dolphin/Source/Core/VideoCommon/TextureCacheBase.cpp
2015-11-06 15:43:58 +01:00

1211 lines
40 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <string>
#include "Common/FileUtil.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtil.h"
#include "Core/ConfigManager.h"
#include "Core/FifoPlayer/FifoPlayer.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/HiresTextures.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
static const u64 TEXHASH_INVALID = 0;
static const int TEXTURE_KILL_THRESHOLD = 64; // Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation
static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
static const int FRAMECOUNT_INVALID = 0;
TextureCacheBase* g_texture_cache;
alignas(16) u8* TextureCacheBase::temp = nullptr;
size_t TextureCacheBase::temp_size;
TextureCacheBase::TexCache TextureCacheBase::textures_by_address;
TextureCacheBase::TexCache TextureCacheBase::textures_by_hash;
TextureCacheBase::TexPool TextureCacheBase::texture_pool;
TextureCacheBase::TCacheEntryBase* TextureCacheBase::bound_textures[8];
TextureCacheBase::BackupConfig TextureCacheBase::backup_config;
static bool invalidate_texture_cache_requested;
TextureCacheBase::TCacheEntryBase::~TCacheEntryBase()
{
}
void TextureCacheBase::CheckTempSize(size_t required_size)
{
if (required_size <= temp_size)
return;
temp_size = required_size;
FreeAlignedMemory(temp);
temp = (u8*)AllocateAlignedMemory(temp_size, 16);
}
TextureCacheBase::TextureCacheBase()
{
temp_size = 2048 * 2048 * 4;
if (!temp)
temp = (u8*)AllocateAlignedMemory(temp_size, 16);
TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter);
HiresTexture::Init();
SetHash64Function();
invalidate_texture_cache_requested = false;
}
void TextureCacheBase::RequestInvalidateTextureCache()
{
invalidate_texture_cache_requested = true;
}
void TextureCacheBase::Invalidate()
{
UnbindTextures();
for (auto& tex : textures_by_address)
{
delete tex.second;
}
textures_by_address.clear();
textures_by_hash.clear();
for (auto& rt : texture_pool)
{
delete rt.second;
}
texture_pool.clear();
}
TextureCacheBase::~TextureCacheBase()
{
HiresTexture::Shutdown();
Invalidate();
FreeAlignedMemory(temp);
temp = nullptr;
}
void TextureCacheBase::OnConfigChanged(VideoConfig& config)
{
if (g_texture_cache)
{
if (config.bHiresTextures != backup_config.s_hires_textures ||
config.bCacheHiresTextures != backup_config.s_cache_hires_textures)
{
HiresTexture::Update();
}
// TODO: Invalidating texcache is really stupid in some of these cases
if (config.iSafeTextureCache_ColorSamples != backup_config.s_colorsamples ||
config.bTexFmtOverlayEnable != backup_config.s_texfmt_overlay ||
config.bTexFmtOverlayCenter != backup_config.s_texfmt_overlay_center ||
config.bHiresTextures != backup_config.s_hires_textures ||
invalidate_texture_cache_requested)
{
g_texture_cache->Invalidate();
TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter);
invalidate_texture_cache_requested = false;
}
if ((config.iStereoMode > 0) != backup_config.s_stereo_3d ||
config.bStereoEFBMonoDepth != backup_config.s_efb_mono_depth)
{
g_texture_cache->DeleteShaders();
g_texture_cache->CompileShaders();
}
}
backup_config.s_colorsamples = config.iSafeTextureCache_ColorSamples;
backup_config.s_texfmt_overlay = config.bTexFmtOverlayEnable;
backup_config.s_texfmt_overlay_center = config.bTexFmtOverlayCenter;
backup_config.s_hires_textures = config.bHiresTextures;
backup_config.s_cache_hires_textures = config.bCacheHiresTextures;
backup_config.s_stereo_3d = config.iStereoMode > 0;
backup_config.s_efb_mono_depth = config.bStereoEFBMonoDepth;
}
void TextureCacheBase::Cleanup(int _frameCount)
{
TexCache::iterator iter = textures_by_address.begin();
TexCache::iterator tcend = textures_by_address.end();
while (iter != tcend)
{
if (iter->second->frameCount == FRAMECOUNT_INVALID)
{
iter->second->frameCount = _frameCount;
++iter;
}
else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount)
{
if (iter->second->IsEfbCopy())
{
// Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB copies living on the
