dolphin/Source/Core/Common/Arm64Emitter.h
Ryan Houdek 8b8310d28c [AArch64] Optimize FPR pushing and popping.
Previously on FPR pushing and popping we would do a single STR/LDR per quad FPR we wanted to push/pop.
In most of our cases when we are pushing and popping VFP registers they will be consecutive registers that will save more efficiently using the NEON
loadstores that can do up to four quad registers.
So this can potentially cutting instructions down to ~1/4th the amount of instructions if the registers are all consecutive.

On the Cortex-A57 this is basically just an icache improvement, but on the Nvidia Denver this may be optimized to be more efficient. Either way it's a
win.
2015-03-02 06:27:13 -06:00

797 lines
26 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include <functional>
#include "Common/ArmCommon.h"
#include "Common/BitSet.h"
#include "Common/CodeBlock.h"
#include "Common/Common.h"
namespace Arm64Gen
{
// X30 serves a dual purpose as a link register
// Encoded as <u3:type><u5:reg>
// Types:
// 000 - 32bit GPR
// 001 - 64bit GPR
// 010 - VFP single precision
// 100 - VFP double precision
// 110 - VFP quad precision
enum ARM64Reg
{
// 32bit registers
W0 = 0, W1, W2, W3, W4, W5, W6,
W7, W8, W9, W10, W11, W12, W13, W14,
W15, W16, W17, W18, W19, W20, W21, W22,
W23, W24, W25, W26, W27, W28, W29, W30,
WSP, // 32bit stack pointer
// 64bit registers
X0 = 0x20, X1, X2, X3, X4, X5, X6,
X7, X8, X9, X10, X11, X12, X13, X14,
X15, X16, X17, X18, X19, X20, X21, X22,
X23, X24, X25, X26, X27, X28, X29, X30,
SP, // 64bit stack pointer
// VFP single precision registers
S0 = 0x40, S1, S2, S3, S4, S5, S6,
S7, S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S18, S19, S20,
S21, S22, S23, S24, S25, S26, S27,
S28, S29, S30, S31,
// VFP Double Precision registers
D0 = 0x80, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31,
// ASIMD Quad-Word registers
Q0 = 0xC0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23,
Q24, Q25, Q26, Q27, Q28, Q29, Q30, Q31,
// For PRFM(prefetch memory) encoding
// This is encoded in the Rt register
// Data preload
PLDL1KEEP = 0, PLDL1STRM,
PLDL2KEEP, PLDL2STRM,
PLDL3KEEP, PLDL3STRM,
// Instruction preload
PLIL1KEEP = 8, PLIL1STRM,
PLIL2KEEP, PLIL2STRM,
PLIL3KEEP, PLIL3STRM,
// Prepare for store
PLTL1KEEP = 16, PLTL1STRM,
PLTL2KEEP, PLTL2STRM,
PLTL3KEEP, PLTL3STRM,
INVALID_REG = 0xFFFFFFFF
};
inline bool Is64Bit(ARM64Reg reg) { return reg & 0x20; }
inline bool IsSingle(ARM64Reg reg) { return (reg & 0xC0) == 0x40; }
inline bool IsDouble(ARM64Reg reg) { return (reg & 0xC0) == 0x80; }
inline bool IsQuad(ARM64Reg reg) { return (reg & 0xC0) == 0xC0; }
inline bool IsVector(ARM64Reg reg) { return (reg & 0xC0) != 0; }
inline ARM64Reg DecodeReg(ARM64Reg reg) { return (ARM64Reg)(reg & 0x1F); }
inline ARM64Reg EncodeRegTo64(ARM64Reg reg) { return (ARM64Reg)(reg | 0x20); }
inline ARM64Reg EncodeRegToDouble(ARM64Reg reg) { return (ARM64Reg)((reg & ~0xC0) | 0x80); }
inline ARM64Reg EncodeRegToQuad(ARM64Reg reg) { return (ARM64Reg)(reg | 0xC0); }
enum OpType
{
TYPE_IMM = 0,
TYPE_REG,
TYPE_IMMSREG,
TYPE_RSR,
TYPE_MEM
};
enum ShiftType
{
ST_LSL = 0,
ST_LSR = 1,
ST_ASR = 2,
ST_ROR = 3,
};
enum IndexType
{
INDEX_UNSIGNED,
INDEX_POST,
INDEX_PRE,
};
enum ShiftAmount
{
SHIFT_0 = 0,
SHIFT_16 = 1,
SHIFT_32 = 2,
SHIFT_48 = 3,
};
enum ExtendType
{
EXTEND_UXTW = 2,
EXTEND_LSL = 3, // Default for zero shift amount
EXTEND_SXTW = 6,
EXTEND_SXTX = 7,
};
struct FixupBranch
{
u8* ptr;
// Type defines
// 0 = CBZ (32bit)
// 1 = CBNZ (32bit)
// 2 = B (conditional)
// 3 = TBZ
// 4 = TBNZ
// 5 = B (unconditional)
// 6 = BL (unconditional)
u32 type;
// Used with B.cond
CCFlags cond;
// Used with TBZ/TBNZ
u8 bit;
// Used with Test/Compare and Branch
ARM64Reg reg;
};
enum PStateField
{
FIELD_SPSel = 0,
FIELD_DAIFSet,
FIELD_DAIFClr,
};
enum SystemHint
{
HINT_NOP = 0,
HINT_YIELD,
HINT_WFE,
HINT_WFI,
