mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-25 23:41:19 +01:00
a2702c6e27
To further increase the accuracy of the post process phase, I've added (scRGB) HDR support, which is necessary to fully display the PAL and NTSC-J color spaces, and also to improve the quality of post process texture samplings and do them in linear space instead of gamma space (which is very important when playing at low resolutions). For SDR, the quality is also slightly increased, at least if any post process runs, as the buffer is now R10G10B10A2 (on Vulkan, DX11 and DX12) if supported; previously it was R8G8B8A8 but the alpha bits were wasted. Gamma correction is arguably the most important thing as Dolphin on Windows outputted in "sRGB" (implicitly) as that's what Windows expects by default, though sRGB gamma is very different from the gamma commonly used by video standards dating to the pre HDR era (roughly gamma 2.35). Additionally, the addition of HDR support (which is pretty straight forward and minimal), added support for our own custom AutoHDR shaders, which would allow us to achieve decent looking HDR in Dolphin games without having to use SpecialK or Windows 11 AutoHDR. Both of which don't necessarily play nice with older games with strongly different and simpler lighting. HDR should also be supported in Linux. Development of my own AutoHDR shader is almost complete and will come next. This has been carefully tested and there should be no regression in any of the different features that Dolphin offers, like multisampling, stereo rendering, other post processes, etc etc. Fixes: https://bugs.dolphin-emu.org/issues/8941 Co-authored-by: EndlesslyFlowering <EndlesslyFlowering@protonmail.com> Co-authored-by: Dogway <lin_ares@hotmail.com>
611 lines
21 KiB
C++
611 lines
21 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "VideoBackends/Vulkan/VKGfx.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdio>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/EnumUtils.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "VideoBackends/Vulkan/CommandBufferManager.h"
|
|
#include "VideoBackends/Vulkan/ObjectCache.h"
|
|
#include "VideoBackends/Vulkan/StateTracker.h"
|
|
#include "VideoBackends/Vulkan/VKPipeline.h"
|
|
#include "VideoBackends/Vulkan/VKShader.h"
|
|
#include "VideoBackends/Vulkan/VKSwapChain.h"
|
|
#include "VideoBackends/Vulkan/VKTexture.h"
|
|
#include "VideoBackends/Vulkan/VKVertexFormat.h"
|
|
|
|
#include "VideoCommon/DriverDetails.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/Present.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
VKGfx::VKGfx(std::unique_ptr<SwapChain> swap_chain, float backbuffer_scale)
|
|
: m_swap_chain(std::move(swap_chain)), m_backbuffer_scale(backbuffer_scale)
|
|
{
|
|
UpdateActiveConfig();
|
|
for (SamplerState& sampler_state : m_sampler_states)
|
|
sampler_state = RenderState::GetPointSamplerState();
|
|
|
|
// Various initialization routines will have executed commands on the command buffer.
|
|
// Execute what we have done before beginning the first frame.