// host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for performance reasons
if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 &&
iter->second->hash != iter->second->CalculateHash())
{
iter = FreeTexture(iter);
}
else
{
++iter;
}
}
else
{
iter = FreeTexture(iter);
}
}
else
{
++iter;
}
}
TexPool::iterator iter2 = texture_pool.begin();
TexPool::iterator tcend2 = texture_pool.end();
while (iter2 != tcend2)
{
if (iter2->second->frameCount == FRAMECOUNT_INVALID)
{
iter2->second->frameCount = _frameCount;
}
if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second->frameCount)
{
delete iter2->second;
iter2 = texture_pool.erase(iter2);
}
else
{
++iter2;
}
}
}
bool TextureCacheBase::TCacheEntryBase::OverlapsMemoryRange(u32 range_address, u32 range_size) const
{
if (addr + size_in_bytes <= range_address)
return false;
if (addr >= range_address + range_size)
return false;
return true;
}
TextureCacheBase::TCacheEntryBase* TextureCacheBase::DoPartialTextureUpdates(TexCache::iterator iter_t)
{
TCacheEntryBase* entry_to_update = iter_t->second;
const bool isPaletteTexture = (entry_to_update->format == GX_TF_C4
|| entry_to_update->format == GX_TF_C8
|| entry_to_update->format == GX_TF_C14X2
|| entry_to_update->format >= 0x10000);
// Efb copies and paletted textures are excluded from these updates, until there's an example where a game would
// benefit from this. Both would require more work to be done.
// TODO: Implement upscaling support for normal textures, and then remove the efb to ram and the scaled efb restrictions
if (entry_to_update->IsEfbCopy()
|| isPaletteTexture)
return entry_to_update;
u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format);
u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format);
u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format) / 2;
u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width;
TexCache::iterator iter = textures_by_address.lower_bound(entry_to_update->addr);
TexCache::iterator iterend = textures_by_address.upper_bound(entry_to_update->addr + entry_to_update->size_in_bytes);
bool entry_need_scaling = true;
while (iter != iterend)
{
TCacheEntryBase* entry = iter->second;
if (entry != entry_to_update
&& entry->IsEfbCopy()
&& entry_to_update->addr <= entry->addr
&& entry->addr + entry->size_in_bytes <= entry_to_update->addr + entry_to_update->size_in_bytes
&& entry->frameCount == FRAMECOUNT_INVALID
&& entry->memory_stride == numBlocksX * block_size)
{
if (entry->hash == entry->CalculateHash())
{
u32 block_offset = (entry->addr - entry_to_update->addr) / block_size;
u32 block_x = block_offset % numBlocksX;
u32 block_y = block_offset / numBlocksX;
u32 x = block_x * block_width;
u32 y = block_y * block_height;
MathUtil::Rectangle<int> srcrect, dstrect;
srcrect.left = 0;
srcrect.top = 0;
dstrect.left = 0;
dstrect.top = 0;
if (entry_need_scaling)
{
entry_need_scaling = false;
u32 w = entry_to_update->native_width * entry->config.width / entry->native_width;
u32 h = entry_to_update->native_height * entry->config.height / entry->native_height;
u32 max = g_renderer->GetMaxTextureSize();
if (max < w || max < h)
{
iter++;
continue;
}
if (entry_to_update->config.width != w || entry_to_update->config.height != h)
{
TextureCacheBase::TCacheEntryConfig newconfig;
newconfig.width = w;
newconfig.height = h;
newconfig.rendertarget = true;
TCacheEntryBase* newentry = AllocateTexture(newconfig);
newentry->SetGeneralParameters(entry_to_update->addr, entry_to_update->size_in_bytes, entry_to_update->format);
newentry->SetDimensions(entry_to_update->native_width, entry_to_update->native_height, 1);
newentry->SetHashes(entry_to_update->base_hash, entry_to_update->hash);
newentry->frameCount = frameCount;
newentry->is_efb_copy = false;
srcrect.right = entry_to_update->config.width;
srcrect.bottom = entry_to_update->config.height;
dstrect.right = w;
dstrect.bottom = h;
newentry->CopyRectangleFromTexture(entry_to_update, srcrect, dstrect);
entry_to_update = newentry;
