mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-18 12:01:15 +01:00
338 lines
9.9 KiB
C
338 lines
9.9 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file block_buffer_encoder.c
|
|
/// \brief Single-call .xz Block encoder
|
|
//
|
|
// Author: Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "block_buffer_encoder.h"
|
|
#include "block_encoder.h"
|
|
#include "filter_encoder.h"
|
|
#include "lzma2_encoder.h"
|
|
#include "check.h"
|
|
|
|
|
|
/// Estimate the maximum size of the Block Header and Check fields for
|
|
/// a Block that uses LZMA2 uncompressed chunks. We could use
|
|
/// lzma_block_header_size() but this is simpler.
|
|
///
|
|
/// Block Header Size + Block Flags + Compressed Size
|
|
/// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
|
|
/// and round up to the next multiple of four to take Header Padding
|
|
/// into account.
|
|
#define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
|
|
+ LZMA_CHECK_SIZE_MAX + 3) & ~3)
|
|
|
|
|
|
static uint64_t
|
|
lzma2_bound(uint64_t uncompressed_size)
|
|
{
|
|
// Prevent integer overflow in overhead calculation.
|
|
if (uncompressed_size > COMPRESSED_SIZE_MAX)
|
|
return 0;
|
|
|
|
// Calculate the exact overhead of the LZMA2 headers: Round
|
|
// uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
|
|
// multiply by the size of per-chunk header, and add one byte for
|
|
// the end marker.
|
|
const uint64_t overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
|
|
/ LZMA2_CHUNK_MAX)
|
|
* LZMA2_HEADER_UNCOMPRESSED + 1;
|
|
|
|
// Catch the possible integer overflow.
|
|
if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
|
|
return 0;
|
|
|
|
return uncompressed_size + overhead;
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
lzma_block_buffer_bound64(uint64_t uncompressed_size)
|
|
{
|
|
// If the data doesn't compress, we always use uncompressed
|
|
// LZMA2 chunks.
|
|
uint64_t lzma2_size = lzma2_bound(uncompressed_size);
|
|
if (lzma2_size == 0)
|
|
return 0;
|
|
|
|
// Take Block Padding into account.
|
|
lzma2_size = (lzma2_size + 3) & ~UINT64_C(3);
|
|
|
|
// No risk of integer overflow because lzma2_bound() already takes
|
|
// into account the size of the headers in the Block.
|
|
return HEADERS_BOUND + lzma2_size;
|
|
}
|
|
|
|
|
|
extern LZMA_API(size_t)
|
|
lzma_block_buffer_bound(size_t uncompressed_size)
|
|
{
|
|
uint64_t ret = lzma_block_buffer_bound64(uncompressed_size);
|
|
|
|
#if SIZE_MAX < UINT64_MAX
|
|
// Catch the possible integer overflow on 32-bit systems.
|
|
if (ret > SIZE_MAX)
|
|
return 0;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
// Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
|
|
// all, but LZMA2 always requires a dictionary, so use the minimum
|
|
// value to minimize memory usage of the decoder.
|
|
lzma_options_lzma lzma2 = {
|
|
.dict_size = LZMA_DICT_SIZE_MIN,
|
|
};
|
|
|
|
lzma_filter filters[2];
|
|
filters[0].id = LZMA_FILTER_LZMA2;
|
|
filters[0].options = &lzma2;
|
|
filters[1].id = LZMA_VLI_UNKNOWN;
|
|
|
|
// Set the above filter options to *block temporarily so that we can
|
|
// encode the Block Header.
|
|
lzma_filter *filters_orig = block->filters;
|
|
block->filters = filters;
|
|
|
|
if (lzma_block_header_size(block) != LZMA_OK) {
|
|
block->filters = filters_orig;
|
|
return LZMA_PROG_ERROR;
|
|
}
|
|
|
|
// Check that there's enough output space. The caller has already
|
|
// set block->compressed_size to what lzma2_bound() has returned,
|
|
// so we can reuse that value. We know that compressed_size is a
|
|
// known valid VLI and header_size is a small value so their sum
|
|
// will never overflow.