|
|
ExecuteCommandBuffer(true, false);
|
|
}
|
|
|
|
VKGfx::~VKGfx() = default;
|
|
|
|
bool VKGfx::IsHeadless() const
|
|
{
|
|
return m_swap_chain == nullptr;
|
|
}
|
|
|
|
std::unique_ptr<AbstractTexture> VKGfx::CreateTexture(const TextureConfig& config,
|
|
std::string_view name)
|
|
{
|
|
return VKTexture::Create(config, name);
|
|
}
|
|
|
|
std::unique_ptr<AbstractStagingTexture> VKGfx::CreateStagingTexture(StagingTextureType type,
|
|
const TextureConfig& config)
|
|
{
|
|
return VKStagingTexture::Create(type, config);
|
|
}
|
|
|
|
std::unique_ptr<AbstractShader>
|
|
VKGfx::CreateShaderFromSource(ShaderStage stage, std::string_view source, std::string_view name)
|
|
{
|
|
return VKShader::CreateFromSource(stage, source, name);
|
|
}
|
|
|
|
std::unique_ptr<AbstractShader> VKGfx::CreateShaderFromBinary(ShaderStage stage, const void* data,
|
|
size_t length, std::string_view name)
|
|
{
|
|
return VKShader::CreateFromBinary(stage, data, length, name);
|
|
}
|
|
|
|
std::unique_ptr<NativeVertexFormat>
|
|
VKGfx::CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl)
|
|
{
|
|
return std::make_unique<VertexFormat>(vtx_decl);
|
|
}
|
|
|
|
std::unique_ptr<AbstractPipeline> VKGfx::CreatePipeline(const AbstractPipelineConfig& config,
|
|
const void* cache_data,
|
|
size_t cache_data_length)
|
|
{
|
|
return VKPipeline::Create(config);
|
|
}
|
|
|
|
std::unique_ptr<AbstractFramebuffer>
|
|
VKGfx::CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment,
|
|
std::vector<AbstractTexture*> additional_color_attachments)
|
|
{
|
|
return VKFramebuffer::Create(static_cast<VKTexture*>(color_attachment),
|
|
static_cast<VKTexture*>(depth_attachment),
|
|
std::move(additional_color_attachments));
|
|
}
|
|
|
|
void VKGfx::SetPipeline(const AbstractPipeline* pipeline)
|
|
{
|
|
StateTracker::GetInstance()->SetPipeline(static_cast<const VKPipeline*>(pipeline));
|
|
}
|
|
|
|
void VKGfx::ClearRegion(const MathUtil::Rectangle<int>& target_rc, bool color_enable,
|
|
bool alpha_enable, bool z_enable, u32 color, u32 z)
|
|
{
|
|
VkRect2D target_vk_rc = {
|
|
{target_rc.left, target_rc.top},
|
|
{static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
|
|
|
|
// Convert RGBA8 -> floating-point values.
|
|
VkClearValue clear_color_value = {};
|
|
VkClearValue clear_depth_value = {};
|
|
clear_color_value.color.float32[0] = static_cast<float>((color >> 16) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[1] = static_cast<float>((color >> 8) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[2] = static_cast<float>((color >> 0) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[3] = static_cast<float>((color >> 24) & 0xFF) / 255.0f;
|
|
clear_depth_value.depthStencil.depth = static_cast<float>(z & 0xFFFFFF) / 16777216.0f;
|
|
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
clear_depth_value.depthStencil.depth = 1.0f - clear_depth_value.depthStencil.depth;
|
|
|
|
// If we're not in a render pass (start of the frame), we can use a clear render pass
|
|
// to discard the data, rather than loading and then clearing.
|
|
bool use_clear_attachments = (color_enable && alpha_enable) || z_enable;
|
|
bool use_clear_render_pass =
|
|
!StateTracker::GetInstance()->InRenderPass() && color_enable && alpha_enable && z_enable;
|
|
|
|
// The NVIDIA Vulkan driver causes the GPU to lock up, or throw exceptions if MSAA is enabled,
|
|
// a non-full clear rect is specified, and a clear loadop or vkCmdClearAttachments is used.
|
|
if (g_ActiveConfig.iMultisamples > 1 &&
|
|
DriverDetails::HasBug(DriverDetails::BUG_BROKEN_MSAA_CLEAR))
|
|
{
|
|
use_clear_render_pass = false;
|
|
use_clear_attachments = false;
|
|
}
|
|
|
|
// This path cannot be used if the driver implementation doesn't guarantee pixels with no drawn
|
|
// geometry in "this" renderpass won't be cleared
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLEAR_LOADOP_RENDERPASS))
|
|
use_clear_render_pass = false;
|
|
|
|
auto* vk_frame_buffer = static_cast<VKFramebuffer*>(m_current_framebuffer);
|
|
|
|
// Fastest path: Use a render pass to clear the buffers.
