866 lines
24 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "InputCommon/ControllerInterface/evdev/evdev.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <memory>
#include <string>
#include <fcntl.h>
#include <libudev.h>
#include <sys/eventfd.h>
#include <unistd.h>
#include "Common/Assert.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Common/ScopeGuard.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h"
namespace ciface::evdev
{
class InputBackend final : public ciface::InputBackend
{
public:
InputBackend(ControllerInterface* controller_interface);
~InputBackend();
void PopulateDevices() override;
void RemoveDevnodeObject(const std::string&);
private:
std::shared_ptr<evdevDevice>
FindDeviceWithUniqueIDAndPhysicalLocation(const char* unique_id, const char* physical_location);
void AddDeviceNode(const char* devnode);
void StartHotplugThread();
void StopHotplugThread();
void HotplugThreadFunc();
std::thread m_hotplug_thread;
Common::Flag m_hotplug_thread_running;
int m_wakeup_eventfd;
// There is no easy way to get the device name from only a dev node
// during a device removed event, since libevdev can't work on removed devices;
// sysfs is not stable, so this is probably the easiest way to get a name for a node.
// This can, and will be modified by different thread, possibly concurrently,
// as devices can be destroyed by any thread at any time. As of now it's protected
// by ControllerInterface::m_devices_population_mutex.
std::map<std::string, std::weak_ptr<evdevDevice>> m_devnode_objects;
};
std::unique_ptr<ciface::InputBackend> CreateInputBackend(ControllerInterface* controller_interface)
{
return std::make_unique<InputBackend>(controller_interface);
}
class Input : public Core::Device::Input
{
public:
Input(u16 code, libevdev* dev) : m_code(code), m_dev(dev) {}
protected:
const u16 m_code;
libevdev* const m_dev;
};
class Button : public Input
{
public:
Button(u8 index, u16 code, libevdev* dev) : Input(code, dev), m_index(index) {}
ControlState GetState() const final override
{
int value = 0;
libevdev_fetch_event_value(m_dev, EV_KEY, m_code, &value);
return value;
}
protected:
std::optional<std::string> GetEventCodeName() const
{
if (const char* code_name = libevdev_event_code_get_name(EV_KEY, m_code))
{
const auto name = StripWhitespace(code_name);
for (auto remove_prefix : {"BTN_", "KEY_"})
{
if (name.find(remove_prefix) == 0)
return std::string(name.substr(std::strlen(remove_prefix)));
}
return std::string(name);
}
else
{
return std::nullopt;
}
}
std::string GetIndexedName() const { return "Button " + std::to_string(m_index); }
const u8 m_index;
};
class NumberedButton final : public Button
{
public:
using Button::Button;
std::string GetName() const override { return GetIndexedName(); }
};
class NamedButton final : public Button
{
public:
using Button::Button;
bool IsMatchingName(std::string_view name) const final override
{
// Match either the "START" naming provided by evdev or the "Button 0"-like naming.
return name == GetEventCodeName() || name == GetIndexedName();
}
std::string GetName() const override { return GetEventCodeName().value_or(GetIndexedName()); }
};
class NamedButtonWithNoBackwardsCompat final : public Button
{
public:
using Button::Button;
std::string GetName() const override { return GetEventCodeName().value_or(GetIndexedName()); }
};
class AnalogInput : public Input
{
public:
using Input::Input;
ControlState GetState() const final override
{
int value = 0;
libevdev_fetch_event_value(m_dev, EV_ABS, m_code, &value);
return (value - m_base) / m_range;
}
protected:
ControlState m_range;
int m_base;
};
class Axis : public AnalogInput
{
public:
Axis(u8 index, u16 code, bool upper, libevdev* dev) : AnalogInput(code, dev), m_index(index)
{
const int min = libevdev_get_abs_minimum(m_dev, m_code);
const int max = libevdev_get_abs_maximum(m_dev, m_code);
m_base = (max + min) / 2;
m_range = (upper ? max : min) - m_base;
}
std::string GetName() const override { return GetIndexedName(); }
protected:
std::string GetIndexedName() const
{
return "Axis " + std::to_string(m_index) + (m_range < 0 ? '-' : '+');
}
private:
const u8 m_index;
};
class MotionDataInput final : public AnalogInput
{
public:
MotionDataInput(u16 code, ControlState resolution_scale, libevdev* dev) : AnalogInput(code, dev)
{
auto* const info = libevdev_get_abs_info(m_dev, m_code);
// The average of the minimum and maximum value. (neutral value)
m_base = (info->maximum + info->minimum) / 2;
m_range = info->resolution / resolution_scale;
}
std::string GetName() const override
{
// Unfortunately there doesn't seem to be a "standard" orientation
// so we can't use "Accel Up"-like names.
