Tillmann Karras 9872473f70 mbedTLS: add version 2.1.1
PolarSSL has been renamed to "mbed TLS" and version 2.0 dropped backwards
compatibility. This commit adds only the necessary files without any
modifications, so it doesn't compile yet.
2015-09-25 03:11:48 +02:00

449 lines
13 KiB
C

/*
* Elliptic curve DSA
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* References:
*
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_ECDSA_C)
#include "mbedtls/ecdsa.h"
#include "mbedtls/asn1write.h"
#include <string.h>
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
#include "mbedtls/hmac_drbg.h"
#endif
/*
* Derive a suitable integer for group grp from a buffer of length len
* SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
*/
static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x,
const unsigned char *buf, size_t blen )
{
int ret;
size_t n_size = ( grp->nbits + 7 ) / 8;
size_t use_size = blen > n_size ? n_size : blen;
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) );
if( use_size * 8 > grp->nbits )
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) );
/* While at it, reduce modulo N */
if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) );
cleanup:
return( ret );
}
/*
* Compute ECDSA signature of a hashed message (SEC1 4.1.3)
* Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
*/
int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret, key_tries, sign_tries, blind_tries;
mbedtls_ecp_point R;
mbedtls_mpi k, e, t;
/* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
if( grp->N.p == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
mbedtls_ecp_point_init( &R );
mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t );
sign_tries = 0;
do
{
/*
* Steps 1-3: generate a suitable ephemeral keypair
* and set r = xR mod n
*/
key_tries = 0;
do
{
MBEDTLS_MPI_CHK( mbedtls_ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) );
if( key_tries++ > 10 )
{
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
goto cleanup;
}
}
while( mbedtls_mpi_cmp_int( r, 0 ) == 0 );
/*
* Step 5: derive MPI from hashed message
*/
MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
/*
* Generate a random value to blind inv_mod in next step,
* avoiding a potential timing leak.
*/
blind_tries = 0;
do
{
size_t n_size = ( grp->nbits + 7 ) / 8;
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) );
/* See mbedtls_ecp_gen_keypair() */
if( ++blind_tries > 30 )
return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
}
while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 ||
mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 );
/*
* Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) );
if( sign_tries++ > 10 )
{
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
goto cleanup;
}
}
while( mbedtls_mpi_cmp_int( s, 0 ) == 0 );
cleanup:
mbedtls_ecp_point_free( &R );
mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t );
return( ret );
}
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
/*
* Deterministic signature wrapper
*/
int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
mbedtls_md_type_t md_alg )
{
int ret;
mbedtls_hmac_drbg_context rng_ctx;
unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
size_t grp_len = ( grp->nbits + 7 ) / 8;
const mbedtls_md_info_t *md_info;
mbedtls_mpi h;
if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
mbedtls_mpi_init( &h );
mbedtls_hmac_drbg_init( &rng_ctx );
/* Use private key and message hash (reduced) to initialize HMAC_DRBG */
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) );
MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) );
mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len );
ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen,
mbedtls_hmac_drbg_random, &rng_ctx );
cleanup:
mbedtls_hmac_drbg_free( &rng_ctx );
mbedtls_mpi_free( &h );
return( ret );
}
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
/*
* Verify ECDSA signature of hashed message (SEC1 4.1.4)
* Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
*/
int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
const unsigned char *buf, size_t blen,
const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s)
{
int ret;
mbedtls_mpi e, s_inv, u1, u2;
mbedtls_ecp_point R;
mbedtls_ecp_point_init( &R );
mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 );
/* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
if( grp->N.p == NULL )
return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
/*
* Step 1: make sure r and s are in range 1..n-1
*/
if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 ||
mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 )
{
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
/*
* Additional precaution: make sure Q is valid
*/
MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) );
/*
* Step 3: derive MPI from hashed message
*/
MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
/*
* Step 4: u1 = e / s mod n, u2 = r / s mod n
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) );
/*
* Step 5: R = u1 G + u2 Q
*
* Since we're not using any secret data, no need to pass a RNG to
* mbedtls_ecp_mul() for countermesures.
*/
MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) );
if( mbedtls_ecp_is_zero( &R ) )
{
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
/*
* Step 6: convert xR to an integer (no-op)
* Step 7: reduce xR mod n (gives v)
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
/*
* Step 8: check if v (that is, R.X) is equal to r
*/
if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 )
{
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
goto cleanup;
}
cleanup:
mbedtls_ecp_point_free( &R );
mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 );
return( ret );
}
/*
* Convert a signature (given by context) to ASN.1
*/
static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
unsigned char *sig, size_t *slen )
{
int ret;
unsigned char buf[MBEDTLS_ECDSA_MAX_LEN];
unsigned char *p = buf + sizeof( buf );
size_t len = 0;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
memcpy( sig, p, len );
*slen = len;
return( 0 );
}
/*
* Compute and write signature
*/
int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hlen,
unsigned char *sig, size_t *slen,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret;
mbedtls_mpi r, s;
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &s );
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
(void) f_rng;
(void) p_rng;
MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ctx->grp, &r, &s, &ctx->d,
hash, hlen, md_alg ) );
#else
(void) md_alg;
MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d,
hash, hlen, f_rng, p_rng ) );
#endif
MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) );
cleanup:
mbedtls_mpi_free( &r );
mbedtls_mpi_free( &s );
return( ret );
}
#if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \
defined(MBEDTLS_ECDSA_DETERMINISTIC)
int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
const unsigned char *hash, size_t hlen,
unsigned char *sig, size_t *slen,
mbedtls_md_type_t md_alg )
{
return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen,
NULL, NULL ) );
}
#endif
/*
* Read and check signature
*/
int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
const unsigned char *hash, size_t hlen,
const unsigned char *sig, size_t slen )
{
int ret;
unsigned char *p = (unsigned char *) sig;
const unsigned char *end = sig + slen;
size_t len;
mbedtls_mpi r, s;
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &s );
if( ( ret = mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
{
ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
if( p + len != end )
{
ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA +
MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
goto cleanup;
}
if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 ||
( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 )
{
ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen,
&ctx->Q, &r, &s ) ) != 0 )
goto cleanup;
if( p != end )
ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
cleanup:
mbedtls_mpi_free( &r );
mbedtls_mpi_free( &s );
return( ret );
}
/*
* Generate key pair
*/
int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
return( mbedtls_ecp_group_load( &ctx->grp, gid ) ||
mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) );
}
/*
* Set context from an mbedtls_ecp_keypair
*/
int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key )
{
int ret;
if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 ||
( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
{
mbedtls_ecdsa_free( ctx );
}
return( ret );
}
/*
* Initialize context
*/
void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx )
{
mbedtls_ecp_keypair_init( ctx );
}
/*
* Free context
*/
void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx )
{
mbedtls_ecp_keypair_free( ctx );
}
#endif /* MBEDTLS_ECDSA_C */