|
|
if (use_clear_render_pass)
|
|
{
|
|
vk_frame_buffer->SetAndClear(target_vk_rc, clear_color_value, clear_depth_value);
|
|
return;
|
|
}
|
|
|
|
// Fast path: Use vkCmdClearAttachments to clear the buffers within a render path
|
|
// We can't use this when preserving alpha but clearing color.
|
|
if (use_clear_attachments)
|
|
{
|
|
std::vector<VkClearAttachment> clear_attachments;
|
|
bool has_color = false;
|
|
if (color_enable && alpha_enable)
|
|
{
|
|
VkClearAttachment clear_attachment;
|
|
clear_attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
clear_attachment.colorAttachment = 0;
|
|
clear_attachment.clearValue = clear_color_value;
|
|
clear_attachments.push_back(std::move(clear_attachment));
|
|
color_enable = false;
|
|
alpha_enable = false;
|
|
has_color = true;
|
|
}
|
|
if (z_enable)
|
|
{
|
|
VkClearAttachment clear_attachment;
|
|
clear_attachment.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
clear_attachment.colorAttachment = 0;
|
|
clear_attachment.clearValue = clear_depth_value;
|
|
clear_attachments.push_back(std::move(clear_attachment));
|
|
z_enable = false;
|
|
}
|
|
if (has_color)
|
|
{
|
|
for (std::size_t i = 0; i < vk_frame_buffer->GetNumberOfAdditonalAttachments(); i++)
|
|
{
|
|
VkClearAttachment clear_attachment;
|
|
clear_attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
clear_attachment.colorAttachment = 0;
|
|
clear_attachment.clearValue = clear_color_value;
|
|
clear_attachments.push_back(std::move(clear_attachment));
|
|
}
|
|
}
|
|
if (!clear_attachments.empty())
|
|
{
|
|
VkClearRect vk_rect = {target_vk_rc, 0, g_framebuffer_manager->GetEFBLayers()};
|
|
if (!StateTracker::GetInstance()->IsWithinRenderArea(
|
|
target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width,
|
|
target_vk_rc.extent.height))
|
|
{
|
|
StateTracker::GetInstance()->EndClearRenderPass();
|
|
}
|
|
StateTracker::GetInstance()->BeginRenderPass();
|
|
|
|
vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
static_cast<uint32_t>(clear_attachments.size()),
|
|
clear_attachments.data(), 1, &vk_rect);
|
|
}
|
|
}
|
|
|
|
// Anything left over for the slow path?
|
|
if (!color_enable && !alpha_enable && !z_enable)
|
|
return;
|
|
|
|
AbstractGfx::ClearRegion(target_rc, color_enable, alpha_enable, z_enable, color, z);
|
|
}
|
|
|
|
void VKGfx::Flush()
|
|
{
|
|
ExecuteCommandBuffer(true, false);
|
|
}
|
|
|
|
void VKGfx::WaitForGPUIdle()
|
|
{
|
|
ExecuteCommandBuffer(false, true);
|
|
}
|
|
|
|
void VKGfx::BindBackbuffer(const ClearColor& clear_color)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
if (!g_command_buffer_mgr->CheckLastPresentDone())
|
|
g_command_buffer_mgr->WaitForWorkerThreadIdle();
|
|
|
|
// Handle host window resizes.
|
|
CheckForSurfaceChange();
|
|
CheckForSurfaceResize();
|
|
|
|
// Check for exclusive fullscreen request.
|
|
if (m_swap_chain->GetCurrentFullscreenState() != m_swap_chain->GetNextFullscreenState() &&
|
|
!m_swap_chain->SetFullscreenState(m_swap_chain->GetNextFullscreenState()))
|
|
{
|
|
// if it fails, don't keep trying
|
|
m_swap_chain->SetNextFullscreenState(m_swap_chain->GetCurrentFullscreenState());
|
|
}
|
|
|
|
const bool present_fail = g_command_buffer_mgr->CheckLastPresentFail();
|
|
VkResult res = present_fail ? g_command_buffer_mgr->GetLastPresentResult() :
|
|
m_swap_chain->AcquireNextImage();
|
|
|
|
if (res == VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT &&
|
|
!m_swap_chain->GetCurrentFullscreenState())
|
|
{
|
|
// AMD's binary driver as of 21.3 seems to return exclusive fullscreen lost even when it was
|
|
// never requested, so long as the caller requested it to be application controlled. Handle
|
|
// this ignoring the lost result and just continuing as normal if we never acquired it.