HINT_SEV,
HINT_SEVL,
};
enum BarrierType
{
OSHLD = 1,
OSHST = 2,
OSH = 3,
NSHLD = 5,
NSHST = 6,
NSH = 7,
ISHLD = 9,
ISHST = 10,
ISH = 11,
LD = 13,
ST = 14,
SY = 15,
};
class ArithOption
{
public:
enum WidthSpecifier
{
WIDTH_DEFAULT,
WIDTH_32BIT,
WIDTH_64BIT,
};
enum ExtendSpecifier
{
EXTEND_UXTB = 0x0,
EXTEND_UXTH = 0x1,
EXTEND_UXTW = 0x2, /* Also LSL on 32bit width */
EXTEND_UXTX = 0x3, /* Also LSL on 64bit width */
EXTEND_SXTB = 0x4,
EXTEND_SXTH = 0x5,
EXTEND_SXTW = 0x6,
EXTEND_SXTX = 0x7,
};
enum TypeSpecifier
{
TYPE_EXTENDEDREG,
TYPE_IMM,
TYPE_SHIFTEDREG,
};
private:
ARM64Reg m_destReg;
WidthSpecifier m_width;
ExtendSpecifier m_extend;
TypeSpecifier m_type;
ShiftType m_shifttype;
u32 m_shift;
public:
ArithOption(ARM64Reg Rd, bool index = false)
{
// Indexed registers are a certain feature of AARch64
// On Loadstore instructions that use a register offset
// We can have the register as an index
// If we are indexing then the offset register will
// be shifted to the left so we are indexing at intervals
// of the size of what we are loading
// 8-bit: Index does nothing
// 16-bit: Index LSL 1
// 32-bit: Index LSL 2
// 64-bit: Index LSL 3
if (index)
m_shift = 4;
else
m_shift = 0;
m_destReg = Rd;
m_type = TYPE_EXTENDEDREG;
if (Is64Bit(Rd))
{
m_width = WIDTH_64BIT;
m_extend = EXTEND_UXTX;
}
else
{
m_width = WIDTH_32BIT;
m_extend = EXTEND_UXTW;
}
}
ArithOption(ARM64Reg Rd, ShiftType shift_type, u32 shift)
{
m_destReg = Rd;
m_shift = shift;
m_shifttype = shift_type;
m_type = TYPE_SHIFTEDREG;
if (Is64Bit(Rd))
{
m_width = WIDTH_64BIT;
if (shift == 64)
m_shift = 0;
}
else
{
m_width = WIDTH_32BIT;
if (shift == 32)
m_shift = 0;
}
}
TypeSpecifier GetType() const
{
return m_type;
}
ARM64Reg GetReg()
{
return m_destReg;
}
u32 GetData() const
{
switch (m_type)
{
case TYPE_EXTENDEDREG:
return (m_extend << 13) |
(m_shift << 10);
break;
case TYPE_SHIFTEDREG:
return (m_shifttype << 22) |
(m_shift << 10);
break;
default:
_dbg_assert_msg_(DYNA_REC, false, "Invalid type in GetData");
break;
}
return 0;
}
};
class ARM64XEmitter
{
friend class ARM64FloatEmitter;
private:
u8* m_code;
u8* m_startcode;
u8* m_lastCacheFlushEnd;
void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr);
void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr);
void EncodeUnconditionalBranchInst(u32 op, const void* ptr);
void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn);
void EncodeExceptionInst(u32 instenc, u32 imm);
void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt);
void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn);
void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm);
void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt);
void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size);
void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos);
void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
protected:
inline void Write32(u32 value)
{
*(u32*)m_code = value;
m_code += 4;
}
public:
ARM64XEmitter()
: m_code(nullptr), m_startcode(nullptr), m_lastCacheFlushEnd(nullptr)
{
}
ARM64XEmitter(u8* code_ptr) {
m_code = code_ptr;
m_lastCacheFlushEnd = code_ptr;
m_startcode = code_ptr;
}
virtual ~ARM64XEmitter()
{
}
void SetCodePtr(u8* ptr);
void ReserveCodeSpace(u32 bytes);
const u8* AlignCode16();
const u8* AlignCodePage();
const u8* GetCodePtr() const;
void FlushIcache();
void FlushIcacheSection(u8* start, u8* end);
u8* GetWritableCodePtr();
// FixupBranch branching
void SetJumpTarget(FixupBranch const& branch);
FixupBranch CBZ(ARM64Reg Rt);
FixupBranch CBNZ(ARM64Reg Rt);
FixupBranch B(CCFlags cond);
FixupBranch TBZ(ARM64Reg Rt, u8 bit);
FixupBranch TBNZ(ARM64Reg Rt, u8 bit);
FixupBranch B();
FixupBranch BL();
// Compare and Branch
void CBZ(ARM64Reg Rt, const void* ptr);
void CBNZ(ARM64Reg Rt, const void* ptr);
// Conditional Branch
void B(CCFlags cond, const void* ptr);
// Test and Branch
