dolphin/Source/Core/VideoCommon/Src/PixelShaderGen.cpp
Ryan Houdek a357c77257 Add in GLSL setting again.
PS and VS making. Untested and won't work for now.

Add in program shader cache files.

Readd NativeVertexFormat stuffs.

Add in PS and VS cache things.

SetShaders in places.

Fixed EFB cache index computations in OpenGL renderer.

The previous computation was very likely to go out of array bounds,
which could result in crashes on EFB access.

Also, the cache size was rounded down instead of up. This is a problem
since EFB_HEIGHT (528) is not a multiple of EFB_CACHE_RECT_SIZE (64).
2012-10-09 23:23:37 -05:00

1361 lines
47 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <stdio.h>
#include <cmath>
#include <assert.h>
#include <locale.h>
#include "LightingShaderGen.h"
#include "PixelShaderGen.h"
#include "XFMemory.h" // for texture projection mode
#include "BPMemory.h"
#include "VideoConfig.h"
#include "NativeVertexFormat.h"
static int AlphaPreTest();
static void StageHash(int stage, u32* out)
{
out[0] |= bpmem.combiners[stage].colorC.hex & 0xFFFFFF; // 24
u32 alphaC = bpmem.combiners[stage].alphaC.hex & 0xFFFFF0; // 24, strip out tswap and rswap for now
out[0] |= (alphaC&0xF0) << 24; // 8
out[1] |= alphaC >> 8; // 16
// reserve 3 bits for bpmem.tevorders[stage/2].getTexMap
out[1] |= bpmem.tevorders[stage/2].getTexCoord(stage&1) << 19; // 3
out[1] |= bpmem.tevorders[stage/2].getEnable(stage&1) << 22; // 1
// reserve 3 bits for bpmem.tevorders[stage/2].getColorChan
bool bHasIndStage = bpmem.tevind[stage].IsActive() && bpmem.tevind[stage].bt < bpmem.genMode.numindstages;
out[2] |= bHasIndStage << 2; // 1
bool needstexcoord = false;
if (bHasIndStage)
{
out[2] |= (bpmem.tevind[stage].hex & 0x17FFFF) << 3; // 21, TODO: needs an explanation
needstexcoord = true;
}
TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stage].colorC;
TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stage].alphaC;
if(cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC
|| cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC
|| cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC
|| cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC
|| ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA
|| ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
out[0] |= bpmem.combiners[stage].alphaC.rswap;
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2].swap1 << 24; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2].swap2 << 26; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2+1].swap1 << 28; // 2
out[2] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.rswap*2+1].swap2 << 30; // 2
out[1] |= (bpmem.tevorders[stage/2].getColorChan(stage&1)&1) << 23;
out[2] |= (bpmem.tevorders[stage/2].getColorChan(stage&1)&0x6) >> 1;
}
out[3] |= bpmem.tevorders[stage/2].getEnable(stage&1);
if (bpmem.tevorders[stage/2].getEnable(stage&1))
{
if (bHasIndStage) needstexcoord = true;
out[0] |= bpmem.combiners[stage].alphaC.tswap;
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2].swap1 << 1; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2].swap2 << 3; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2+1].swap1 << 5; // 2
out[3] |= bpmem.tevksel[bpmem.combiners[stage].alphaC.tswap*2+1].swap2 << 7; // 2
out[1] |= bpmem.tevorders[stage/2].getTexMap(stage&1) << 16;
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST
|| ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST || ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
out[3] |= bpmem.tevksel[stage/2].getKC(stage&1) << 9; // 5
out[3] |= bpmem.tevksel[stage/2].getKA(stage&1) << 14; // 5
}
if (needstexcoord)
{
out[1] |= bpmem.tevorders[stage/2].getTexCoord(stage&1) << 16;
}
}
// Mash together all the inputs that contribute to the code of a generated pixel shader into
// a unique identifier, basically containing all the bits. Yup, it's a lot ....