constexpr std::array<const char*, 6> motion_data_names = {{
"Accel X",
"Accel Y",
"Accel Z",
"Gyro X",
"Gyro Y",
"Gyro Z",
}};
// Our name array relies on sane axis codes from 0 to 5.
static_assert(ABS_X == 0, "evdev axis value sanity check");
static_assert(ABS_RX == 3, "evdev axis value sanity check");
return std::string(motion_data_names[m_code]) + (m_range < 0 ? '-' : '+');
}
bool IsDetectable() const override { return false; }
};
class CursorInput final : public Axis
{
public:
using Axis::Axis;
std::string GetName() const final override
{
// "Cursor X-" naming.
return std::string("Cursor ") + char('X' + m_code) + (m_range < 0 ? '-' : '+');
}
bool IsDetectable() const override { return false; }
};
std::shared_ptr<evdevDevice>
InputBackend::FindDeviceWithUniqueIDAndPhysicalLocation(const char* unique_id,
const char* physical_location)
{
if (!unique_id || !physical_location)
return nullptr;
for (auto& [node, dev] : m_devnode_objects)
{
if (const auto device = dev.lock())
{
const auto* dev_uniq = device->GetUniqueID();
const auto* dev_phys = device->GetPhysicalLocation();
if (dev_uniq && dev_phys && std::strcmp(dev_uniq, unique_id) == 0 &&
std::strcmp(dev_phys, physical_location) == 0)
{
return device;
}
}
}
return nullptr;
}
void InputBackend::AddDeviceNode(const char* devnode)
{
// Unfortunately udev gives us no way to filter out the non event device interfaces.
// So we open it and see if it works with evdev ioctls or not.
// The device file will be read on one of the main threads, so we open in non-blocking mode.
const int fd = open(devnode, O_RDWR | O_NONBLOCK);
if (fd == -1)
{
return;
}
libevdev* dev = nullptr;
if (libevdev_new_from_fd(fd, &dev) != 0)
{
// This usually fails because the device node isn't an evdev device, such as /dev/input/js0
close(fd);
return;
}
const auto uniq = libevdev_get_uniq(dev);
const auto phys = libevdev_get_phys(dev);
auto evdev_device = FindDeviceWithUniqueIDAndPhysicalLocation(uniq, phys);
if (evdev_device)
{
NOTICE_LOG_FMT(CONTROLLERINTERFACE,
"evdev combining devices with unique id: {}, physical location: {}", uniq, phys);
evdev_device->AddNode(devnode, fd, dev);
// Remove and re-add device as naming and inputs may have changed.
// This will also give it the correct index and invoke device change callbacks.