void TBZ(ARM64Reg Rt, u8 bits, const void* ptr);
void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr);
// Unconditional Branch
void B(const void* ptr);
void BL(const void* ptr);
// Unconditional Branch (register)
void BR(ARM64Reg Rn);
void BLR(ARM64Reg Rn);
void RET(ARM64Reg Rn);
void ERET();
void DRPS();
// Exception generation
void SVC(u32 imm);
void HVC(u32 imm);
void SMC(u32 imm);
void BRK(u32 imm);
void HLT(u32 imm);
void DCPS1(u32 imm);
void DCPS2(u32 imm);
void DCPS3(u32 imm);
// System
void _MSR(PStateField field, u8 imm);
void HINT(SystemHint op);
void CLREX();
void DSB(BarrierType type);
void DMB(BarrierType type);
void ISB(BarrierType type);
// Add/Subtract (Extended/Shifted register)
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMN(ARM64Reg Rn, ARM64Reg Rm);
void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMP(ARM64Reg Rn, ARM64Reg Rm);
void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
// Add/Subtract (with carry)
void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Conditional Compare (immediate)
void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
// Conditional Compare (register)
void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
// Conditional Select
void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
// Data-Processing 1 source
void RBIT(ARM64Reg Rd, ARM64Reg Rn);
void REV16(ARM64Reg Rd, ARM64Reg Rn);
void REV32(ARM64Reg Rd, ARM64Reg Rn);
void REV64(ARM64Reg Rd, ARM64Reg Rn);
void CLZ(ARM64Reg Rd, ARM64Reg Rn);
void CLS(ARM64Reg Rd, ARM64Reg Rn);
// Data-Processing 2 source
void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Data-Processing 3 source
void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Logical (shifted register)
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void MOV(ARM64Reg Rd, ARM64Reg Rm);
void MVN(ARM64Reg Rd, ARM64Reg Rm);
// Logical (immediate)
void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void TST(ARM64Reg Rn, u32 immr, u32 imms);
// Add/subtract (immediate)
void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void CMP(ARM64Reg Rn, u32 imm, bool shift = false);
// Data Processing (Immediate)
void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
// Bitfield move
void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void SXTB(ARM64Reg Rd, ARM64Reg Rn);
void SXTH(ARM64Reg Rd, ARM64Reg Rn);
void SXTW(ARM64Reg Rd, ARM64Reg Rn);
void UXTB(ARM64Reg Rd, ARM64Reg Rn);
void UXTH(ARM64Reg Rd, ARM64Reg Rn);
// Load Register (Literal)
void LDR(ARM64Reg Rt, u32 imm);
void LDRSW(ARM64Reg Rt, u32 imm);
void PRFM(ARM64Reg Rt, u32 imm);
// Load/Store Exclusive
void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRB(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRB(ARM64Reg Rt, ARM64Reg Rn);
void STLRB(ARM64Reg Rt, ARM64Reg Rn);
void LDARB(ARM64Reg Rt, ARM64Reg Rn);
void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRH(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRH(ARM64Reg Rt, ARM64Reg Rn);
void STLRH(ARM64Reg Rt, ARM64Reg Rn);
void LDARH(ARM64Reg Rt, ARM64Reg Rn);
void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDXR(ARM64Reg Rt, ARM64Reg Rn);
void LDAXR(ARM64Reg Rt, ARM64Reg Rn);
void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLR(ARM64Reg Rt, ARM64Reg Rn);
void LDAR(ARM64Reg Rt, ARM64Reg Rn);
// Load/Store no-allocate pair (offset)
void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
// Load/Store register (immediate indexed)
void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Load/Store register (register offset)
void STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
// Load/Store register (unscaled offset)
void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Load/Store pair
void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
// Address of label/page PC-relative
void ADR(ARM64Reg Rd, s32 imm);
void ADRP(ARM64Reg Rd, s32 imm);
