Preston Smith 8f69de51ca inputform ABC1's q value is defaulting to 0
This is causing the 0 divide case to run when source row is using tex0-7 and inputform is ABC1.
2016-08-30 18:33:25 -05:00

460 lines
13 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cmath>
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoBackends/Software/Vec3.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/XFMemory.h"
namespace TransformUnit
{
static void MultiplyVec2Mat24(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] + mat[7];
result.z = 1.0f;
}
static void MultiplyVec2Mat34(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] + mat[7];
result.z = mat[8] * vec.x + mat[9] * vec.y + mat[10] + mat[11];
}
static void MultiplyVec3Mat33(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z;
result.y = mat[3] * vec.x + mat[4] * vec.y + mat[5] * vec.z;
result.z = mat[6] * vec.x + mat[7] * vec.y + mat[8] * vec.z;
}
static void MultiplyVec3Mat24(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] * vec.z + mat[7];
result.z = 1.0f;
}
static void MultiplyVec3Mat34(const Vec3& vec, const float* mat, Vec3& result)
{
result.x = mat[0] * vec.x + mat[1] * vec.y + mat[2] * vec.z + mat[3];
result.y = mat[4] * vec.x + mat[5] * vec.y + mat[6] * vec.z + mat[7];
result.z = mat[8] * vec.x + mat[9] * vec.y + mat[10] * vec.z + mat[11];
}
static void MultipleVec3Perspective(const Vec3& vec, const float* proj, Vec4& result)
{
result.x = proj[0] * vec.x + proj[1] * vec.z;
result.y = proj[2] * vec.y + proj[3] * vec.z;
// result.z = (proj[4] * vec.z + proj[5]);
result.z = (proj[4] * vec.z + proj[5]) * (1.0f - (float)1e-7);
result.w = -vec.z;
}
static void MultipleVec3Ortho(const Vec3& vec, const float* proj, Vec4& result)
{
result.x = proj[0] * vec.x + proj[1];
result.y = proj[2] * vec.y + proj[3];
result.z = proj[4] * vec.z + proj[5];
result.w = 1;
}
void TransformPosition(const InputVertexData* src, OutputVertexData* dst)
{
const float* mat = &xfmem.posMatrices[src->posMtx * 4];
MultiplyVec3Mat34(src->position, mat, dst->mvPosition);
if (xfmem.projection.type == GX_PERSPECTIVE)
{
MultipleVec3Perspective(dst->mvPosition, xfmem.projection.rawProjection,
dst->projectedPosition);
}
else
{
MultipleVec3Ortho(dst->mvPosition, xfmem.projection.rawProjection, dst->projectedPosition);
}
}
void TransformNormal(const InputVertexData* src, bool nbt, OutputVertexData* dst)
{
const float* mat = &xfmem.normalMatrices[(src->posMtx & 31) * 3];
if (nbt)
{
MultiplyVec3Mat33(src->normal[0], mat, dst->normal[0]);
MultiplyVec3Mat33(src->normal[1], mat, dst->normal[1]);
MultiplyVec3Mat33(src->normal[2], mat, dst->normal[2]);
dst->normal[0].Normalize();
}
else
{
MultiplyVec3Mat33(src->normal[0], mat, dst->normal[0]);
dst->normal[0].Normalize();
}
}
static void TransformTexCoordRegular(const TexMtxInfo& texinfo, int coordNum, bool specialCase,
