EmptyChaos 2e14920e16 CoreTiming: Guarantee FIFO processing of timed events
The min-heap provides no ordering when the key is the same on 2
nodes. Disambiguate identical times by tracking the order items
were added into the queue.
2016-09-08 19:46:42 +10:00

338 lines
11 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <gtest/gtest.h>
#include <array>
#include <bitset>
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
// Numbers are chosen randomly to make sure the correct one is given.
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
static std::bitset<CB_IDS.size()> s_callbacks_ran_flags;
static u64 s_expected_callback = 0;
static s64 s_lateness = 0;
template <unsigned int IDX>
void CallbackTemplate(u64 userdata, s64 lateness)
{
static_assert(IDX < CB_IDS.size(), "IDX out of range");
s_callbacks_ran_flags.set(IDX);
EXPECT_EQ(CB_IDS[IDX], userdata);
EXPECT_EQ(CB_IDS[IDX], s_expected_callback);
EXPECT_EQ(s_lateness, lateness);
}
class ScopeInit final
{
public:
ScopeInit()
{
Core::DeclareAsCPUThread();
SConfig::Init();
PowerPC::Init(PowerPC::CORE_INTERPRETER);
CoreTiming::Init();
}
~ScopeInit()
{
CoreTiming::Shutdown();
PowerPC::Shutdown();
SConfig::Shutdown();
Core::UndeclareAsCPUThread();
}
};
void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0)
{
s_callbacks_ran_flags = 0;
s_expected_callback = CB_IDS[idx];
s_lateness = expected_lateness;
PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions.
CoreTiming::Advance();
EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags);
EXPECT_EQ(downcount, PowerPC::ppcState.downcount);
}
TEST(CoreTiming, BasicOrder)
{
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
CoreTiming::Advance();
// D -> B -> C -> A -> E
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
EXPECT_EQ(500, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
EXPECT_EQ(500, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
EXPECT_EQ(100, PowerPC::ppcState.downcount);
CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
EXPECT_EQ(100, PowerPC::ppcState.downcount);
AdvanceAndCheck(3, 400);
AdvanceAndCheck(1, 300);
AdvanceAndCheck(2, 200);
AdvanceAndCheck(0, 200);
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
}
namespace SharedSlotTest
{
static unsigned int s_counter = 0;
template <unsigned int ID>
void FifoCallback(u64 userdata, s64 lateness)
{
static_assert(ID < CB_IDS.size(), "ID out of range");
s_callbacks_ran_flags.set(ID);
EXPECT_EQ(CB_IDS[ID], userdata);
EXPECT_EQ(ID, s_counter);
EXPECT_EQ(s_lateness, lateness);
++s_counter;
}
}
TEST(CoreTiming, SharedSlot)
{
using namespace SharedSlotTest;
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
// Enter slice 0
CoreTiming::Advance();
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
s_callbacks_ran_flags = 0;
s_counter = 0;
s_lateness = 0;
PowerPC::ppcState.downcount = 0;
CoreTiming::Advance();
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong());
}
TEST(CoreTiming, PredictableLateness)
{
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0
CoreTiming::Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
}
namespace ChainSchedulingTest
{
static int s_reschedules = 0;
static void RescheduleCallback(u64 userdata, s64 lateness)
{
--s_reschedules;
EXPECT_TRUE(s_reschedules >= 0);
EXPECT_EQ(s_lateness, lateness);
if (s_reschedules > 0)
CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), userdata);
}
}
TEST(CoreTiming, ChainScheduling)
{
using namespace ChainSchedulingTest;
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_rs =
CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
// Enter slice 0
CoreTiming::Advance();
CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
EXPECT_EQ(800, PowerPC::ppcState.downcount);
s_reschedules = 3;
AdvanceAndCheck(0, 200); // cb_a
AdvanceAndCheck(1, 1000); // cb_b, cb_rs
EXPECT_EQ(2, s_reschedules);
PowerPC::ppcState.downcount = 0;
CoreTiming::Advance(); // cb_rs
EXPECT_EQ(1, s_reschedules);
EXPECT_EQ(200, PowerPC::ppcState.downcount);
AdvanceAndCheck(2, 800); // cb_c
PowerPC::ppcState.downcount = 0;
CoreTiming::Advance(); // cb_rs
EXPECT_EQ(0, s_reschedules);
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
}
namespace ScheduleIntoPastTest
{
static CoreTiming::EventType* s_cb_next = nullptr;
static void ChainCallback(u64 userdata, s64 lateness)
{
EXPECT_EQ(CB_IDS[0] + 1, userdata);
EXPECT_EQ(0, lateness);
CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1);
}
}
// This can happen when scheduling from outside the CPU Thread.
// Also, if the callback is very late, it may reschedule itself for the next period which
// is also in the past.
TEST(CoreTiming, ScheduleIntoPast)
{
using namespace ScheduleIntoPastTest;
ScopeInit guard;
s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback);
// Enter slice 0
CoreTiming::Advance();
CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1);
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a
// Schedule late from wrong thread
// The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer
// is not reliable outside the CPU Thread. It's possible for the other thread to sample the
// global timer right before the timer is updated by Advance() then submit a new event using
// the stale value, i.e. effectively half-way through the previous slice.
// NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense.
Core::UndeclareAsCPUThread();
CoreTiming::g_global_timer -= 1000;
CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
CoreTiming::g_global_timer += 1000;
Core::DeclareAsCPUThread();
AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);
// Schedule directly into the past from the CPU.
// This shouldn't happen in practice, but it's best if we don't mess up the slice length and
// downcount if we do.
CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]);
EXPECT_EQ(0, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);
}
TEST(CoreTiming, Overclocking)
{
ScopeInit guard;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
// Overclock
SConfig::GetInstance().m_OCEnable = true;
SConfig::GetInstance().m_OCFactor = 2.0;
// Enter slice 0
// Updates s_last_OC_factor.
CoreTiming::Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(200, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 200); // (200 - 100) * 2
AdvanceAndCheck(1, 400); // (400 - 200) * 2
AdvanceAndCheck(2, 800); // (800 - 400) * 2
AdvanceAndCheck(3, 1600); // (1600 - 800) * 2
AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2);
// Underclock
SConfig::GetInstance().m_OCFactor = 0.5;
CoreTiming::Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(50, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 50); // (200 - 100) / 2
AdvanceAndCheck(1, 100); // (400 - 200) / 2
AdvanceAndCheck(2, 200); // (800 - 400) / 2
AdvanceAndCheck(3, 400); // (1600 - 800) / 2
AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2);
// Try switching the clock mid-emulation
SConfig::GetInstance().m_OCFactor = 1.0;
CoreTiming::Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
EXPECT_EQ(100, PowerPC::ppcState.downcount);
AdvanceAndCheck(0, 100); // (200 - 100)
SConfig::GetInstance().m_OCFactor = 2.0;
AdvanceAndCheck(1, 400); // (400 - 200) * 2
AdvanceAndCheck(2, 800); // (800 - 400) * 2
SConfig::GetInstance().m_OCFactor = 0.1f;
AdvanceAndCheck(3, 80); // (1600 - 800) / 10
SConfig::GetInstance().m_OCFactor = 1.0;
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
}