// Wrapper around MOVZ+MOVK
void MOVI2R(ARM64Reg Rd, u64 imm, bool optimize = true);
// ABI related
void ABI_PushRegisters(BitSet32 registers);
void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
// Utility to generate a call to a std::function object.
//
// Unfortunately, calling operator() directly is undefined behavior in C++
// (this method might be a thunk in the case of multi-inheritance) so we
// have to go through a trampoline function.
template <typename T, typename... Args>
static void CallLambdaTrampoline(const std::function<T(Args...)>* f,
Args... args)
{
(*f)(args...);
}
// This function expects you to have set up the state.
// Overwrites X0 and X30
template <typename T, typename... Args>
ARM64Reg ABI_SetupLambda(const std::function<T(Args...)>* f)
{
auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<T, Args...>;
MOVI2R(X30, (u64)trampoline);
MOVI2R(X0, (u64)const_cast<void*>((const void*)f));
return X30;
}
};
class ARM64FloatEmitter
{
public:
ARM64FloatEmitter(ARM64XEmitter* emit) : m_emit(emit) {}
void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore unscaled
void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore single structure
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
// Loadstore multiple structure
void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
void LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
void ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
// Scalar - 1 Source
void FABS(ARM64Reg Rd, ARM64Reg Rn);
void FNEG(ARM64Reg Rd, ARM64Reg Rn);
// Scalar - 2 Source
void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Scalar floating point immediate
void FMOV(ARM64Reg Rd, u32 imm);
// Vector
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
void FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void NOT(ARM64Reg Rd, ARM64Reg Rn);
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
// Move
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn);
void INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2);
void UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
void SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
// One source
void FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn);
// Conversion between float and integer
void FMOV(u8 size, bool top, ARM64Reg Rd, ARM64Reg Rn);
void SCVTF(ARM64Reg Rd, ARM64Reg Rn);
void UCVTF(ARM64Reg Rd, ARM64Reg Rn);
// Float comparison
void FCMP(ARM64Reg Rn, ARM64Reg Rm);
void FCMP(ARM64Reg Rn);
void FCMPE(ARM64Reg Rn, ARM64Reg Rm);
void FCMPE(ARM64Reg Rn);
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
// Conditional select
void FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
// Permute
void UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Shift by immediate
void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
// vector x indexed element
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
// ABI related
void ABI_PushRegisters(BitSet32 registers);
void ABI_PopRegisters(BitSet32 registers);
private:
ARM64XEmitter* m_emit;
inline void Write32(u32 value) { m_emit->Write32(value); }
// Emitting functions
void EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void Emit2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
void Emit2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
void Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm);
void EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm);
void EmitShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn);
void EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
};
class ARM64CodeBlock : public CodeBlock<ARM64XEmitter>
{
private:
void PoisonMemory() override
{
u32* ptr = (u32*)region;
u32* maxptr = (u32*)(region + region_size);
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
// AArch64: 0xD4200000 = BRK 0
while (ptr < maxptr)
*ptr++ = 0xD4200000;
}
};
}