// Make sure to force the device removal immediately (as they are shared ptrs and
// they could be kept alive, preventing us from re-creating the device)
GetControllerInterface().RemoveDevice(
[&evdev_device](const auto* device) {
return static_cast<const evdevDevice*>(device) == evdev_device.get();
},
true);
GetControllerInterface().AddDevice(evdev_device);
}
else
{
evdev_device = std::make_shared<evdevDevice>(this);
const bool was_interesting = evdev_device->AddNode(devnode, fd, dev);
if (was_interesting)
GetControllerInterface().AddDevice(evdev_device);
}
// If the devices failed to be added to ControllerInterface, it will be added here but then
// immediately removed in its destructor due to the shared ptr not having any references left
m_devnode_objects.emplace(devnode, std::move(evdev_device));
}
void InputBackend::HotplugThreadFunc()
{
Common::SetCurrentThreadName("evdev Hotplug Thread");
NOTICE_LOG_FMT(CONTROLLERINTERFACE, "evdev hotplug thread started");
udev* const udev = udev_new();
Common::ScopeGuard udev_guard([udev] { udev_unref(udev); });
ASSERT_MSG(CONTROLLERINTERFACE, udev != nullptr, "Couldn't initialize libudev.");
// Set up monitoring
udev_monitor* const monitor = udev_monitor_new_from_netlink(udev, "udev");
Common::ScopeGuard monitor_guard([monitor] { udev_monitor_unref(monitor); });
udev_monitor_filter_add_match_subsystem_devtype(monitor, "input", nullptr);
udev_monitor_enable_receiving(monitor);
const int monitor_fd = udev_monitor_get_fd(monitor);
while (m_hotplug_thread_running.IsSet())
{
fd_set fds;
FD_ZERO(&fds);
FD_SET(monitor_fd, &fds);
FD_SET(m_wakeup_eventfd, &fds);
const int ret =
select(std::max(monitor_fd, m_wakeup_eventfd) + 1, &fds, nullptr, nullptr, nullptr);
if (ret < 1 || !FD_ISSET(monitor_fd, &fds))
continue;
udev_device* const dev = udev_monitor_receive_device(monitor);
Common::ScopeGuard dev_guard([dev] { udev_device_unref(dev); });
const char* const action = udev_device_get_action(dev);
const char* const devnode = udev_device_get_devnode(dev);
if (!devnode)
continue;
// Use GetControllerInterface().PlatformPopulateDevices() to protect access around
// m_devnode_objects. Note that even if we get these events at the same time as a
// a PopulateDevices() request (e.g. on start up, we might get all the add events
// for connected devices), this won't ever cause duplicate devices as AddDeviceNode()
// automatically removes the old one if it already existed
if (strcmp(action, "remove") == 0)
{
GetControllerInterface().PlatformPopulateDevices([&devnode, this] {
std::shared_ptr<evdevDevice> ptr;
const auto it = m_devnode_objects.find(devnode);
if (it != m_devnode_objects.end())
ptr = it->second.lock();
// If we don't recognize this device, ptr will be null and no device will be removed.
GetControllerInterface().RemoveDevice([&ptr](const auto* device) {
return static_cast<const evdevDevice*>(device) == ptr.get();
});
});
}
else if (strcmp(action, "add") == 0)
{
GetControllerInterface().PlatformPopulateDevices(
[&devnode, this] { AddDeviceNode(devnode); });
}
}
NOTICE_LOG_FMT(CONTROLLERINTERFACE, "evdev hotplug thread stopped");
}
void InputBackend::StartHotplugThread()
{
// Mark the thread as running.
if (!m_hotplug_thread_running.TestAndSet())
{
// It was already running.
return;
}
m_wakeup_eventfd = eventfd(0, 0);
ASSERT_MSG(CONTROLLERINTERFACE, m_wakeup_eventfd != -1, "Couldn't create eventfd.");
m_hotplug_thread = std::thread(&InputBackend::HotplugThreadFunc, this);
}
void InputBackend::StopHotplugThread()
{
// Tell the hotplug thread to stop.
if (!m_hotplug_thread_running.TestAndClear())
{
// It wasn't running, we're done.
return;
}
// Write something to efd so that select() stops blocking.
const uint64_t value = 1;
static_cast<void>(!write(m_wakeup_eventfd, &value, sizeof(uint64_t)));
m_hotplug_thread.join();
close(m_wakeup_eventfd);
}
InputBackend::InputBackend(ControllerInterface* controller_interface)
: ciface::InputBackend(controller_interface)
{
StartHotplugThread();
}
// Only call this when ControllerInterface::m_devices_population_mutex is locked
void InputBackend::PopulateDevices()
{
// Don't run if we are not initialized
if (!m_hotplug_thread_running.IsSet())
{
return;
}
// We use udev to iterate over all /dev/input/event* devices.
