dolphin/Source/Core/VideoBackends/Vulkan/PaletteTextureConverter.cpp
Lioncash 9395b8efa9 Vulkan: Amend header includes
Adds headers where necessary to eliminate indirect includes.
Also adds headers to ensure certain standard constructs always
resolve correctly
2016-09-30 23:26:03 -04:00

317 lines
12 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Vulkan/PaletteTextureConverter.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <string>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/Renderer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/Texture2D.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
namespace Vulkan
{
PaletteTextureConverter::PaletteTextureConverter()
{
}
PaletteTextureConverter::~PaletteTextureConverter()
{
for (const auto& it : m_shaders)
{
if (it != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it, nullptr);
}
if (m_palette_buffer_view != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_palette_buffer_view, nullptr);
if (m_palette_set_layout != VK_NULL_HANDLE)
vkDestroyDescriptorSetLayout(g_vulkan_context->GetDevice(), m_palette_set_layout, nullptr);
}
bool PaletteTextureConverter::Initialize()
{
if (!CreateBuffers())
return false;
if (!CompileShaders())
return false;
if (!CreateDescriptorLayout())
return false;
return true;
}
void PaletteTextureConverter::ConvertTexture(StateTracker* state_tracker, VkRenderPass render_pass,
VkFramebuffer dst_framebuffer, Texture2D* src_texture,
u32 width, u32 height, void* palette,
TlutFormat format)
{
struct PSUniformBlock
{
float multiplier;
int texel_buffer_offset;
int pad[2];
};
_assert_(static_cast<size_t>(format) < NUM_PALETTE_CONVERSION_SHADERS);
size_t palette_size = ((format & 0xF) == GX_TF_I4) ? 32 : 512;
VkDescriptorSet texel_buffer_descriptor_set;
// Allocate memory for the palette, and descriptor sets for the buffer.
// If any of these fail, execute a command buffer, and try again.
if (!m_palette_stream_buffer->ReserveMemory(palette_size,
g_vulkan_context->GetTexelBufferAlignment()) ||
(texel_buffer_descriptor_set =
g_command_buffer_mgr->AllocateDescriptorSet(m_palette_set_layout)) == VK_NULL_HANDLE)
{
WARN_LOG(VIDEO, "Executing command list while waiting for space in palette buffer");
Util::ExecuteCurrentCommandsAndRestoreState(state_tracker, false);
if (!m_palette_stream_buffer->ReserveMemory(palette_size,
g_vulkan_context->GetTexelBufferAlignment()) ||
(texel_buffer_descriptor_set =
g_command_buffer_mgr->AllocateDescriptorSet(m_palette_set_layout)) == VK_NULL_HANDLE)
{
PanicAlert("Failed to allocate space for texture conversion");
return;
}
}
// Fill descriptor set #2 (texel buffer)
u32 palette_offset = static_cast<u32>(m_palette_stream_buffer->GetCurrentOffset());
VkWriteDescriptorSet texel_set_write = {VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
nullptr,
texel_buffer_descriptor_set,
0,
0,
1,
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
nullptr,
nullptr,
&m_palette_buffer_view};
vkUpdateDescriptorSets(g_vulkan_context->GetDevice(), 1, &texel_set_write, 0, nullptr);
Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
m_palette_stream_buffer->GetBuffer(), VK_ACCESS_HOST_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT, palette_offset, palette_size,
VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
// Set up draw
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), m_pipeline_layout,
render_pass, g_object_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE,
m_shaders[format]);
VkRect2D region = {{0, 0}, {width, height}};
draw.BeginRenderPass(dst_framebuffer, region);
// Copy in palette
memcpy(m_palette_stream_buffer->GetCurrentHostPointer(), palette, palette_size);
m_palette_stream_buffer->CommitMemory(palette_size);
// PS Uniforms/Samplers
PSUniformBlock uniforms = {};
uniforms.multiplier = ((format & 0xF)) == GX_TF_I4 ? 15.0f : 255.0f;
uniforms.texel_buffer_offset = static_cast<int>(palette_offset / sizeof(u16));
draw.SetPushConstants(&uniforms, sizeof(uniforms));
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetPointSampler());
// We have to bind the texel buffer descriptor set separately.