const InputVertexData* srcVertex, OutputVertexData* dstVertex)
{
Vec3 src;
switch (texinfo.sourcerow)
{
case XF_SRCGEOM_INROW:
src = srcVertex->position;
break;
case XF_SRCNORMAL_INROW:
src = srcVertex->normal[0];
break;
case XF_SRCBINORMAL_T_INROW:
src = srcVertex->normal[1];
break;
case XF_SRCBINORMAL_B_INROW:
src = srcVertex->normal[2];
break;
default:
_assert_(texinfo.sourcerow >= XF_SRCTEX0_INROW && texinfo.sourcerow <= XF_SRCTEX7_INROW);
src.x = srcVertex->texCoords[texinfo.sourcerow - XF_SRCTEX0_INROW][0];
src.y = srcVertex->texCoords[texinfo.sourcerow - XF_SRCTEX0_INROW][1];
src.z = 1.0f;
break;
}
const float* mat = &xfmem.posMatrices[srcVertex->texMtx[coordNum] * 4];
Vec3* dst = &dstVertex->texCoords[coordNum];
if (texinfo.projection == XF_TEXPROJ_ST)
{
if (texinfo.inputform == XF_TEXINPUT_AB11 || specialCase)
MultiplyVec2Mat24(src, mat, *dst);
else
MultiplyVec3Mat24(src, mat, *dst);
}
else // texinfo.projection == XF_TEXPROJ_STQ
{
_assert_(!specialCase);
if (texinfo.inputform == XF_TEXINPUT_AB11)
MultiplyVec2Mat34(src, mat, *dst);
else
MultiplyVec3Mat34(src, mat, *dst);
}
// normalize
const PostMtxInfo& postInfo = xfmem.postMtxInfo[coordNum];
const float* postMat = &xfmem.postMatrices[postInfo.index * 4];
if (xfmem.dualTexTrans.enabled)
{
Vec3 tempCoord;
if (specialCase)
{
// no normalization
// q of input is 1
// q of output is unknown
tempCoord.x = dst->x;
tempCoord.y = dst->y;
dst->x = postMat[0] * tempCoord.x + postMat[1] * tempCoord.y + postMat[2] + postMat[3];
dst->y = postMat[4] * tempCoord.x + postMat[5] * tempCoord.y + postMat[6] + postMat[7];
dst->z = 1.0f;
}
else
{
if (postInfo.normalize)
tempCoord = dst->Normalized();
else
tempCoord = *dst;
MultiplyVec3Mat34(tempCoord, postMat, *dst);
}
}
// TODO write comment
if(dst->z == 0.0f)
{
if(mat[8] != 0.0f || (xfmem.dualTexTrans.enabled && postMat[8] != 0.0f) ||
mat[9] != 0.0f || (xfmem.dualTexTrans.enabled && postMat[9] != 0.0f))
{
// TODO test this case more
dst->x = 0.0f;
dst->y = 0.0f;
}
else
{
dst->x = MathUtil::Clamp(dst->x / 2.0f, -1.0f, 1.0f);
dst->y = MathUtil::Clamp(dst->y / 2.0f, -1.0f, 1.0f);
}
}
}
struct LightPointer
{
u32 reserved[3];
u8 color[4];
Vec3 cosatt;
Vec3 distatt;
Vec3 pos;
Vec3 dir;
};
static inline void AddScaledIntegerColor(const u8* src, float scale, Vec3& dst)
{
dst.x += src[1] * scale;
dst.y += src[2] * scale;
dst.z += src[3] * scale;
}
static inline float SafeDivide(float n, float d)
{
return (d == 0) ? (n > 0 ? 1 : 0) : n / d;
}
static float CalculateLightAttn(const LightPointer* light, Vec3* _ldir, const Vec3& normal,
const LitChannel& chan)
{
float attn = 1.0f;
Vec3& ldir = *_ldir;
switch (chan.attnfunc)
{
case LIGHTATTN_NONE:
case LIGHTATTN_DIR:
{
ldir = ldir.Normalized();
if (ldir == Vec3(0.0f, 0.0f, 0.0f))
ldir = normal;
break;
}
case LIGHTATTN_SPEC:
{
ldir = ldir.Normalized();
attn = (ldir * normal) >= 0.0 ? std::max(0.0f, light->dir * normal) : 0;