// Note: the Linux kernel is currently limited to just 32 event devices. If
// this ever changes, hopefully udev will take care of this.
udev* const udev = udev_new();
ASSERT_MSG(CONTROLLERINTERFACE, udev != nullptr, "Couldn't initialize libudev.");
// List all input devices
udev_enumerate* const enumerate = udev_enumerate_new(udev);
udev_enumerate_add_match_subsystem(enumerate, "input");
udev_enumerate_scan_devices(enumerate);
udev_list_entry* const devices = udev_enumerate_get_list_entry(enumerate);
// Iterate over all input devices
udev_list_entry* dev_list_entry;
udev_list_entry_foreach(dev_list_entry, devices)
{
const char* path = udev_list_entry_get_name(dev_list_entry);
udev_device* dev = udev_device_new_from_syspath(udev, path);
if (const char* devnode = udev_device_get_devnode(dev))
AddDeviceNode(devnode);
udev_device_unref(dev);
}
udev_enumerate_unref(enumerate);
udev_unref(udev);
}
InputBackend::~InputBackend()
{
StopHotplugThread();
}
bool evdevDevice::AddNode(std::string devnode, int fd, libevdev* dev)
{
m_nodes.emplace_back(Node{std::move(devnode), fd, dev});
// Take on the alphabetically first name.
const auto potential_new_name = StripWhitespace(libevdev_get_name(dev));
if (m_name.empty() || potential_new_name < m_name)
m_name = potential_new_name;
const bool is_motion_device = libevdev_has_property(dev, INPUT_PROP_ACCELEROMETER);
const bool is_pointing_device = libevdev_has_property(dev, INPUT_PROP_BUTTONPAD);
// If a device has BTN_JOYSTICK it probably uses event codes counting up from 0x120
// which have very useless and wrong names.
const bool has_btn_joystick = libevdev_has_event_code(dev, EV_KEY, BTN_JOYSTICK);
const bool has_sensible_button_names = !has_btn_joystick;
// Buttons (and keyboard keys)
int num_buttons = 0;
for (int key = 0; key != KEY_CNT; ++key)
{
if (libevdev_has_event_code(dev, EV_KEY, key))
{
if (is_pointing_device || is_motion_device)
{
// This node will probably be combined with another with regular buttons.
// We don't want to match "Button 0" names here as it will name clash.
AddInput(new NamedButtonWithNoBackwardsCompat(num_buttons, key, dev));
}
else if (has_sensible_button_names)
{
AddInput(new NamedButton(num_buttons, key, dev));
}
else
{
AddInput(new NumberedButton(num_buttons, key, dev));
}
++num_buttons;
}
}
int num_axis = 0;
if (is_motion_device)
{
// If INPUT_PROP_ACCELEROMETER is set then X,Y,Z,RX,RY,RZ contain motion data.
auto add_motion_inputs = [&num_axis, dev, this](int first_code, double scale) {
for (int i = 0; i != 3; ++i)
{
const int code = first_code + i;
if (libevdev_has_event_code(dev, EV_ABS, code))
{
AddInput(new MotionDataInput(code, scale * -1, dev));
AddInput(new MotionDataInput(code, scale, dev));
++num_axis;
}
}
};
// evdev resolution is specified in "g"s and deg/s.
// Convert these to m/s/s and rad/s.
constexpr ControlState accel_scale = MathUtil::GRAVITY_ACCELERATION;
constexpr ControlState gyro_scale = MathUtil::TAU / 360;
add_motion_inputs(ABS_X, accel_scale);
add_motion_inputs(ABS_RX, gyro_scale);
return true;
}
if (is_pointing_device)
{
auto add_cursor_input = [&num_axis, dev, this](int code) {
if (libevdev_has_event_code(dev, EV_ABS, code))
{
AddInput(new CursorInput(num_axis, code, false, dev));
AddInput(new CursorInput(num_axis, code, true, dev));
++num_axis;
}
};
add_cursor_input(ABS_X);
add_cursor_input(ABS_Y);
return true;
}
// Axes beyond ABS_MISC have strange behavior (for multi-touch) which we do not handle.
