2013-12-31 14:03:19 -05:00

578 lines
10 KiB
C++

#include "ExpressionParser.h"
#include <cassert>
#include <iostream>
#include <string>
#include <map>
#include <vector>
using namespace ciface::Core;
namespace ciface
{
namespace ExpressionParser
{
enum TokenType
{
TOK_DISCARD,
TOK_INVALID,
TOK_EOF,
TOK_LPAREN,
TOK_RPAREN,
TOK_AND,
TOK_OR,
TOK_NOT,
TOK_ADD,
TOK_CONTROL,
};
inline std::string OpName(TokenType op)
{
switch (op)
{
case TOK_AND:
return "And";
case TOK_OR:
return "Or";
case TOK_NOT:
return "Not";
case TOK_ADD:
return "Add";
default:
assert(false);
return "";
}
}
class Token
{
public:
TokenType type;
ControlQualifier qualifier;
Token(TokenType type_) : type(type_) {}
Token(TokenType type_, ControlQualifier qualifier_) : type(type_), qualifier(qualifier_) {}
operator std::string()
{
switch (type)
{
case TOK_INVALID:
return "Invalid";
case TOK_DISCARD:
return "Discard";
case TOK_EOF:
return "EOF";
case TOK_LPAREN:
return "(";
case TOK_RPAREN:
return ")";
case TOK_AND:
return "&";
case TOK_OR:
return "|";
case TOK_NOT:
return "!";
case TOK_ADD:
return "+";
case TOK_CONTROL:
return "Device(" + (std::string)qualifier + ")";
}
}
};
class Lexer {
public:
std::string expr;
std::string::iterator it;
Lexer(std::string expr_) : expr(expr_)
{
it = expr.begin();
}
bool FetchBacktickString(std::string &value, char otherDelim = 0)
{
value = "";
while (it != expr.end())
{
char c = *it;
it++;
if (c == '`')
return false;
if (c > 0 && c == otherDelim)
return true;
value += c;
}
return false;
}
Token GetFullyQualifiedControl()
{
ControlQualifier qualifier;
std::string value;
if (FetchBacktickString(value, ':'))
{
// Found colon, this is the device name
qualifier.has_device = true;
qualifier.device_qualifier.FromString(value);
FetchBacktickString(value);
}
qualifier.control_name = value;
return Token(TOK_CONTROL, qualifier);
}
Token GetBarewordsControl(char c)
{
std::string name;
name += c;
while (it != expr.end()) {
c = *it;
if (!isalpha(c))
break;
name += c;
it++;
}
ControlQualifier qualifier;
qualifier.control_name = name;
return Token(TOK_CONTROL, qualifier);
}
Token NextToken()
{
if (it == expr.end())
return Token(TOK_EOF);
char c = *it++;
switch (c)
{
case ' ':
case '\t':
case '\n':
case '\r':
return Token(TOK_DISCARD);
case '(':
return Token(TOK_LPAREN);
case ')':
return Token(TOK_RPAREN);
case '&':
return Token(TOK_AND);
case '|':
return Token(TOK_OR);
case '!':
return Token(TOK_NOT);
case '+':
return Token(TOK_ADD);
case '`':
return GetFullyQualifiedControl();
default:
if (isalpha(c))
return GetBarewordsControl(c);
else
return Token(TOK_INVALID);
}
}
ExpressionParseStatus Tokenize(std::vector<Token> &tokens)
{
while (true)
{
Token tok = NextToken();
if (tok.type == TOK_DISCARD)
continue;
if (tok.type == TOK_INVALID)
{
tokens.clear();
return EXPRESSION_PARSE_SYNTAX_ERROR;
}
tokens.push_back(tok);
if (tok.type == TOK_EOF)
break;
}
return EXPRESSION_PARSE_SUCCESS;
}
};
class ExpressionNode
{
public:
virtual ~ExpressionNode() {}
virtual ControlState GetValue() { return 0; }
virtual void SetValue(ControlState state) {}
virtual int CountNumControls() { return 0; }
virtual operator std::string() { return ""; }
};
class ControlExpression : public ExpressionNode
{
public:
ControlQualifier qualifier;