u64 key = iter_t->first;
iter_t = FreeTexture(iter_t);
textures_by_address.emplace(key, entry_to_update);
}
}
srcrect.right = entry->config.width;
srcrect.bottom = entry->config.height;
dstrect.left = x * entry_to_update->config.width / entry_to_update->native_width;
dstrect.top = y * entry_to_update->config.height / entry_to_update->native_height;
dstrect.right = (x + entry->native_width) * entry_to_update->config.width / entry_to_update->native_width;
dstrect.bottom = (y + entry->native_height) * entry_to_update->config.height / entry_to_update->native_height;
entry_to_update->CopyRectangleFromTexture(entry, srcrect, dstrect);
// Mark the texture update as used, so it isn't applied more than once
entry->frameCount = frameCount;
}
else
{
// If the hash does not match, this EFB copy will not be used for anything, so remove it
iter = FreeTexture(iter);
continue;
}
}
++iter;
}
return entry_to_update;
}
void TextureCacheBase::DumpTexture(TCacheEntryBase* entry, std::string basename, unsigned int level)
{
std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) +
SConfig::GetInstance().m_strUniqueID;
// make sure that the directory exists
if (!File::Exists(szDir) || !File::IsDirectory(szDir))
File::CreateDir(szDir);
if (level > 0)
{
basename += StringFromFormat("_mip%i", level);
}
std::string filename = szDir + "/" + basename + ".png";
if (!File::Exists(filename))
entry->Save(filename, level);
}
static u32 CalculateLevelSize(u32 level_0_size, u32 level)
{
return (level_0_size + ((1 << level) - 1)) >> level;
}
// Used by TextureCacheBase::Load
TextureCacheBase::TCacheEntryBase* TextureCacheBase::ReturnEntry(unsigned int stage, TCacheEntryBase* entry)
{
entry->frameCount = FRAMECOUNT_INVALID;
bound_textures[stage] = entry;
GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true);
return entry;
}
void TextureCacheBase::BindTextures()
{
for (int i = 0; i < 8; ++i)
{
if (bound_textures[i])
bound_textures[i]->Bind(i);
}
}
void TextureCacheBase::UnbindTextures()
{
std::fill(std::begin(bound_textures), std::end(bound_textures), nullptr);
}
TextureCacheBase::TCacheEntryBase* TextureCacheBase::Load(const u32 stage)
{
const FourTexUnits &tex = bpmem.tex[stage >> 2];
const u32 id = stage & 3;
const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5;
u32 width = tex.texImage0[id].width + 1;
u32 height = tex.texImage0[id].height + 1;
const int texformat = tex.texImage0[id].format;
const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
const u32 tlutfmt = tex.texTlut[id].tlut_format;
const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0;
u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
const bool from_tmem = tex.texImage1[id].image_type != 0;
if (0 == address)
return nullptr;
// TexelSizeInNibbles(format) * width * height / 16;
const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);
unsigned int expandedWidth = ROUND_UP(width, bsw);
unsigned int expandedHeight = ROUND_UP(height, bsh);
const unsigned int nativeW = width;
const unsigned int nativeH = height;
// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
u64 base_hash = TEXHASH_INVALID;
u64 full_hash = TEXHASH_INVALID;
u32 full_format = texformat;
const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);
// Reject invalid tlut format.
if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
return nullptr;
if (isPaletteTexture)
full_format = texformat | (tlutfmt << 16);
const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
u32 additional_mips_size = 0; // not including level 0, which is texture_size
// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there
tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);
for (u32 level = 1; level != tex_levels; ++level)
{
// We still need to calculate the original size of the mips
const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw);
const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh);
additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
}
// If we are recording a FifoLog, keep track of what memory we read.