|
|
assert(block->compressed_size == lzma2_bound(in_size));
|
|
if (out_size - *out_pos
|
|
< block->header_size + block->compressed_size) {
|
|
block->filters = filters_orig;
|
|
return LZMA_BUF_ERROR;
|
|
}
|
|
|
|
if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
|
|
block->filters = filters_orig;
|
|
return LZMA_PROG_ERROR;
|
|
}
|
|
|
|
block->filters = filters_orig;
|
|
*out_pos += block->header_size;
|
|
|
|
// Encode the data using LZMA2 uncompressed chunks.
|
|
size_t in_pos = 0;
|
|
uint8_t control = 0x01; // Dictionary reset
|
|
|
|
while (in_pos < in_size) {
|
|
// Control byte: Indicate uncompressed chunk, of which
|
|
// the first resets the dictionary.
|
|
out[(*out_pos)++] = control;
|
|
control = 0x02; // No dictionary reset
|
|
|
|
// Size of the uncompressed chunk
|
|
const size_t copy_size
|
|
= my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
|
|
out[(*out_pos)++] = (copy_size - 1) >> 8;
|
|
out[(*out_pos)++] = (copy_size - 1) & 0xFF;
|
|
|
|
// The actual data
|
|
assert(*out_pos + copy_size <= out_size);
|
|
memcpy(out + *out_pos, in + in_pos, copy_size);
|
|
|
|
in_pos += copy_size;
|
|
*out_pos += copy_size;
|
|
}
|
|
|
|
// End marker
|
|
out[(*out_pos)++] = 0x00;
|
|
assert(*out_pos <= out_size);
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
block_encode_normal(lzma_block *block, const lzma_allocator *allocator,
|
|
const uint8_t *in, size_t in_size,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
// Find out the size of the Block Header.
|
|
return_if_error(lzma_block_header_size(block));
|
|
|
|
// Reserve space for the Block Header and skip it for now.
|
|
if (out_size - *out_pos <= block->header_size)
|
|
return LZMA_BUF_ERROR;
|
|
|
|
const size_t out_start = *out_pos;
|
|
*out_pos += block->header_size;
|
|
|
|
// Limit out_size so that we stop encoding if the output would grow
|
|
// bigger than what uncompressed Block would be.
|
|
if (out_size - *out_pos > block->compressed_size)
|
|
out_size = *out_pos + block->compressed_size;
|
|
|
|
// TODO: In many common cases this could be optimized to use
|
|
// significantly less memory.
|
|
lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
|
|
lzma_ret ret = lzma_raw_encoder_init(
|
|
&raw_encoder, allocator, block->filters);
|
|
|
|
if (ret == LZMA_OK) {
|
|
size_t in_pos = 0;
|
|
ret = raw_encoder.code(raw_encoder.coder, allocator,
|
|
in, &in_pos, in_size, out, out_pos, out_size,
|
|
LZMA_FINISH);
|
|
}
|
|
|
|
// NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
|
|
lzma_next_end(&raw_encoder, allocator);
|
|
|
|
if (ret == LZMA_STREAM_END) {
|
|
// Compression was successful. Write the Block Header.
|
|
block->compressed_size
|
|
= *out_pos - (out_start + block->header_size);
|
|
ret = lzma_block_header_encode(block, out + out_start);
|
|
if (ret != LZMA_OK)
|
|
ret = LZMA_PROG_ERROR;
|
|
|
|
} else if (ret == LZMA_OK) {
|
|
// Output buffer became full.
|
|
ret = LZMA_BUF_ERROR;
|
|
}
|
|
|
|
// Reset *out_pos if something went wrong.
|
|
if (ret != LZMA_OK)
|
|
*out_pos = out_start;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
|
|
const uint8_t *in, size_t in_size,
|
|
uint8_t *out, size_t *out_pos, size_t out_size,
|
|
bool try_to_compress)
|
|
{
|
|
// Validate the arguments.