// It would likely be a lot more efficient to build this incrementally as the attributes
// are set...
void GetPixelShaderId(PIXELSHADERUID *uid, DSTALPHA_MODE dstAlphaMode, u32 components)
{
memset(uid->values, 0, sizeof(uid->values));
uid->values[0] |= bpmem.genMode.numtevstages; // 4
uid->values[0] |= bpmem.genMode.numtexgens << 4; // 4
uid->values[0] |= dstAlphaMode << 8; // 2
bool DepthTextureEnable = (bpmem.ztex2.op != ZTEXTURE_DISABLE && !bpmem.zcontrol.zcomploc && bpmem.zmode.testenable && bpmem.zmode.updateenable) || g_ActiveConfig.bEnablePerPixelDepth;
uid->values[0] |= DepthTextureEnable << 10; // 1
bool enablePL = g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting;
uid->values[0] |= enablePL << 11; // 1
if (!enablePL) uid->values[0] |= xfregs.numTexGen.numTexGens << 12; // 4
u32 alphaPreTest = AlphaPreTest()+1;
uid->values[0] |= alphaPreTest << 16; // 2
if (alphaPreTest == 1 || (alphaPreTest && !DepthTextureEnable && dstAlphaMode == DSTALPHA_ALPHA_PASS))
{
// Courtesy of PreAlphaTest, we're done already ;)
// NOTE: The comment header of generated shaders depends on the value of bpmem.genmode.numindstages.. shouldnt really bother about that though.
uid->num_values = 1;
return;
}
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; ++i)
{
if (18+i < 32)
uid->values[0] |= xfregs.texMtxInfo[i].projection << (18+i); // 1
else
uid->values[1] |= xfregs.texMtxInfo[i].projection << (i - 14); // 1
}
uid->values[1] = bpmem.genMode.numindstages << 2; // 3
u32 indirectStagesUsed = 0;
for (unsigned int i = 0; i < bpmem.genMode.numindstages; ++i)
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
indirectStagesUsed |= (1 << bpmem.tevind[i].bt);
assert(indirectStagesUsed == (indirectStagesUsed & 0xF));
uid->values[1] |= indirectStagesUsed << 5; // 4;
for (unsigned int i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (indirectStagesUsed & (1 << i))
{
uid->values[1] |= (bpmem.tevindref.getTexCoord(i) < bpmem.genMode.numtexgens) << (9 + 3*i); // 1
if (bpmem.tevindref.getTexCoord(i) < bpmem.genMode.numtexgens)
uid->values[1] |= bpmem.tevindref.getTexCoord(i) << (10 + 3*i); // 2
}
}
u32* ptr = &uid->values[2];
for (unsigned int i = 0; i < bpmem.genMode.numtevstages+1; ++i)
{
StageHash(i, ptr);
ptr += 4; // max: ptr = &uid->values[66]
}
ptr[0] |= bpmem.alphaFunc.comp0; // 3
ptr[0] |= bpmem.alphaFunc.comp1 << 3; // 3
ptr[0] |= bpmem.alphaFunc.logic << 6; // 2
if (alphaPreTest == 0 || alphaPreTest == 2)
{
ptr[0] |= bpmem.fog.c_proj_fsel.fsel << 8; // 3
if (DepthTextureEnable)
{
ptr[0] |= bpmem.ztex2.op << 11; // 2
ptr[0] |= bpmem.zcontrol.zcomploc << 13; // 1
ptr[0] |= bpmem.zmode.testenable << 14; // 1
ptr[0] |= bpmem.zmode.updateenable << 15; // 1
}
}
if (dstAlphaMode != DSTALPHA_ALPHA_PASS)
{
if (bpmem.fog.c_proj_fsel.fsel != 0)
{
ptr[0] |= bpmem.fog.c_proj_fsel.proj << 16; // 1
ptr[0] |= bpmem.fogRange.Base.Enabled << 17; // 1
}
}
++ptr;
if (enablePL)
{
ptr += GetLightingShaderId(ptr);
*ptr++ = components;
}
uid->num_values = ptr - uid->values;
}
void GetSafePixelShaderId(PIXELSHADERUIDSAFE *uid, DSTALPHA_MODE dstAlphaMode, u32 components)
{
memset(uid->values, 0, sizeof(uid->values));
u32* ptr = uid->values;
*ptr++ = dstAlphaMode; // 0
*ptr++ = bpmem.genMode.hex; // 1
*ptr++ = bpmem.ztex2.hex; // 2
*ptr++ = bpmem.zcontrol.hex; // 3
*ptr++ = bpmem.zmode.hex; // 4
*ptr++ = g_ActiveConfig.bEnablePerPixelDepth; // 5
*ptr++ = g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting; // 6
*ptr++ = xfregs.numTexGen.hex; // 7
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
*ptr++ = xfregs.color[0].hex;
*ptr++ = xfregs.alpha[0].hex;
*ptr++ = xfregs.color[1].hex;
*ptr++ = xfregs.alpha[1].hex;
*ptr++ = components;
}
for (unsigned int i = 0; i < 8; ++i)
*ptr++ = xfregs.texMtxInfo[i].hex; // 8-15
for (unsigned int i = 0; i < 16; ++i)
*ptr++ = bpmem.tevind[i].hex; // 16-31
*ptr++ = bpmem.tevindref.hex; // 32