Vec3 attLen = Vec3(1.0, attn, attn * attn);
Vec3 cosAttn = light->cosatt;
Vec3 distAttn = light->distatt;
if (chan.diffusefunc != LIGHTDIF_NONE)
distAttn = distAttn.Normalized();
attn = SafeDivide(std::max(0.0f, attLen * cosAttn), attLen * distAttn);
break;
}
case LIGHTATTN_SPOT:
{
float dist2 = ldir.Length2();
float dist = sqrtf(dist2);
ldir = ldir / dist;
attn = std::max(0.0f, ldir * light->dir);
float cosAtt = light->cosatt.x + (light->cosatt.y * attn) + (light->cosatt.z * attn * attn);
float distAtt = light->distatt.x + (light->distatt.y * dist) + (light->distatt.z * dist2);
attn = SafeDivide(std::max(0.0f, cosAtt), distAtt);
break;
}
default:
PanicAlert("LightColor");
}
return attn;
}
static void LightColor(const Vec3& pos, const Vec3& normal, u8 lightNum, LitChannel& chan,
Vec3& lightCol)
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[lightNum];
Vec3 ldir = light->pos - pos;
float attn = CalculateLightAttn(light, &ldir, normal, chan);
float difAttn = ldir * normal;
switch (chan.diffusefunc)
{
case LIGHTDIF_NONE:
AddScaledIntegerColor(light->color, attn, lightCol);
break;
case LIGHTDIF_SIGN:
AddScaledIntegerColor(light->color, attn * difAttn, lightCol);
break;
case LIGHTDIF_CLAMP:
difAttn = std::max(0.0f, difAttn);
AddScaledIntegerColor(light->color, attn * difAttn, lightCol);
break;
default:
_assert_(0);
}
}
static void LightAlpha(const Vec3& pos, const Vec3& normal, u8 lightNum, const LitChannel& chan,
float& lightCol)
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[lightNum];
Vec3 ldir = light->pos - pos;
float attn = CalculateLightAttn(light, &ldir, normal, chan);
float difAttn = ldir * normal;
switch (chan.diffusefunc)
{
case LIGHTDIF_NONE:
lightCol += light->color[0] * attn;
break;
case LIGHTDIF_SIGN:
lightCol += light->color[0] * attn * difAttn;
break;
case LIGHTDIF_CLAMP:
difAttn = std::max(0.0f, difAttn);
lightCol += light->color[0] * attn * difAttn;
break;
default:
_assert_(0);
}
}
void TransformColor(const InputVertexData* src, OutputVertexData* dst)
{
for (u32 chan = 0; chan < xfmem.numChan.numColorChans; chan++)
{
// abgr
u8 matcolor[4];
u8 chancolor[4];
// color
LitChannel& colorchan = xfmem.color[chan];
if (colorchan.matsource)
*(u32*)matcolor = *(u32*)src->color[chan]; // vertex
else
*(u32*)matcolor = xfmem.matColor[chan];
if (colorchan.enablelighting)
{
Vec3 lightCol;
if (colorchan.ambsource)
{
// vertex
lightCol.x = src->color[chan][1];
lightCol.y = src->color[chan][2];
lightCol.z = src->color[chan][3];
}
else
{
u8* ambColor = (u8*)&xfmem.ambColor[chan];
lightCol.x = ambColor[1];
lightCol.y = ambColor[2];
lightCol.z = ambColor[3];
}
u8 mask = colorchan.GetFullLightMask();
for (int i = 0; i < 8; ++i)
{
if (mask & (1 << i))
LightColor(dst->mvPosition, dst->normal[0], i, colorchan, lightCol);
}
int light_x = MathUtil::Clamp(static_cast<int>(lightCol.x), 0, 255);