Device::Control *control;
ControlExpression(ControlQualifier qualifier_, Device::Control *control_) : qualifier(qualifier_), control(control_) {}
virtual ControlState GetValue() override
{
return control->ToInput()->GetState();
}
virtual void SetValue(ControlState value) override
{
control->ToOutput()->SetState(value);
}
virtual int CountNumControls() override
{
return 1;
}
virtual operator std::string() override
{
return "`" + (std::string)qualifier + "`";
}
};
class BinaryExpression : public ExpressionNode
{
public:
TokenType op;
ExpressionNode *lhs;
ExpressionNode *rhs;
BinaryExpression(TokenType op_, ExpressionNode *lhs_, ExpressionNode *rhs_) : op(op_), lhs(lhs_), rhs(rhs_) {}
virtual ~BinaryExpression()
{
delete lhs;
delete rhs;
}
virtual ControlState GetValue() override
{
ControlState lhsValue = lhs->GetValue();
ControlState rhsValue = rhs->GetValue();
switch (op)
{
case TOK_AND:
return std::min(lhsValue, rhsValue);
case TOK_OR:
return std::max(lhsValue, rhsValue);
case TOK_ADD:
return std::min(lhsValue + rhsValue, 1.0f);
default:
assert(false);
return 0;
}
}
virtual void SetValue(ControlState value) override
{
// Don't do anything special with the op we have.
// Treat "A & B" the same as "A | B".
lhs->SetValue(value);
rhs->SetValue(value);
}
virtual int CountNumControls() override
{
return lhs->CountNumControls() + rhs->CountNumControls();
}
virtual operator std::string() override
{
return OpName(op) + "(" + (std::string)(*lhs) + ", " + (std::string)(*rhs) + ")";
}
};
class UnaryExpression : public ExpressionNode
{
public:
TokenType op;
ExpressionNode *inner;
UnaryExpression(TokenType op_, ExpressionNode *inner_) : op(op_), inner(inner_) {}
virtual ~UnaryExpression()
{
delete inner;
}
virtual ControlState GetValue() override
{
ControlState value = inner->GetValue();
switch (op)
{
case TOK_NOT:
return 1.0f - value;
default:
assert(false);
return 0;
}
}
virtual void SetValue(ControlState value) override
{
switch (op)
{
case TOK_NOT:
inner->SetValue(1.0f - value);
default:
assert(false);
}
}
virtual int CountNumControls() override
{
return inner->CountNumControls();
}
virtual operator std::string() override
{
return OpName(op) + "(" + (std::string)(*inner) + ")";
}
};
Device *ControlFinder::FindDevice(ControlQualifier qualifier)
{
if (qualifier.has_device)
return container.FindDevice(qualifier.device_qualifier);
else
return container.FindDevice(default_device);
}
Device::Control *ControlFinder::FindControl(ControlQualifier qualifier)
{
Device *device = FindDevice(qualifier);
if (!device)
return NULL;
if (is_input)
return device->FindInput(qualifier.control_name);
else
return device->FindOutput(qualifier.control_name);
}
class Parser
{
public:
Parser(std::vector<Token> tokens_, ControlFinder &finder_) : tokens(tokens_), finder(finder_)
{
m_it = tokens.begin();
}
ExpressionParseStatus Parse(Expression **expr_out)
{
ExpressionNode *node;
ExpressionParseStatus status = Toplevel(&node);
if (status != EXPRESSION_PARSE_SUCCESS)
return status;
*expr_out = new Expression(node);
return EXPRESSION_PARSE_SUCCESS;
}
private:
std::vector<Token> tokens;
std::vector<Token>::iterator m_it;
ControlFinder &finder;
Token Chew()
{
return *m_it++;
}
Token Peek()
{
return *m_it;
}
bool Expects(TokenType type)