// FifiRecorder does it's own memory modification tracking independant of the texture hashing below.
if (g_bRecordFifoData && !from_tmem)
FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP);
const u8* src_data;
if (from_tmem)
src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
else
src_data = Memory::GetPointer(address);
// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
u32 palette_size = 0;
if (isPaletteTexture)
{
palette_size = TexDecoder_GetPaletteSize(texformat);
full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
}
else
{
full_hash = base_hash;
}
// Search the texture cache for textures by address
//
// Find all texture cache entries for the current texture address, and decide whether to use one of
// them, or to create a new one
//
// In most cases, the fastest way is to use only one texture cache entry for the same address. Usually,
// when a texture changes, the old version of the texture is unlikely to be used again. If there were
// new cache entries created for normal texture updates, there would be a slowdown due to a huge amount
// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
// faster than creating a new one from scratch.
//
// Some games use the same address for different textures though. If the same cache entry was used in
// this case, it would be constantly overwritten, and effectively there wouldn't be any caching for
// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple
// sets of fonts on each other stored in a single texture and uses the palette to make different
// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or
// at least in 2 different ways(size 1024x1024 vs 1024x256).
//
// To determine whether to use multiple cache entries or a single entry, use the following heuristic:
// If the same texture address is used several times during the same frame, assume the address is used
// for different purposes and allow creating an additional cache entry. If there's at least one entry
// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as
// possible. If the current texture is found in the cache, use that entry.
//
// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was
// done in vain.
std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address);
TexCache::iterator iter = iter_range.first;
TexCache::iterator oldest_entry = iter;
int temp_frameCount = 0x7fffffff;
TexCache::iterator unconverted_copy = textures_by_address.end();
while (iter != iter_range.second)
{
TCacheEntryBase* entry = iter->second;
// Do not load strided EFB copies, they are not meant to be used directly
if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
entry->memory_stride == entry->BytesPerRow())
{
// EFB copies have slightly different rules as EFB copy formats have different
// meanings from texture formats.
if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
IsPlayingBackFifologWithBrokenEFBCopies)
{
// TODO: We should check format/width/height/levels for EFB copies. Checking
// format is complicated because EFB copy formats don't exactly match
// texture formats. I'm not sure what effect checking width/height/levels
// would have.
if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
return ReturnEntry(stage, entry);
// Note that we found an unconverted EFB copy, then continue. We'll
// perform the conversion later. Currently, we only convert EFB copies to
// palette textures; we could do other conversions if it proved to be
// beneficial.
unconverted_copy = iter;
}
else
{
// Aggressively prune EFB copies: if it isn't useful here, it will probably
// never be useful again. It's theoretically possible for a game to do
// something weird where the copy could become useful in the future, but in
// practice it doesn't happen.
iter = FreeTexture(iter);
continue;
}
}
else
{
// For normal textures, all texture parameters need to match
if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels &&
entry->native_width == nativeW && entry->native_height == nativeH)
{
entry = DoPartialTextureUpdates(iter);
return ReturnEntry(stage, entry);
}
}
// Find the texture which hasn't been used for the longest time. Count paletted
// textures as the same texture here, when the texture itself is the same. This
// improves the performance a lot in some games that use paletted textures.
// Example: Sonic the Fighters (inside Sonic Gems Collection)
// Skip EFB copies here, so they can be used for partial texture updates
if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
!entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
{
temp_frameCount = entry->frameCount;
oldest_entry = iter;
}
++iter;
}
if (unconverted_copy != textures_by_address.end())
{
// Perform palette decoding.