int light_y = MathUtil::Clamp(static_cast<int>(lightCol.y), 0, 255);
int light_z = MathUtil::Clamp(static_cast<int>(lightCol.z), 0, 255);
chancolor[1] = (matcolor[1] * (light_x + (light_x >> 7))) >> 8;
chancolor[2] = (matcolor[2] * (light_y + (light_y >> 7))) >> 8;
chancolor[3] = (matcolor[3] * (light_z + (light_z >> 7))) >> 8;
}
else
{
*(u32*)chancolor = *(u32*)matcolor;
}
// alpha
LitChannel& alphachan = xfmem.alpha[chan];
if (alphachan.matsource)
matcolor[0] = src->color[chan][0]; // vertex
else
matcolor[0] = xfmem.matColor[chan] & 0xff;
if (xfmem.alpha[chan].enablelighting)
{
float lightCol;
if (alphachan.ambsource)
lightCol = src->color[chan][0]; // vertex
else
lightCol = (float)(xfmem.ambColor[chan] & 0xff);
u8 mask = alphachan.GetFullLightMask();
for (int i = 0; i < 8; ++i)
{
if (mask & (1 << i))
LightAlpha(dst->mvPosition, dst->normal[0], i, alphachan, lightCol);
}
int light_a = MathUtil::Clamp(static_cast<int>(lightCol), 0, 255);
chancolor[0] = (matcolor[0] * (light_a + (light_a >> 7))) >> 8;
}
else
{
chancolor[0] = matcolor[0];
}
// abgr -> rgba
*(u32*)dst->color[chan] = Common::swap32(*(u32*)chancolor);
}
}
void TransformTexCoord(const InputVertexData* src, OutputVertexData* dst, bool specialCase)
{
for (u32 coordNum = 0; coordNum < xfmem.numTexGen.numTexGens; coordNum++)
{
const TexMtxInfo& texinfo = xfmem.texMtxInfo[coordNum];
switch (texinfo.texgentype)
{
case XF_TEXGEN_REGULAR:
TransformTexCoordRegular(texinfo, coordNum, specialCase, src, dst);
break;
case XF_TEXGEN_EMBOSS_MAP:
{
const LightPointer* light = (const LightPointer*)&xfmem.lights[texinfo.embosslightshift];
Vec3 ldir = (light->pos - dst->mvPosition).Normalized();
float d1 = ldir * dst->normal[1];
float d2 = ldir * dst->normal[2];
dst->texCoords[coordNum].x = dst->texCoords[texinfo.embosssourceshift].x + d1;
dst->texCoords[coordNum].y = dst->texCoords[texinfo.embosssourceshift].y + d2;
dst->texCoords[coordNum].z = dst->texCoords[texinfo.embosssourceshift].z;
}
break;
case XF_TEXGEN_COLOR_STRGBC0:
_assert_(texinfo.sourcerow == XF_SRCCOLORS_INROW);
_assert_(texinfo.inputform == XF_TEXINPUT_AB11);
dst->texCoords[coordNum].x = (float)dst->color[0][0] / 255.0f;
dst->texCoords[coordNum].y = (float)dst->color[0][1] / 255.0f;
dst->texCoords[coordNum].z = 1.0f;
break;
case XF_TEXGEN_COLOR_STRGBC1:
_assert_(texinfo.sourcerow == XF_SRCCOLORS_INROW);
_assert_(texinfo.inputform == XF_TEXINPUT_AB11);
dst->texCoords[coordNum].x = (float)dst->color[1][0] / 255.0f;
dst->texCoords[coordNum].y = (float)dst->color[1][1] / 255.0f;
dst->texCoords[coordNum].z = 1.0f;
break;
default:
ERROR_LOG(VIDEO, "Bad tex gen type %i", texinfo.texgentype);
}
}
for (u32 coordNum = 0; coordNum < xfmem.numTexGen.numTexGens; coordNum++)
{
dst->texCoords[coordNum][0] *= (bpmem.texcoords[coordNum].s.scale_minus_1 + 1);
dst->texCoords[coordNum][1] *= (bpmem.texcoords[coordNum].t.scale_minus_1 + 1);
}
}
}