dolphin/Source/Core/Common/Src/MathUtil.cpp
2009-06-15 21:10:11 +00:00

262 lines
5.5 KiB
C++

// Copyright (C) 2003-2009 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <xmmintrin.h>
#include "Common.h"
#include "MathUtil.h"
#include <cmath>
namespace {
static u32 saved_sse_state = _mm_getcsr();
static const u32 default_sse_state = _mm_getcsr();
}
namespace MathUtil
{
int ClassifyDouble(double dvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntDouble value;
value.d = dvalue;
// 5 bits (C, <, >, =, ?)
// easy cases first
if (value.i == 0) {
// positive zero
return 0x2;
} else if (value.i == 0x8000000000000000ULL) {
// negative zero
return 0x12;
} else if (value.i == 0x7FF0000000000000ULL) {
// positive inf
return 0x5;
} else if (value.i == 0xFFF0000000000000ULL) {
// negative inf
return 0x9;
} else {
// OK let's dissect this thing.
int sign = value.i >> 63;
int exp = (int)((value.i >> 52) & 0x7FF);
if (exp >= 1 && exp <= 2046) {
// Nice normalized number.
if (sign) {
return 0x8; // negative
} else {
return 0x4; // positive
}
}
u64 mantissa = value.i & 0x000FFFFFFFFFFFFFULL;
if (exp == 0 && mantissa) {
// Denormalized number.
if (sign) {
return 0x18;
} else {
return 0x14;
}
} else if (exp == 0x7FF && mantissa /* && mantissa_top*/) {
return 0x11; // Quiet NAN
}
}
return 0x4;
}
int ClassifyFloat(float fvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntFloat value;
value.f = fvalue;
// 5 bits (C, <, >, =, ?)
// easy cases first
if (value.i == 0) {
// positive zero
return 0x2;
} else if (value.i == 0x80000000) {
// negative zero
return 0x12;
} else if (value.i == 0x7F800000) {
// positive inf
return 0x5;
} else if (value.i == 0xFF800000) {
// negative inf
return 0x9;
} else {
// OK let's dissect this thing.
int sign = value.i >> 31;
int exp = (int)((value.i >> 23) & 0xFF);
if (exp >= 1 && exp <= 254) {
// Nice normalized number.
if (sign) {
return 0x8; // negative
} else {
return 0x4; // positive
}
}
u64 mantissa = value.i & 0x007FFFFF;
if (exp == 0 && mantissa) {
// Denormalized number.
if (sign) {
return 0x18;
} else {
return 0x14;
}
} else if (exp == 0xFF && mantissa /* && mantissa_top*/) {
return 0x11; // Quiet NAN
}
}
return 0x4;
}
} // namespace
void LoadDefaultSSEState()
{
_mm_setcsr(default_sse_state);
}
void LoadSSEState()
{
_mm_setcsr(saved_sse_state);
}
void SaveSSEState()
{
saved_sse_state = _mm_getcsr();
}
void MatrixMul(int n, const float *a, const float *b, float *result)
{
for(int i = 0; i < n; ++i) {
for(int j= 0; j < n; ++j) {
float temp = 0;
for(int k = 0; k < n; ++k) {
temp += a[i * n + k] * b[k * n + j];
}
result[i * n + j] = temp;
}
}
}
// Calculate sum of a float list
float MathFloatVectorSum(std::vector<float> Vec)
{
float Sum = 0.0;
for(int i = 0; i < Vec.size(); i++)
{
Sum += Vec.at(i);
}
return Sum;
}
void Matrix33::LoadIdentity(Matrix33 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[4] = 1.0f;
mtx.data[8] = 1.0f;
}
void Matrix33::RotateX(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1;
mtx.data[4] = c;
mtx.data[5] = -s;
mtx.data[7] = s;
mtx.data[8] = c;
}
void Matrix33::RotateY(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = c;
mtx.data[2] = s;
mtx.data[4] = 1;
mtx.data[6] = -s;
mtx.data[8] = c;
}
void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
{
MatrixMul(3, a.data, b.data, result.data);
}
void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
{
for(int i = 0; i < 3; ++i) {
result[i] = 0;
for(int k = 0; k < 3; ++k) {
result[i] += a.data[i * 3 + k] * vec[k];
}
}
}
void Matrix44::LoadIdentity(Matrix44 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[5] = 1.0f;
mtx.data[10] = 1.0f;
mtx.data[15] = 1.0f;
}
void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
{
for(int i = 0; i < 3; ++i) {
for(int j = 0; j < 3; ++j) {
mtx.data[i * 4 + j] = m33.data[i * 3 + j];
}
}
for(int i = 0; i < 3; ++i) {
mtx.data[i * 4 + 3] = 0;
mtx.data[i + 12] = 0;
}
mtx.data[15] = 1.0f;
}
void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
{
for(int i = 0; i < 16; ++i) {
mtx.data[i] = mtxArray[i];
}
}
void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
{
LoadIdentity(mtx);
mtx.data[3] = vec[0];
mtx.data[7] = vec[1];
mtx.data[11] = vec[2];
}
void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
{
MatrixMul(4, a.data, b.data, result.data);
}