|
|
res = VK_SUCCESS;
|
|
if (present_fail)
|
|
{
|
|
// We still need to acquire an image.
|
|
res = m_swap_chain->AcquireNextImage();
|
|
}
|
|
}
|
|
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
// Execute cmdbuffer before resizing, as the last frame could still be presenting.
|
|
ExecuteCommandBuffer(false, true);
|
|
|
|
// Was this a lost exclusive fullscreen?
|
|
if (res == VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT)
|
|
{
|
|
// The present keeps returning exclusive mode lost unless we re-create the swap chain.
|
|
INFO_LOG_FMT(VIDEO, "Lost exclusive fullscreen.");
|
|
m_swap_chain->RecreateSwapChain();
|
|
}
|
|
else if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR)
|
|
{
|
|
INFO_LOG_FMT(VIDEO, "Resizing swap chain due to suboptimal/out-of-date");
|
|
m_swap_chain->ResizeSwapChain();
|
|
}
|
|
else
|
|
{
|
|
ERROR_LOG_FMT(VIDEO, "Unknown present error {:#010X} {}, please report.",
|
|
Common::ToUnderlying(res), VkResultToString(res));
|
|
m_swap_chain->RecreateSwapChain();
|
|
}
|
|
|
|
res = m_swap_chain->AcquireNextImage();
|
|
if (res != VK_SUCCESS)
|
|
PanicAlertFmt("Failed to grab image from swap chain: {:#010X} {}", Common::ToUnderlying(res),
|
|
VkResultToString(res));
|
|
}
|
|
|
|
// Transition from undefined (or present src, but it can be substituted) to
|
|
// color attachment ready for writing. These transitions must occur outside
|
|
// a render pass, unless the render pass declares a self-dependency.
|
|
m_swap_chain->GetCurrentTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED);
|
|
m_swap_chain->GetCurrentTexture()->TransitionToLayout(
|
|
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
SetAndClearFramebuffer(m_swap_chain->GetCurrentFramebuffer(),
|
|
ClearColor{{0.0f, 0.0f, 0.0f, 1.0f}});
|
|
}
|
|
|
|
void VKGfx::PresentBackbuffer()
|
|
{
|
|
// End drawing to backbuffer
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Transition the backbuffer to PRESENT_SRC to ensure all commands drawing
|
|
// to it have finished before present.
|
|
m_swap_chain->GetCurrentTexture()->TransitionToLayout(
|
|
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_PRESENT_SRC_KHR);
|
|
|
|
// Submit the current command buffer, signaling rendering finished semaphore when it's done
|
|
// Because this final command buffer is rendering to the swap chain, we need to wait for
|
|
// the available semaphore to be signaled before executing the buffer. This final submission
|
|
// can happen off-thread in the background while we're preparing the next frame.
|
|
g_command_buffer_mgr->SubmitCommandBuffer(true, false, m_swap_chain->GetSwapChain(),
|
|
m_swap_chain->GetCurrentImageIndex());
|
|
|
|
// New cmdbuffer, so invalidate state.
