Pierre Bourdon e149ad4f0a
treewide: convert GPLv2+ license info to SPDX tags
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
2021-07-05 04:35:56 +02:00

178 lines
5.7 KiB
C++

// Copyright 2019 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "InputCommon/ControllerEmu/ControlGroup/IMUGyroscope.h"
#include <algorithm>
#include <memory>
#include "Common/Common.h"
#include "Common/MathUtil.h"
#include "InputCommon/ControlReference/ControlReference.h"
#include "InputCommon/ControllerEmu/Control/Control.h"
namespace ControllerEmu
{
// Maximum period for calculating an average stable value.
// Just to prevent failures due to timer overflow.
static constexpr auto MAXIMUM_CALIBRATION_DURATION = std::chrono::hours(1);
// If calibration updates do not happen at this rate, restart calibration period.
// This prevents calibration across periods of no regular updates. (e.g. between game sessions)
// This is made slightly lower than the UI update frequency of 30.
static constexpr auto WORST_ACCEPTABLE_CALIBRATION_UPDATE_FREQUENCY = 25;
IMUGyroscope::IMUGyroscope(std::string name_, std::string ui_name_)
: ControlGroup(std::move(name_), std::move(ui_name_), GroupType::IMUGyroscope)
{
AddInput(Translate, _trans("Pitch Up"));
AddInput(Translate, _trans("Pitch Down"));
AddInput(Translate, _trans("Roll Left"));
AddInput(Translate, _trans("Roll Right"));
AddInput(Translate, _trans("Yaw Left"));
AddInput(Translate, _trans("Yaw Right"));
AddSetting(&m_deadzone_setting,
{_trans("Dead Zone"),
// i18n: "°/s" is the symbol for degrees (angular measurement) divided by seconds.
_trans("°/s"),
// i18n: Refers to the dead-zone setting of gyroscope input.
_trans("Angular velocity to ignore and remap.")},
2, 0, 180);
AddSetting(&m_calibration_period_setting,
{_trans("Calibration Period"),
// i18n: "s" is the symbol for seconds.
_trans("s"),
// i18n: Refers to the "Calibration" setting of gyroscope input.
_trans("Time period of stable input to trigger calibration. (zero to disable)")},
3, 0, 30);
}
void IMUGyroscope::RestartCalibration()
{
m_calibration_period_start = Clock::now();
m_running_calibration.Clear();
}
void IMUGyroscope::UpdateCalibration(const StateData& state)
{
const auto now = Clock::now();
const auto calibration_period = m_calibration_period_setting.GetValue();
// If calibration time is zero. User is choosing to not calibrate.
if (!calibration_period)
{
// Set calibration to zero.
m_calibration = {};
RestartCalibration();
return;
}
// If there is no running calibration a new gyro was just mapped or calibration was just enabled,
// apply the current state as calibration, it's often better than zeros.
if (!m_running_calibration.Count())
{
m_calibration = state;
}
else
{
const auto calibration_freq =
m_running_calibration.Count() /
std::chrono::duration_cast<std::chrono::duration<double>>(now - m_calibration_period_start)
.count();
const auto potential_calibration = m_running_calibration.Mean();
const auto current_difference = state - potential_calibration;
const auto deadzone = GetDeadzone();
// Check for required calibration update frequency
// and if current data is within deadzone distance of mean stable value.
if (calibration_freq < WORST_ACCEPTABLE_CALIBRATION_UPDATE_FREQUENCY ||
std::any_of(current_difference.data.begin(), current_difference.data.end(),
[&](auto c) { return std::abs(c) > deadzone; }))
{
RestartCalibration();
}
}
// Update running mean stable value.
m_running_calibration.Push(state);
// Apply calibration after configured time.
const auto calibration_duration = now - m_calibration_period_start;
if (calibration_duration >= std::chrono::duration<double>(calibration_period))
{
m_calibration = m_running_calibration.Mean();
if (calibration_duration >= MAXIMUM_CALIBRATION_DURATION)
{
RestartCalibration();
m_running_calibration.Push(m_calibration);
}
}
}
auto IMUGyroscope::GetRawState() const -> StateData
{
return StateData(controls[1]->GetState() - controls[0]->GetState(),
controls[2]->GetState() - controls[3]->GetState(),
controls[4]->GetState() - controls[5]->GetState());
}
bool IMUGyroscope::AreInputsBound() const
{
return std::all_of(controls.begin(), controls.end(),
[](const auto& control) { return control->control_ref->BoundCount() > 0; });
}
bool IMUGyroscope::CanCalibrate() const
{
// If the input gate is disabled, miscalibration to zero values would occur.
return ControlReference::GetInputGate();
}
std::optional<IMUGyroscope::StateData> IMUGyroscope::GetState(bool update)
{
if (!AreInputsBound())
{
if (update)
{
// Set calibration to zero.
m_calibration = {};
RestartCalibration();
}
return std::nullopt;
}
auto state = GetRawState();
// Alternatively we could open the control gate around GetRawState() while calibrating,
// but that would imply background input would temporarily be treated differently for our controls
if (update && CanCalibrate())
UpdateCalibration(state);
state -= m_calibration;
// Apply "deadzone".
for (auto& c : state.data)
c *= std::abs(c) > GetDeadzone();
return state;
}
ControlState IMUGyroscope::GetDeadzone() const
{
return m_deadzone_setting.GetValue() / 360 * MathUtil::TAU;
}
bool IMUGyroscope::IsCalibrating() const
{
const auto calibration_period = m_calibration_period_setting.GetValue();
return calibration_period && (Clock::now() - m_calibration_period_start) >=
std::chrono::duration<double>(calibration_period);
}
} // namespace ControllerEmu