{
Token tok = Chew();
return tok.type == type;
}
ExpressionParseStatus Atom(ExpressionNode **expr_out)
{
Token tok = Chew();
switch (tok.type)
{
case TOK_CONTROL:
{
Device::Control *control = finder.FindControl(tok.qualifier);
if (control == NULL)
return EXPRESSION_PARSE_NO_DEVICE;
*expr_out = new ControlExpression(tok.qualifier, control);
return EXPRESSION_PARSE_SUCCESS;
}
case TOK_LPAREN:
return Paren(expr_out);
default:
return EXPRESSION_PARSE_SYNTAX_ERROR;
}
}
bool IsUnaryExpression(TokenType type)
{
switch (type)
{
case TOK_NOT:
return true;
default:
return false;
}
}
ExpressionParseStatus Unary(ExpressionNode **expr_out)
{
ExpressionParseStatus status;
if (IsUnaryExpression(Peek().type))
{
Token tok = Chew();
ExpressionNode *atom_expr;
if ((status = Atom(&atom_expr)) != EXPRESSION_PARSE_SUCCESS)
return status;
*expr_out = new UnaryExpression(tok.type, atom_expr);
return EXPRESSION_PARSE_SUCCESS;
}
return Atom(expr_out);
}
bool IsBinaryToken(TokenType type)
{
switch (type)
{
case TOK_AND:
case TOK_OR:
case TOK_ADD:
return true;
default:
return false;
}
}
ExpressionParseStatus Binary(ExpressionNode **expr_out)
{
ExpressionParseStatus status;
if ((status = Unary(expr_out)) != EXPRESSION_PARSE_SUCCESS)
return status;
while (IsBinaryToken(Peek().type))
{
Token tok = Chew();
ExpressionNode *unary_expr;
if ((status = Unary(&unary_expr)) != EXPRESSION_PARSE_SUCCESS)
{
delete *expr_out;
return status;
}
*expr_out = new BinaryExpression(tok.type, *expr_out, unary_expr);
}
return EXPRESSION_PARSE_SUCCESS;
}
ExpressionParseStatus Paren(ExpressionNode **expr_out)
{
ExpressionParseStatus status;
// lparen already chewed
if ((status = Toplevel(expr_out)) != EXPRESSION_PARSE_SUCCESS)
return status;
if (!Expects(TOK_RPAREN))
{
delete *expr_out;
return EXPRESSION_PARSE_SYNTAX_ERROR;
}
return EXPRESSION_PARSE_SUCCESS;
}
ExpressionParseStatus Toplevel(ExpressionNode **expr_out)
{
return Binary(expr_out);
}
};
ControlState Expression::GetValue()
{
return node->GetValue();
}
void Expression::SetValue(ControlState value)
{
node->SetValue(value);
}
Expression::Expression(ExpressionNode *node_)
{
node = node_;
num_controls = node->CountNumControls();
}
Expression::~Expression()
{
delete node;
}
ExpressionParseStatus ParseExpressionInner(std::string str, ControlFinder &finder, Expression **expr_out)
{
ExpressionParseStatus status;
Expression *expr;
*expr_out = NULL;
if (str == "")
return EXPRESSION_PARSE_SUCCESS;
Lexer l(str);
std::vector<Token> tokens;
status = l.Tokenize(tokens);
if (status != EXPRESSION_PARSE_SUCCESS)
return status;
Parser p(tokens, finder);
status = p.Parse(&expr);
if (status != EXPRESSION_PARSE_SUCCESS)
return status;
*expr_out = expr;
return EXPRESSION_PARSE_SUCCESS;
}
ExpressionParseStatus ParseExpression(std::string str, ControlFinder &finder, Expression **expr_out)
{
// Add compatibility with old simple expressions, which are simple
// barewords control names.
ControlQualifier qualifier;
qualifier.control_name = str;
qualifier.has_device = false;
Device::Control *control = finder.FindControl(qualifier);
if (control) {
*expr_out = new Expression(new ControlExpression(qualifier, control));
return EXPRESSION_PARSE_SUCCESS;
}
return ParseExpressionInner(str, finder, expr_out);
}
}
}