|
|
StateTracker::GetInstance()->InvalidateCachedState();
|
|
}
|
|
|
|
void VKGfx::SetFullscreen(bool enable_fullscreen)
|
|
{
|
|
if (!m_swap_chain->IsFullscreenSupported())
|
|
return;
|
|
|
|
m_swap_chain->SetNextFullscreenState(enable_fullscreen);
|
|
}
|
|
|
|
bool VKGfx::IsFullscreen() const
|
|
{
|
|
return m_swap_chain && m_swap_chain->GetCurrentFullscreenState();
|
|
}
|
|
|
|
void VKGfx::ExecuteCommandBuffer(bool submit_off_thread, bool wait_for_completion)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
g_command_buffer_mgr->SubmitCommandBuffer(submit_off_thread, wait_for_completion);
|
|
|
|
StateTracker::GetInstance()->InvalidateCachedState();
|
|
}
|
|
|
|
void VKGfx::CheckForSurfaceChange()
|
|
{
|
|
if (!g_presenter->SurfaceChangedTestAndClear() || !m_swap_chain)
|
|
return;
|
|
|
|
// Submit the current draws up until rendering the XFB.
|
|
ExecuteCommandBuffer(false, true);
|
|
|
|
// Clear the present failed flag, since we don't want to resize after recreating.
|
|
g_command_buffer_mgr->CheckLastPresentFail();
|
|
|
|
// Recreate the surface. If this fails we're in trouble.
|
|
if (!m_swap_chain->RecreateSurface(g_presenter->GetNewSurfaceHandle()))
|
|
PanicAlertFmt("Failed to recreate Vulkan surface. Cannot continue.");
|
|
|
|
// Handle case where the dimensions are now different.
|
|
OnSwapChainResized();
|
|
}
|
|
|
|
void VKGfx::CheckForSurfaceResize()
|
|
{
|
|
if (!g_presenter->SurfaceResizedTestAndClear())
|
|
return;
|
|
|
|
// If we don't have a surface, how can we resize the swap chain?
|
|
// CheckForSurfaceChange should handle this case.
|
|
if (!m_swap_chain)
|
|
{
|
|
WARN_LOG_FMT(VIDEO, "Surface resize event received without active surface, ignoring");
|
|
return;
|
|
}
|
|
|
|
// Wait for the GPU to catch up since we're going to destroy the swap chain.
|
|
ExecuteCommandBuffer(false, true);
|
|
|
|
// Clear the present failed flag, since we don't want to resize after recreating.
|
|
g_command_buffer_mgr->CheckLastPresentFail();
|
|
|
|
// Resize the swap chain.
|
|
m_swap_chain->RecreateSwapChain();
|
|
OnSwapChainResized();
|
|
}
|
|
|
|
void VKGfx::OnConfigChanged(u32 bits)
|
|
{
|
|
AbstractGfx::OnConfigChanged(bits);
|
|
|
|
if (bits & CONFIG_CHANGE_BIT_HOST_CONFIG)
|
|
g_object_cache->ReloadPipelineCache();
|
|
|
|
// For vsync, we need to change the present mode, which means recreating the swap chain.
|
|
if (m_swap_chain && bits & CONFIG_CHANGE_BIT_VSYNC)
|
|
{
|
|
ExecuteCommandBuffer(false, true);
|
|
m_swap_chain->SetVSync(g_ActiveConfig.bVSyncActive);
|
|
}
|
|
|
|
// For quad-buffered stereo we need to change the layer count, so recreate the swap chain.
|
|
if (m_swap_chain && (bits & CONFIG_CHANGE_BIT_STEREO_MODE) || (bits & CONFIG_CHANGE_BIT_HDR))
|
|
{
|
|
ExecuteCommandBuffer(false, true);
|
|
m_swap_chain->RecreateSwapChain();
|
|
}
|
|
|
|
// Wipe sampler cache if force texture filtering or anisotropy changes.
|
|
if (bits & (CONFIG_CHANGE_BIT_ANISOTROPY | CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING))
|
|
{
|
|
ExecuteCommandBuffer(false, true);
|
|
ResetSamplerStates();
|
|
}
|
|
}
|
|
|
|
void VKGfx::OnSwapChainResized()
|
|
{
|
|
g_presenter->SetBackbuffer(m_swap_chain->GetWidth(), m_swap_chain->GetHeight());
|
|
}
|
|
|
|
void VKGfx::BindFramebuffer(VKFramebuffer* fb)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Shouldn't be bound as a texture.