const int abs_axis_code_count = ABS_MISC;
// Absolute axis (thumbsticks)
for (int axis = 0; axis != abs_axis_code_count; ++axis)
{
if (libevdev_has_event_code(dev, EV_ABS, axis))
{
AddAnalogInputs(new Axis(num_axis, axis, false, dev), new Axis(num_axis, axis, true, dev));
++num_axis;
}
}
// Disable autocenter
if (libevdev_has_event_code(dev, EV_FF, FF_AUTOCENTER))
{
input_event ie = {};
ie.type = EV_FF;
ie.code = FF_AUTOCENTER;
ie.value = 0;
static_cast<void>(!write(fd, &ie, sizeof(ie)));
}
// Constant FF effect
if (libevdev_has_event_code(dev, EV_FF, FF_CONSTANT))
{
AddOutput(new ConstantEffect(fd));
}
// Periodic FF effects
if (libevdev_has_event_code(dev, EV_FF, FF_PERIODIC))
{
for (auto wave : {FF_SINE, FF_SQUARE, FF_TRIANGLE, FF_SAW_UP, FF_SAW_DOWN})
{
if (libevdev_has_event_code(dev, EV_FF, wave))
AddOutput(new PeriodicEffect(fd, wave));
}
}
// Rumble (i.e. Left/Right) (i.e. Strong/Weak) effect
if (libevdev_has_event_code(dev, EV_FF, FF_RUMBLE))
{
AddOutput(new RumbleEffect(fd, RumbleEffect::Motor::Strong));
AddOutput(new RumbleEffect(fd, RumbleEffect::Motor::Weak));
}
// TODO: Add leds as output devices
// Filter out interesting devices (see description below)
return num_axis >= 2 || num_buttons >= 8;
// On modern linux systems, there are a lot of event devices that aren't controllers.
// For example, the PC Speaker is an event device. Webcams sometimes show up as
// event devices. The power button is an event device.
//
// We don't want these showing up in the list of controllers, so we use this
// heuristic to filter out anything that doesn't smell like a controller:
//
// More than two analog axis:
// Most controllers have at least one stick. This rule will catch all such
// controllers, while ignoring anything with a single axis (like the mouse
// scroll-wheel)
//
// --- OR ---
//
// More than 8 buttons:
// The user might be using a digital only pad such as a NES controller.
// This rule caches such controllers, while eliminating any device with
// only a few buttons, like the power button. Sometimes laptops have devices
// with 5 or 6 special buttons, which is why the threshold is set to 8 to
// match a NES controller.
//
// This heuristic is quite loose. The user may still see weird devices showing up
// as controllers, but it hopefully shouldn't filter out anything they actually
// want to use.
}
const char* evdevDevice::GetUniqueID() const
{
if (m_nodes.empty())
return nullptr;
const auto uniq = libevdev_get_uniq(m_nodes.front().device);
// Some devices (e.g. Mayflash adapter) return an empty string which is not very unique.
if (uniq && std::strlen(uniq) == 0)
return nullptr;
return uniq;
}
const char* evdevDevice::GetPhysicalLocation() const
{
if (m_nodes.empty())
return nullptr;
return libevdev_get_phys(m_nodes.front().device);
}
evdevDevice::evdevDevice(InputBackend* input_backend) : m_input_backend(*input_backend)
{
}
evdevDevice::~evdevDevice()
{
for (auto& node : m_nodes)
{
m_input_backend.RemoveDevnodeObject(node.devnode);
libevdev_free(node.device);
close(node.fd);
}
}
void InputBackend::RemoveDevnodeObject(const std::string& node)
{
m_devnode_objects.erase(node);
}
void evdevDevice::UpdateInput()
{
// Run through all evdev events
// libevdev will keep track of the actual controller state internally which can be queried
// later with libevdev_fetch_event_value()
for (auto& node : m_nodes)
{
int rc = LIBEVDEV_READ_STATUS_SUCCESS;
while (rc >= 0)
{
input_event ev;
if (LIBEVDEV_READ_STATUS_SYNC == rc)
rc = libevdev_next_event(node.device, LIBEVDEV_READ_FLAG_SYNC, &ev);
else
rc = libevdev_next_event(node.device, LIBEVDEV_READ_FLAG_NORMAL, &ev);
}
}
}
bool evdevDevice::IsValid() const
{
for (auto& node : m_nodes)
{
const int current_fd = libevdev_get_fd(node.device);
if (current_fd == -1)
return false;
libevdev* device = nullptr;
if (libevdev_new_from_fd(current_fd, &device) != 0)
{
close(current_fd);
return false;
}
libevdev_free(device);
}
return true;
}
evdevDevice::Effect::Effect(int fd) : m_fd(fd)
{
m_effect.id = -1;
// Left (for wheels):
m_effect.direction = 0x4000;
m_effect.replay.length = RUMBLE_LENGTH_MS;
// FYI: type is set within UpdateParameters.