TCacheEntryBase *entry = unconverted_copy->second;
TCacheEntryConfig config;
config.rendertarget = true;
config.width = entry->config.width;
config.height = entry->config.height;
config.layers = FramebufferManagerBase::GetEFBLayers();
TCacheEntryBase *decoded_entry = AllocateTexture(config);
decoded_entry->SetGeneralParameters(address, texture_size, full_format);
decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
decoded_entry->SetHashes(base_hash, full_hash);
decoded_entry->frameCount = FRAMECOUNT_INVALID;
decoded_entry->is_efb_copy = false;
g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt);
textures_by_address.emplace((u64)address, decoded_entry);
return ReturnEntry(stage, decoded_entry);
}
// Search the texture cache for normal textures by hash
//
// If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns
// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones
if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
{
iter_range = textures_by_hash.equal_range(full_hash);
iter = iter_range.first;
while (iter != iter_range.second)
{
TCacheEntryBase* entry = iter->second;
// All parameters, except the address, need to match here
if (entry->format == full_format && entry->native_levels >= tex_levels &&
entry->native_width == nativeW && entry->native_height == nativeH)
{
entry = DoPartialTextureUpdates(iter);
return ReturnEntry(stage, entry);
}
++iter;
}
}
// If at least one entry was not used for the same frame, overwrite the oldest one
if (temp_frameCount != 0x7fffffff)
{
// pool this texture and make a new one later
FreeTexture(oldest_entry);
}
std::shared_ptr<HiresTexture> hires_tex;
if (g_ActiveConfig.bHiresTextures)
{
hires_tex = HiresTexture::Search(
src_data, texture_size,
&texMem[tlutaddr], palette_size,
width, height,
texformat, use_mipmaps
);
if (hires_tex)
{
auto& l = hires_tex->m_levels[0];
if (l.width != width || l.height != height)
{
width = l.width;
height = l.height;
}
expandedWidth = l.width;
expandedHeight = l.height;
CheckTempSize(l.data_size);
memcpy(temp, l.data, l.data_size);
}
}
if (!hires_tex)
{
if (!(texformat == GX_TF_RGBA8 && from_tmem))
{
const u8* tlut = &texMem[tlutaddr];
TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt);
}
else
{
u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
}
}
// how many levels the allocated texture shall have
const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;
// create the entry/texture
TCacheEntryConfig config;
config.width = width;
config.height = height;
config.levels = texLevels;
TCacheEntryBase* entry = AllocateTexture(config);
GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
iter = textures_by_address.emplace((u64)address, entry);
if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
{
entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
}
entry->SetGeneralParameters(address, texture_size, full_format);
entry->SetDimensions(nativeW, nativeH, tex_levels);
entry->SetHashes(base_hash, full_hash);
entry->is_efb_copy = false;
entry->is_custom_tex = hires_tex != nullptr;
// load texture
entry->Load(width, height, expandedWidth, 0);
std::string basename = "";
if (g_ActiveConfig.bDumpTextures && !hires_tex)
{
basename = HiresTexture::GenBaseName(
src_data, texture_size,
&texMem[tlutaddr], palette_size,
width, height,
texformat, use_mipmaps,
true
);
DumpTexture(entry, basename, 0);
}
if (hires_tex)
{
for (u32 level = 1; level != texLevels; ++level)
{
auto& l = hires_tex->m_levels[level];
CheckTempSize(l.data_size);
memcpy(temp, l.data, l.data_size);
entry->Load(l.width, l.height, l.width, level);
}
}
else
{
// load mips - TODO: Loading mipmaps from tmem is untested!
src_data += texture_size;
const u8* ptr_even = nullptr;
const u8* ptr_odd = nullptr;
if (from_tmem)
{
ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size];
ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
}
for (u32 level = 1; level != texLevels; ++level)
{
const u32 mip_width = CalculateLevelSize(width, level);
const u32 mip_height = CalculateLevelSize(height, level);
const u32 expanded_mip_width = ROUND_UP(mip_width, bsw);
const u32 expanded_mip_height = ROUND_UP(mip_height, bsh);
const u8*& mip_src_data = from_tmem
? ((level % 2) ? ptr_odd : ptr_even)
: src_data;
const u8* tlut = &texMem[tlutaddr];
TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt);
mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
entry->Load(mip_width, mip_height, expanded_mip_width, level);
if (g_ActiveConfig.bDumpTextures)
DumpTexture(entry, basename, level);
}
}
INCSTAT(stats.numTexturesUploaded);
SETSTAT(stats.numTexturesAlive, textures_by_address.size());
entry = DoPartialTextureUpdates(iter);
return ReturnEntry(stage, entry);
}
void TextureCacheBase::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat,
const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf)
{
// Emulation methods:
//
// - EFB to RAM:
// Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
// Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again.
// Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture
// Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures.
//
// - EFB to texture:
// Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders.
// Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again.
// Since we don't do any further encoding or decoding here, this method is much faster.
// It also allows enhancing the visual quality by doing scaled EFB copies.
//
// - Hybrid EFB copies:
// 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM)
// 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range.
// If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies.
// 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before):
// 2a) Entry doesn't exist:
// - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
// - Create a texture cache entry for the target (type = TCET_EC_VRAM)
// - Store a hash of the encoded RAM data in the texcache entry.
// 2b) Entry exists AND type is TCET_EC_VRAM:
// - Like case 2a, but reuse the old texcache entry instead of creating a new one.
// 2c) Entry exists AND type is TCET_EC_DYNAMIC:
// - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry.
// - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway.
// 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM.
// 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
// 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC.
// Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now.
// 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
// Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
// Compatibility is as good as EFB to RAM.
// Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
// EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway.
//
// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing.
//
// For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies.
float colmat[28] = { 0 };
float *const fConstAdd = colmat + 16;
float *const ColorMask = colmat + 20;
ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
unsigned int cbufid = -1;
bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
if (srcFormat == PEControl::Z24)
{
switch (dstFormat)
{
case 0: // Z4
colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
cbufid = 0;
dstFormat |= _GX_TF_CTF;
break;
case 8: // Z8H
dstFormat |= _GX_TF_CTF;
case 1: // Z8
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
cbufid = 1;
break;
case 3: // Z16
colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
cbufid = 2;
break;
case 11: // Z16 (reverse order)
colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
cbufid = 3;
dstFormat |= _GX_TF_CTF;
break;
case 6: // Z24X8
colmat[0] = colmat[5] = colmat[10] = 1.0f;
cbufid = 4;
break;
case 9: // Z8M
colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
cbufid = 5;
dstFormat |= _GX_TF_CTF;
break;
case 10: // Z8L
colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
cbufid = 6;
dstFormat |= _GX_TF_CTF;
break;
case 12: // Z16L - copy lower 16 depth bits
// expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha)
// Used e.g. in Zelda: Skyward Sword
colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
cbufid = 7;
dstFormat |= _GX_TF_CTF;
break;
default:
ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat);
colmat[2] = colmat[5] = colmat[8] = 1.0f;
cbufid = 8;
break;
}
dstFormat |= _GX_TF_ZTF;
}
else if (isIntensity)
{
fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f;
switch (dstFormat)
{
case 0: // I4
case 1: // I8
case 2: // IA4
case 3: // IA8
case 8: // I8
// TODO - verify these coefficients
colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f;
colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f;
colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f;
if (dstFormat < 2 || dstFormat == 8)
{
colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f;
fConstAdd[3] = 16.0f / 255.0f;
if (dstFormat == 0)
{
ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f;
ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f;
cbufid = 9;
}