vkCmdBindDescriptorSets(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline_layout, 0, 1,
&texel_buffer_descriptor_set, 0, nullptr);
// Draw
draw.SetViewportAndScissor(0, 0, width, height);
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
draw.EndRenderPass();
}
bool PaletteTextureConverter::CreateBuffers()
{
// TODO: Check against maximum size
static const size_t BUFFER_SIZE = 1024 * 1024;
m_palette_stream_buffer =
StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, BUFFER_SIZE, BUFFER_SIZE);
if (!m_palette_stream_buffer)
return false;
// Create a view of the whole buffer, we'll offset our texel load into it
VkBufferViewCreateInfo view_info = {
VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkBufferViewCreateFlags flags
m_palette_stream_buffer->GetBuffer(), // VkBuffer buffer
VK_FORMAT_R16_UINT, // VkFormat format
0, // VkDeviceSize offset
BUFFER_SIZE // VkDeviceSize range
};
VkResult res = vkCreateBufferView(g_vulkan_context->GetDevice(), &view_info, nullptr,
&m_palette_buffer_view);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateBufferView failed: ");
return false;
}
return true;
}
bool PaletteTextureConverter::CompileShaders()
{
static const char PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE[] = R"(
layout(std140, push_constant) uniform PCBlock
{
float multiplier;
int texture_buffer_offset;
} PC;
layout(set = 1, binding = 0) uniform sampler2DArray samp0;
layout(set = 0, binding = 0) uniform usamplerBuffer samp1;
layout(location = 0) in vec3 f_uv0;
layout(location = 0) out vec4 ocol0;
int Convert3To8(int v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
int Convert4To8(int v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
int Convert5To8(int v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
int Convert6To8(int v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
}
float4 DecodePixel_RGB5A3(int val)
{
int r,g,b,a;
if ((val&0x8000) > 0)
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return float4(r, g, b, a) / 255.0;
}
float4 DecodePixel_RGB565(int val)
{
int r, g, b, a;
r = Convert5To8((val >> 11) & 0x1f);
g = Convert6To8((val >> 5) & 0x3f);
b = Convert5To8((val) & 0x1f);
a = 0xFF;
return float4(r, g, b, a) / 255.0;
}
float4 DecodePixel_IA8(int val)
{
int i = val & 0xFF;
int a = val >> 8;
return float4(i, i, i, a) / 255.0;
}
void main()
{
int src = int(round(texture(samp0, f_uv0).r * PC.multiplier));
src = int(texelFetch(samp1, src + PC.texture_buffer_offset).r);
src = ((src << 8) & 0xFF00) | (src >> 8);
ocol0 = DECODE(src);
}
)";
std::string palette_ia8_program = StringFromFormat("%s\n%s", "#define DECODE DecodePixel_IA8",
PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
std::string palette_rgb565_program = StringFromFormat(
"%s\n%s", "#define DECODE DecodePixel_RGB565", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
std::string palette_rgb5a3_program = StringFromFormat(
"%s\n%s", "#define DECODE DecodePixel_RGB5A3", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
m_shaders[GX_TL_IA8] = Util::CompileAndCreateFragmentShader(palette_ia8_program);
m_shaders[GX_TL_RGB565] = Util::CompileAndCreateFragmentShader(palette_rgb565_program);
m_shaders[GX_TL_RGB5A3] = Util::CompileAndCreateFragmentShader(palette_rgb5a3_program);
return (m_shaders[GX_TL_IA8] != VK_NULL_HANDLE && m_shaders[GX_TL_RGB565] != VK_NULL_HANDLE &&
m_shaders[GX_TL_RGB5A3] != VK_NULL_HANDLE);
}
bool PaletteTextureConverter::CreateDescriptorLayout()
{
static const VkDescriptorSetLayoutBinding set_bindings[] = {
{0, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
};
static const VkDescriptorSetLayoutCreateInfo set_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
static_cast<u32>(ArraySize(set_bindings)), set_bindings};
VkResult res = vkCreateDescriptorSetLayout(g_vulkan_context->GetDevice(), &set_info, nullptr,
&m_palette_set_layout);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDescriptorSetLayout failed: ");
return false;
}
VkDescriptorSetLayout sets[] = {m_palette_set_layout, g_object_cache->GetDescriptorSetLayout(
DESCRIPTOR_SET_PIXEL_SHADER_SAMPLERS)};
VkPushConstantRange push_constant_range = {
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, PUSH_CONSTANT_BUFFER_SIZE};
VkPipelineLayoutCreateInfo pipeline_layout_info = {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
nullptr,
0,
static_cast<u32>(ArraySize(sets)),
sets,
1,
&push_constant_range};
res = vkCreatePipelineLayout(g_vulkan_context->GetDevice(), &pipeline_layout_info, nullptr,
&m_pipeline_layout);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreatePipelineLayout failed: ");
return false;
}
return true;
}
} // namespace Vulkan