|
|
fb->Unbind();
|
|
|
|
fb->TransitionForRender();
|
|
StateTracker::GetInstance()->SetFramebuffer(fb);
|
|
m_current_framebuffer = fb;
|
|
}
|
|
|
|
void VKGfx::SetFramebuffer(AbstractFramebuffer* framebuffer)
|
|
{
|
|
if (m_current_framebuffer == framebuffer)
|
|
return;
|
|
|
|
VKFramebuffer* vkfb = static_cast<VKFramebuffer*>(framebuffer);
|
|
BindFramebuffer(vkfb);
|
|
}
|
|
|
|
void VKGfx::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer)
|
|
{
|
|
if (m_current_framebuffer == framebuffer)
|
|
return;
|
|
|
|
VKFramebuffer* vkfb = static_cast<VKFramebuffer*>(framebuffer);
|
|
BindFramebuffer(vkfb);
|
|
|
|
// If we're discarding, begin the discard pass, then switch to a load pass.
|
|
// This way if the command buffer is flushed, we don't start another discard pass.
|
|
StateTracker::GetInstance()->BeginDiscardRenderPass();
|
|
}
|
|
|
|
void VKGfx::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value,
|
|
float depth_value)
|
|
{
|
|
VKFramebuffer* vkfb = static_cast<VKFramebuffer*>(framebuffer);
|
|
BindFramebuffer(vkfb);
|
|
|
|
VkClearValue clear_color_value;
|
|
std::memcpy(clear_color_value.color.float32, color_value.data(),
|
|
sizeof(clear_color_value.color.float32));
|
|
VkClearValue clear_depth_value;
|
|
clear_depth_value.depthStencil.depth = depth_value;
|
|
clear_depth_value.depthStencil.stencil = 0;
|
|
vkfb->SetAndClear(vkfb->GetRect(), clear_color_value, clear_depth_value);
|
|
}
|
|
|
|
void VKGfx::SetTexture(u32 index, const AbstractTexture* texture)
|
|
{
|
|
// Texture should always be in SHADER_READ_ONLY layout prior to use.
|
|
// This is so we don't need to transition during render passes.
|
|
const VKTexture* tex = static_cast<const VKTexture*>(texture);
|
|
if (tex)
|
|
{
|
|
if (tex->GetLayout() != VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
|
|
{
|
|
if (StateTracker::GetInstance()->InRenderPass())
|
|
{
|
|
WARN_LOG_FMT(VIDEO, "Transitioning image in render pass in VKGfx::SetTexture()");
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
}
|
|
|
|
tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
StateTracker::GetInstance()->SetTexture(index, tex->GetView());
|
|
}
|
|
else
|
|
{
|
|
StateTracker::GetInstance()->SetTexture(0, VK_NULL_HANDLE);
|
|
}
|
|
}
|
|
|
|
void VKGfx::SetSamplerState(u32 index, const SamplerState& state)
|
|
{
|
|
// Skip lookup if the state hasn't changed.
|
|
if (m_sampler_states[index] == state)
|
|
return;
|
|
|
|
// Look up new state and replace in state tracker.
|
|
VkSampler sampler = g_object_cache->GetSampler(state);
|
|
if (sampler == VK_NULL_HANDLE)
|
|
{
|
|
ERROR_LOG_FMT(VIDEO, "Failed to create sampler");
|
|
sampler = g_object_cache->GetPointSampler();
|
|
}
|
|
|
|
StateTracker::GetInstance()->SetSampler(index, sampler);
|
|
m_sampler_states[index] = state;
|
|
}
|
|
|
|
void VKGfx::SetComputeImageTexture(AbstractTexture* texture, bool read, bool write)
|
|
{
|
|
VKTexture* vk_texture = static_cast<VKTexture*>(texture);
|
|
if (vk_texture)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetImageTexture(vk_texture->GetView());
|
|
vk_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
read ? (write ? VKTexture::ComputeImageLayout::ReadWrite :
|
|
VKTexture::ComputeImageLayout::ReadOnly) :
|
|
VKTexture::ComputeImageLayout::WriteOnly);
|
|
}
|
|
else
|
|
{
|
|
StateTracker::GetInstance()->SetImageTexture(VK_NULL_HANDLE);
|
|
}
|
|
}
|
|
|
|
void VKGfx::UnbindTexture(const AbstractTexture* texture)
|
|
{
|
|
StateTracker::GetInstance()->UnbindTexture(static_cast<const VKTexture*>(texture)->GetView());
|
|
}
|
|
|
|
void VKGfx::ResetSamplerStates()
|
|
{
|
|
// Invalidate all sampler states, next draw will re-initialize them.