else
{
cbufid = 10;
}
}
else// alpha
{
colmat[15] = 1;
if (dstFormat == 2)
{
ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f;
ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f;
cbufid = 11;
}
else
{
cbufid = 12;
}
}
break;
default:
ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat);
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
cbufid = 13;
break;
}
}
else
{
switch (dstFormat)
{
case 0: // R4
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
ColorMask[0] = 15.0f;
ColorMask[4] = 1.0f / 15.0f;
cbufid = 14;
dstFormat |= _GX_TF_CTF;
break;
case 1: // R8
case 8: // R8
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
cbufid = 15;
dstFormat |= _GX_TF_CTF;
break;
case 2: // RA4
colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
ColorMask[0] = ColorMask[3] = 15.0f;
ColorMask[4] = ColorMask[7] = 1.0f / 15.0f;
cbufid = 16;
if (!efbHasAlpha)
{
ColorMask[3] = 0.0f;
fConstAdd[3] = 1.0f;
cbufid = 17;
}
dstFormat |= _GX_TF_CTF;
break;
case 3: // RA8
colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
cbufid = 18;
if (!efbHasAlpha)
{
ColorMask[3] = 0.0f;
fConstAdd[3] = 1.0f;
cbufid = 19;
}
dstFormat |= _GX_TF_CTF;
break;
case 7: // A8
colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
cbufid = 20;
if (!efbHasAlpha)
{
ColorMask[3] = 0.0f;
fConstAdd[0] = 1.0f;
fConstAdd[1] = 1.0f;
fConstAdd[2] = 1.0f;
fConstAdd[3] = 1.0f;
cbufid = 21;
}
dstFormat |= _GX_TF_CTF;
break;
case 9: // G8
colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
cbufid = 22;
dstFormat |= _GX_TF_CTF;
break;
case 10: // B8
colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
cbufid = 23;
dstFormat |= _GX_TF_CTF;
break;
case 11: // RG8
colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
cbufid = 24;
dstFormat |= _GX_TF_CTF;
break;
case 12: // GB8
colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
cbufid = 25;
dstFormat |= _GX_TF_CTF;
break;
case 4: // RGB565
colmat[0] = colmat[5] = colmat[10] = 1.0f;
ColorMask[0] = ColorMask[2] = 31.0f;
ColorMask[4] = ColorMask[6] = 1.0f / 31.0f;
ColorMask[1] = 63.0f;
ColorMask[5] = 1.0f / 63.0f;
fConstAdd[3] = 1.0f; // set alpha to 1
cbufid = 26;
break;
case 5: // RGB5A3
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f;
ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f;
ColorMask[3] = 7.0f;
ColorMask[7] = 1.0f / 7.0f;
cbufid = 27;
if (!efbHasAlpha)
{
ColorMask[3] = 0.0f;
fConstAdd[3] = 1.0f;
cbufid = 28;
}
break;
case 6: // RGBA8
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
cbufid = 29;
if (!efbHasAlpha)
{
ColorMask[3] = 0.0f;
fConstAdd[3] = 1.0f;
cbufid = 30;
}
break;
default:
ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat);
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
cbufid = 31;
break;
}
}
u8* dst = Memory::GetPointer(dstAddr);
if (dst == nullptr)
{
ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr);
return;
}
const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth();
const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight();
unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w;
unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h;
// remove all texture cache entries at dstAddr
{
std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)dstAddr);
TexCache::iterator iter = iter_range.first;
while (iter != iter_range.second)
{
iter = FreeTexture(iter);
}
}
// create the texture
TCacheEntryConfig config;
config.rendertarget = true;
config.width = scaled_tex_w;
config.height = scaled_tex_h;
config.layers = FramebufferManagerBase::GetEFBLayers();
TCacheEntryBase* entry = AllocateTexture(config);
entry->SetGeneralParameters(dstAddr, 0, dstFormat);
entry->SetDimensions(tex_w, tex_h, 1);
entry->frameCount = FRAMECOUNT_INVALID;
entry->SetEfbCopy(dstStride);
entry->is_custom_tex = false;
entry->FromRenderTarget(dst, dstFormat, dstStride, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat);
u64 hash = entry->CalculateHash();
entry->SetHashes(hash, hash);
// Invalidate all textures that overlap the range of our efb copy.