m_effect.type = DISABLED_EFFECT_TYPE;
}
std::string evdevDevice::ConstantEffect::GetName() const
{
return "Constant";
}
std::string evdevDevice::PeriodicEffect::GetName() const
{
switch (m_effect.u.periodic.waveform)
{
case FF_SQUARE:
return "Square";
case FF_TRIANGLE:
return "Triangle";
case FF_SINE:
return "Sine";
case FF_SAW_UP:
return "Sawtooth Up";
case FF_SAW_DOWN:
return "Sawtooth Down";
default:
return "Unknown";
}
}
std::string evdevDevice::RumbleEffect::GetName() const
{
return (Motor::Strong == m_motor) ? "Strong" : "Weak";
}
void evdevDevice::Effect::SetState(ControlState state)
{
if (UpdateParameters(state))
{
// Update effect if parameters changed.
UpdateEffect();
}
}
void evdevDevice::Effect::UpdateEffect()
{
// libevdev doesn't have nice helpers for forcefeedback
// we will use the file descriptors directly.
// Note: m_effect.type is set within UpdateParameters
// to determine if effect should be playing or not.
if (m_effect.type != DISABLED_EFFECT_TYPE)
{
if (-1 == m_effect.id)
{
// If effect was not uploaded (previously stopped)
// we upload it and start playback
ioctl(m_fd, EVIOCSFF, &m_effect);
input_event play = {};
play.type = EV_FF;
play.code = m_effect.id;
play.value = 1;
static_cast<void>(!write(m_fd, &play, sizeof(play)));
}
else
{
// Effect is already playing. Just update parameters.
ioctl(m_fd, EVIOCSFF, &m_effect);
}
}
else
{
// Stop and remove effect.
ioctl(m_fd, EVIOCRMFF, m_effect.id);
m_effect.id = -1;
}
}
evdevDevice::ConstantEffect::ConstantEffect(int fd) : Effect(fd)
{
m_effect.u.constant = {};
}
evdevDevice::PeriodicEffect::PeriodicEffect(int fd, u16 waveform) : Effect(fd)
{
m_effect.u.periodic = {};
m_effect.u.periodic.waveform = waveform;
m_effect.u.periodic.period = RUMBLE_PERIOD_MS;
m_effect.u.periodic.offset = 0;
m_effect.u.periodic.phase = 0;
}
evdevDevice::RumbleEffect::RumbleEffect(int fd, Motor motor) : Effect(fd), m_motor(motor)
{
m_effect.u.rumble = {};
}
bool evdevDevice::ConstantEffect::UpdateParameters(ControlState state)
{
s16& value = m_effect.u.constant.level;
const s16 old_value = value;
constexpr s16 MAX_VALUE = 0x7fff;
value = s16(state * MAX_VALUE);
m_effect.type = value ? FF_CONSTANT : DISABLED_EFFECT_TYPE;
return value != old_value;
}
bool evdevDevice::PeriodicEffect::UpdateParameters(ControlState state)
{
s16& value = m_effect.u.periodic.magnitude;
const s16 old_value = value;
constexpr s16 MAX_VALUE = 0x7fff;
value = s16(state * MAX_VALUE);
m_effect.type = value ? FF_PERIODIC : DISABLED_EFFECT_TYPE;
return value != old_value;
}
bool evdevDevice::RumbleEffect::UpdateParameters(ControlState state)
{
u16& value = (Motor::Strong == m_motor) ? m_effect.u.rumble.strong_magnitude :
m_effect.u.rumble.weak_magnitude;
const u16 old_value = value;
constexpr u16 MAX_VALUE = 0xffff;
value = u16(state * MAX_VALUE);
m_effect.type = value ? FF_RUMBLE : DISABLED_EFFECT_TYPE;
return value != old_value;
}
evdevDevice::Effect::~Effect()
{
m_effect.type = DISABLED_EFFECT_TYPE;
UpdateEffect();
}
} // namespace ciface::evdev