|
|
for (u32 i = 0; i < m_sampler_states.size(); i++)
|
|
{
|
|
m_sampler_states[i] = RenderState::GetPointSamplerState();
|
|
StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler());
|
|
}
|
|
|
|
// Invalidate all sampler objects (some will be unused now).
|
|
g_object_cache->ClearSamplerCache();
|
|
}
|
|
|
|
void VKGfx::SetScissorRect(const MathUtil::Rectangle<int>& rc)
|
|
{
|
|
VkRect2D scissor = {{rc.left, rc.top},
|
|
{static_cast<u32>(rc.GetWidth()), static_cast<u32>(rc.GetHeight())}};
|
|
|
|
// See Vulkan spec for vkCmdSetScissor:
|
|
// The x and y members of offset must be greater than or equal to 0.
|
|
if (scissor.offset.x < 0)
|
|
{
|
|
scissor.extent.width -= -scissor.offset.x;
|
|
scissor.offset.x = 0;
|
|
}
|
|
if (scissor.offset.y < 0)
|
|
{
|
|
scissor.extent.height -= -scissor.offset.y;
|
|
scissor.offset.y = 0;
|
|
}
|
|
StateTracker::GetInstance()->SetScissor(scissor);
|
|
}
|
|
|
|
void VKGfx::SetViewport(float x, float y, float width, float height, float near_depth,
|
|
float far_depth)
|
|
{
|
|
VkViewport viewport = {x, y, width, height, near_depth, far_depth};
|
|
StateTracker::GetInstance()->SetViewport(viewport);
|
|
}
|
|
|
|
void VKGfx::Draw(u32 base_vertex, u32 num_vertices)
|
|
{
|
|
if (!StateTracker::GetInstance()->Bind())
|
|
return;
|
|
|
|
vkCmdDraw(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_vertices, 1, base_vertex, 0);
|
|
}
|
|
|
|
void VKGfx::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex)
|
|
{
|
|
if (!StateTracker::GetInstance()->Bind())
|
|
return;
|
|
|
|
vkCmdDrawIndexed(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_indices, 1, base_index,
|
|
base_vertex, 0);
|
|
}
|
|
|
|
void VKGfx::DispatchComputeShader(const AbstractShader* shader, u32 groupsize_x, u32 groupsize_y,
|
|
u32 groupsize_z, u32 groups_x, u32 groups_y, u32 groups_z)
|
|
{
|
|
StateTracker::GetInstance()->SetComputeShader(static_cast<const VKShader*>(shader));
|
|
if (StateTracker::GetInstance()->BindCompute())
|
|
vkCmdDispatch(g_command_buffer_mgr->GetCurrentCommandBuffer(), groups_x, groups_y, groups_z);
|
|
}
|
|
|
|
SurfaceInfo VKGfx::GetSurfaceInfo() const
|
|
{
|
|
return {m_swap_chain ? m_swap_chain->GetWidth() : 1u,
|
|
m_swap_chain ? m_swap_chain->GetHeight() : 0u, m_backbuffer_scale,
|
|
m_swap_chain ? m_swap_chain->GetTextureFormat() : AbstractTextureFormat::Undefined};
|
|
}
|
|
|
|
} // namespace Vulkan
|