// Unless our efb copy has a weird stride, then we want avoid invalidating textures which
// we might be able to do a partial texture update on.
if (entry->memory_stride == entry->BytesPerRow())
{
TexCache::iterator iter = textures_by_address.begin();
while (iter != textures_by_address.end())
{
if (iter->second->OverlapsMemoryRange(dstAddr, entry->size_in_bytes))
iter = FreeTexture(iter);
else
++iter;
}
}
if (g_ActiveConfig.bDumpEFBTarget)
{
static int count = 0;
entry->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
count++), 0);
}
if (g_bRecordFifoData)
{
// Mark the memory behind this efb copy as dynamicly generated for the Fifo log
u32 address = dstAddr;
for (u32 i = 0; i < entry->NumBlocksY(); i++)
{
FifoRecorder::GetInstance().UseMemory(address, entry->BytesPerRow(), MemoryUpdate::TEXTURE_MAP, true);
address += entry->memory_stride;
}
}
textures_by_address.emplace((u64)dstAddr, entry);
}
TextureCacheBase::TCacheEntryBase* TextureCacheBase::AllocateTexture(const TCacheEntryConfig& config)
{
TexPool::iterator iter = texture_pool.find(config);
TextureCacheBase::TCacheEntryBase* entry;
if (iter != texture_pool.end())
{
entry = iter->second;
texture_pool.erase(iter);
}
else
{
entry = g_texture_cache->CreateTexture(config);
INCSTAT(stats.numTexturesCreated);
}
entry->textures_by_hash_iter = textures_by_hash.end();
return entry;
}
TextureCacheBase::TexCache::iterator TextureCacheBase::FreeTexture(TexCache::iterator iter)
{
TCacheEntryBase* entry = iter->second;
if (entry->textures_by_hash_iter != textures_by_hash.end())
{
textures_by_hash.erase(entry->textures_by_hash_iter);
entry->textures_by_hash_iter = textures_by_hash.end();
}
entry->frameCount = FRAMECOUNT_INVALID;
texture_pool.emplace(entry->config, entry);
return textures_by_address.erase(iter);
}
u32 TextureCacheBase::TCacheEntryBase::BytesPerRow() const
{
const u32 blockW = TexDecoder_GetBlockWidthInTexels(format);
// Round up source height to multiple of block size
const u32 actualWidth = ROUND_UP(native_width, blockW);
const u32 numBlocksX = actualWidth / blockW;
// RGBA takes two cache lines per block; all others take one
const u32 bytes_per_block = format == GX_TF_RGBA8 ? 64 : 32;
return numBlocksX * bytes_per_block;
}
u32 TextureCacheBase::TCacheEntryBase::NumBlocksY() const
{
u32 blockH = TexDecoder_GetBlockHeightInTexels(format);
// Round up source height to multiple of block size
u32 actualHeight = ROUND_UP(native_height, blockH);
return actualHeight / blockH;
}
void TextureCacheBase::TCacheEntryBase::SetEfbCopy(u32 stride)
{
is_efb_copy = true;
memory_stride = stride;
_assert_msg_(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
size_in_bytes = memory_stride * NumBlocksY();
}
// Fill gamecube memory backing this texture with zeros.
void TextureCacheBase::TCacheEntryBase::Zero(u8* ptr)
{
for (u32 i = 0; i < NumBlocksY(); i++)
{
memset(ptr, 0, BytesPerRow());
ptr += memory_stride;
}
}
u64 TextureCacheBase::TCacheEntryBase::CalculateHash() const
{
u8* ptr = Memory::GetPointer(addr);
if (memory_stride == BytesPerRow())
{
return GetHash64(ptr, size_in_bytes, g_ActiveConfig.iSafeTextureCache_ColorSamples);
}
else
{
u32 blocks = NumBlocksY();
u64 temp_hash = size_in_bytes;
u32 samples_per_row = 0;
if (g_ActiveConfig.iSafeTextureCache_ColorSamples != 0)
{
// Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left side of the efb copy
samples_per_row = std::max(g_ActiveConfig.iSafeTextureCache_ColorSamples / blocks, 4u);
}
for (u32 i = 0; i < blocks; i++)
{
// Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from canceling each other out
temp_hash = (temp_hash * 397) ^ GetHash64(ptr, BytesPerRow(), samples_per_row);
ptr += memory_stride;
}
return temp_hash;
}
}