowerPCState, above_fits_in_first_0x100) <= 0x100, "top of PowerPCState too big");
#endif
enum CPUState
{
CPU_RUNNING = 0,
CPU_STEPPING = 2,
CPU_POWERDOWN = 3,
};
extern PowerPCState ppcState;
extern BreakPoints breakpoints;
extern MemChecks memchecks;
extern PPCDebugInterface debug_interface;
void Init(int cpu_core);
void Shutdown();
void DoState(PointerWrap &p);
CoreMode GetMode();
void SetMode(CoreMode _coreType);
void SingleStep();
void CheckExceptions();
void CheckExternalExceptions();
void CheckBreakPoints();
void RunLoop();
void Start();
void Pause();
void Stop();
CPUState GetState();
volatile CPUState *GetStatePtr(); // this oddity is here instead of an extern declaration to easily be able to find all direct accesses throughout the code.
u32 CompactCR();
void ExpandCR(u32 cr);
void OnIdle(u32 _uThreadAddr);
void OnIdleIL();
void UpdatePerformanceMonitor(u32 cycles, u32 num_load_stores, u32 num_fp_inst);
// Easy register access macros.
#define HID0 ((UReg_HID0&)PowerPC::ppcState.spr[SPR_HID0])
#define HID2 ((UReg_HID2&)PowerPC::ppcState.spr[SPR_HID2])
#define HID4 ((UReg_HID4&)PowerPC::ppcState.spr[SPR_HID4])
#define DMAU (*(UReg_DMAU*)&PowerPC::ppcState.spr[SPR_DMAU])
#define DMAL (*(UReg_DMAL*)&PowerPC::ppcState.spr[SPR_DMAL])
#define MMCR0 ((UReg_MMCR0&)PowerPC::ppcState.spr[SPR_MMCR0])
#define MMCR1 ((UReg_MMCR1&)PowerPC::ppcState.spr[SPR_MMCR1])
#define PC PowerPC::ppcState.pc
#define NPC PowerPC::ppcState.npc
#define FPSCR ((UReg_FPSCR&)PowerPC::ppcState.fpscr)
#define MSR PowerPC::ppcState.msr
#define GPR(n) PowerPC::ppcState.gpr[n]
#define rGPR PowerPC::ppcState.gpr
#define rSPR(i) PowerPC::ppcState.spr[i]
#define LR PowerPC::ppcState.spr[SPR_LR]
#define CTR PowerPC::ppcState.spr[SPR_CTR]
#define rDEC PowerPC::ppcState.spr[SPR_DEC]
#define SRR0 PowerPC::ppcState.spr[SPR_SRR0]
#define SRR1 PowerPC::ppcState.spr[SPR_SRR1]
#define SPRG0 PowerPC::ppcState.spr[SPR_SPRG0]
#define SPRG1 PowerPC::ppcState.spr[SPR_SPRG1]
#define SPRG2 PowerPC::ppcState.spr[SPR_SPRG2]
#define SPRG3 PowerPC::ppcState.spr[SPR_SPRG3]
#define GQR(x) PowerPC::ppcState.spr[SPR_GQR0+x]
#define TL PowerPC::ppcState.spr[SPR_TL]
#define TU PowerPC::ppcState.spr[SPR_TU]
#define rPS0(i) (*(double*)(&PowerPC::ppcState.ps[i][0]))
#define rPS1(i) (*(double*)(&PowerPC::ppcState.ps[i][1]))
#define riPS0(i) (*(u64*)(&PowerPC::ppcState.ps[i][0]))
#define riPS1(i) (*(u64*)(&PowerPC::ppcState.ps[i][1]))
} // namespace
enum CRBits
{
CR_SO = 1,
CR_EQ = 2,
CR_GT = 4,
CR_LT = 8,
CR_SO_BIT = 0,
CR_EQ_BIT = 1,
CR_GT_BIT = 2,
CR_LT_BIT = 3,
};
// Convert between PPC and internal representation of CR.
inline u64 PPCCRToInternal(u8 value)
{
u64 cr_val = 0x100000000;
cr_val |= (u64)!!(value & CR_SO) << 61;
cr_val |= (u64)!(value & CR_EQ);
cr_val |= (u64)!(value & CR_GT) << 63;
cr_val |= (u64)!!(value & CR_LT) << 62;
return cr_val;
}
// convert flags into 64-bit CR values with a lookup table
extern const u64 m_crTable[16];
// Warning: these CR operations are fairly slow since they need to convert from
// PowerPC format (4 bit) to our internal 64 bit format. See the definition of
// ppcState.cr_val for more explanations.
inline void SetCRField(int cr_field, int value)
{
PowerPC::ppcState.cr_val[cr_field] = m_crTable[value];
}
inline u32 GetCRField(int cr_field)
{
u64 cr_val = PowerPC::ppcState.cr_val[cr_field];
u32 ppc_cr = 0;
// SO
ppc_cr |= !!(cr_val & (1ull << 61));
// EQ
ppc_cr |= ((cr_val & 0xFFFFFFFF) == 0) << 1;
// GT
ppc_cr |= ((s64)cr_val > 0) << 2;
// LT
ppc_cr |= !!(cr_val & (1ull << 62)) << 3;
return ppc_cr;
}
inline u32 GetCRBit(int bit)
{
return (GetCRField(bit >> 2) >> (3 - (bit & 3))) & 1;
}
inline void SetCRBit(int bit, int value)
{
if (value & 1)
SetCRField(bit >> 2, GetCRField(bit >> 2) | (0x8 >> (bit & 3)));
else
SetCRField(bit >> 2, GetCRField(bit >> 2) & ~(0x8 >> (bit & 3)));
}
// SetCR and GetCR are fairly slow. Should be avoided if possible.
inline void SetCR(u32 new_cr)
{
PowerPC::ExpandCR(new_cr);
}
inline u32 GetCR()
{
return PowerPC::CompactCR();
}
inline void SetCarry(int ca)
{
PowerPC::ppcState.xer_ca = ca;
}
inline int GetCarry()
{
return PowerPC::ppcState.xer_ca;
}
inline UReg_XER GetXER()
{
u32 xer = 0;
xer |= PowerPC::ppcState.xer_stringctrl;
xer |= PowerPC::ppcState.xer_ca << XER_CA_SHIFT;
xer |= PowerPC::ppcState.xer_so_ov << XER_OV_SHIFT;
return xer;
}
inline void SetXER(UReg_XER new_xer)
{
PowerPC::ppcState.xer_stringctrl = new_xer.BYTE_COUNT + (new_xer.BYTE_CMP << 8);
PowerPC::ppcState.xer_ca = new_xer.CA;
PowerPC::ppcState.xer_so_ov = (new_xer.SO << 1) + new_xer.OV;
}
inline int GetXER_SO()
{
return PowerPC::ppcState.xer_so_ov >> 1;
}
inline void SetXER_SO(int value)
{
PowerPC::ppcState.xer_so_ov |= value << 1;
}
void UpdateFPRF(double dvalue);