|
|
if (block == NULL || (in == NULL && in_size != 0) || out == NULL
|
|
|| out_pos == NULL || *out_pos > out_size)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
// The contents of the structure may depend on the version so
|
|
// check the version before validating the contents of *block.
|
|
if (block->version > 1)
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
|
|
|| (try_to_compress && block->filters == NULL))
|
|
return LZMA_PROG_ERROR;
|
|
|
|
if (!lzma_check_is_supported(block->check))
|
|
return LZMA_UNSUPPORTED_CHECK;
|
|
|
|
// Size of a Block has to be a multiple of four, so limit the size
|
|
// here already. This way we don't need to check it again when adding
|
|
// Block Padding.
|
|
out_size -= (out_size - *out_pos) & 3;
|
|
|
|
// Get the size of the Check field.
|
|
const size_t check_size = lzma_check_size(block->check);
|
|
assert(check_size != UINT32_MAX);
|
|
|
|
// Reserve space for the Check field.
|
|
if (out_size - *out_pos <= check_size)
|
|
return LZMA_BUF_ERROR;
|
|
|
|
out_size -= check_size;
|
|
|
|
// Initialize block->uncompressed_size and calculate the worst-case
|
|
// value for block->compressed_size.
|
|
block->uncompressed_size = in_size;
|
|
block->compressed_size = lzma2_bound(in_size);
|
|
if (block->compressed_size == 0)
|
|
return LZMA_DATA_ERROR;
|
|
|
|
// Do the actual compression.
|
|
lzma_ret ret = LZMA_BUF_ERROR;
|
|
if (try_to_compress)
|
|
ret = block_encode_normal(block, allocator,
|
|
in, in_size, out, out_pos, out_size);
|
|
|
|
if (ret != LZMA_OK) {
|
|
// If the error was something else than output buffer
|
|
// becoming full, return the error now.
|
|
if (ret != LZMA_BUF_ERROR)
|
|
return ret;
|
|
|
|
// The data was uncompressible (at least with the options
|
|
// given to us) or the output buffer was too small. Use the
|
|
// uncompressed chunks of LZMA2 to wrap the data into a valid
|
|
// Block. If we haven't been given enough output space, even
|
|
// this may fail.
|
|
return_if_error(block_encode_uncompressed(block, in, in_size,
|
|
out, out_pos, out_size));
|
|
}
|
|
|
|
assert(*out_pos <= out_size);
|
|
|
|
// Block Padding. No buffer overflow here, because we already adjusted
|
|
// out_size so that (out_size - out_start) is a multiple of four.
|
|
// Thus, if the buffer is full, the loop body can never run.
|
|
for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
|
|
assert(*out_pos < out_size);
|
|
out[(*out_pos)++] = 0x00;
|
|
}
|
|
|
|
// If there's no Check field, we are done now.
|
|
if (check_size > 0) {
|
|
// Calculate the integrity check. We reserved space for
|
|
// the Check field earlier so we don't need to check for
|
|
// available output space here.
|
|
lzma_check_state check;
|
|
lzma_check_init(&check, block->check);
|
|
lzma_check_update(&check, block->check, in, in_size);
|
|
lzma_check_finish(&check, block->check);
|
|
|
|
memcpy(block->raw_check, check.buffer.u8, check_size);
|
|
memcpy(out + *out_pos, check.buffer.u8, check_size);
|
|
*out_pos += check_size;
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
lzma_block_buffer_encode(lzma_block *block, const lzma_allocator *allocator,
|
|
const uint8_t *in, size_t in_size,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
return block_buffer_encode(block, allocator,
|
|
in, in_size, out, out_pos, out_size, true);
|
|
}
|
|
|
|
|
|
extern LZMA_API(lzma_ret)
|
|
lzma_block_uncomp_encode(lzma_block *block,
|
|
const uint8_t *in, size_t in_size,
|
|
uint8_t *out, size_t *out_pos, size_t out_size)
|
|
{
|
|
// It won't allocate any memory from heap so no need
|
|
// for lzma_allocator.
|
|
return block_buffer_encode(block, NULL,
|
|
in, in_size, out, out_pos, out_size, false);
|
|
}
|