for (int i = 0; i < bpmem.genMode.numtevstages+1; ++i) // up to 16 times
{
*ptr++ = bpmem.combiners[i].colorC.hex; // 33+5*i
*ptr++ = bpmem.combiners[i].alphaC.hex; // 34+5*i
*ptr++ = bpmem.tevind[i].hex; // 35+5*i
*ptr++ = bpmem.tevksel[i/2].hex; // 36+5*i
*ptr++ = bpmem.tevorders[i/2].hex; // 37+5*i
}
ptr = &uid->values[113];
*ptr++ = bpmem.alphaFunc.hex; // 113
*ptr++ = bpmem.fog.c_proj_fsel.hex; // 114
*ptr++ = bpmem.fogRange.Base.hex; // 115
_assert_((ptr - uid->values) == uid->GetNumValues());
}
void ValidatePixelShaderIDs(API_TYPE api, PIXELSHADERUIDSAFE old_id, const std::string& old_code, DSTALPHA_MODE dstAlphaMode, u32 components)
{
if (!g_ActiveConfig.bEnableShaderDebugging)
return;
PIXELSHADERUIDSAFE new_id;
GetSafePixelShaderId(&new_id, dstAlphaMode, components);
if (!(old_id == new_id))
{
std::string new_code(GeneratePixelShaderCode(dstAlphaMode, api, components));
if (old_code != new_code)
{
_assert_(old_id.GetNumValues() == new_id.GetNumValues());
char msg[8192];
char* ptr = msg;
ptr += sprintf(ptr, "Pixel shader IDs matched but unique IDs did not!\nUnique IDs (old <-> new):\n");
const int N = new_id.GetNumValues();
for (int i = 0; i < N/2; ++i)
ptr += sprintf(ptr, "%02d, %08X %08X | %08X %08X\n", 2*i, old_id.values[2*i], old_id.values[2*i+1],
new_id.values[2*i], new_id.values[2*i+1]);
if (N % 2)
ptr += sprintf(ptr, "%02d, %08X | %08X\n", N-1, old_id.values[N-1], new_id.values[N-1]);
static int num_failures = 0;
char szTemp[MAX_PATH];
sprintf(szTemp, "%spsuid_mismatch_%04i.txt", File::GetUserPath(D_DUMP_IDX).c_str(), num_failures++);
std::ofstream file(szTemp);
file << msg;
file << "\n\nOld shader code:\n" << old_code;
file << "\n\nNew shader code:\n" << new_code;
file.close();
PanicAlert("Unique pixel shader ID mismatch!\n\nReport this to the devs, along with the contents of %s.", szTemp);
}
}
}
// old tev->pixelshader notes
//
// color for this stage (alpha, color) is given by bpmem.tevorders[0].colorchan0
// konstant for this stage (alpha, color) is given by bpmem.tevksel
// inputs are given by bpmem.combiners[0].colorC.a/b/c/d << could be current chan color
// according to GXTevColorArg table above
// output is given by .outreg
// tevtemp is set according to swapmodetables and
static void WriteStage(char *&p, int n, API_TYPE ApiType);
static void SampleTexture(char *&p, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType);
// static void WriteAlphaCompare(char *&p, int num, int comp);
static void WriteAlphaTest(char *&p, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode);
static void WriteFog(char *&p);
static const char *tevKSelTableC[] = // KCSEL
{
"1.0f,1.0f,1.0f", // 1 = 0x00
"0.875f,0.875f,0.875f", // 7_8 = 0x01
"0.75f,0.75f,0.75f", // 3_4 = 0x02
"0.625f,0.625f,0.625f", // 5_8 = 0x03
"0.5f,0.5f,0.5f", // 1_2 = 0x04
"0.375f,0.375f,0.375f", // 3_8 = 0x05
"0.25f,0.25f,0.25f", // 1_4 = 0x06
"0.125f,0.125f,0.125f", // 1_8 = 0x07
"ERROR", // 0x08
"ERROR", // 0x09
"ERROR", // 0x0a
"ERROR", // 0x0b
I_KCOLORS"[0].rgb", // K0 = 0x0C
I_KCOLORS"[1].rgb", // K1 = 0x0D
I_KCOLORS"[2].rgb", // K2 = 0x0E
I_KCOLORS"[3].rgb", // K3 = 0x0F
I_KCOLORS"[0].rrr", // K0_R = 0x10
I_KCOLORS"[1].rrr", // K1_R = 0x11
I_KCOLORS"[2].rrr", // K2_R = 0x12
I_KCOLORS"[3].rrr", // K3_R = 0x13
I_KCOLORS"[0].ggg", // K0_G = 0x14
I_KCOLORS"[1].ggg", // K1_G = 0x15
I_KCOLORS"[2].ggg", // K2_G = 0x16
I_KCOLORS"[3].ggg", // K3_G = 0x17
I_KCOLORS"[0].bbb", // K0_B = 0x18
I_KCOLORS"[1].bbb", // K1_B = 0x19
I_KCOLORS"[2].bbb", // K2_B = 0x1A
I_KCOLORS"[3].bbb", // K3_B = 0x1B
I_KCOLORS"[0].aaa", // K0_A = 0x1C
I_KCOLORS"[1].aaa", // K1_A = 0x1D
I_KCOLORS"[2].aaa", // K2_A = 0x1E
I_KCOLORS"[3].aaa", // K3_A = 0x1F
};
static const char *tevKSelTableA[] = // KASEL
{
"1.0f", // 1 = 0x00
"0.875f",// 7_8 = 0x01
"0.75f", // 3_4 = 0x02
"0.625f",// 5_8 = 0x03
"0.5f", // 1_2 = 0x04
"0.375f",// 3_8 = 0x05
"0.25f", // 1_4 = 0x06
"0.125f",// 1_8 = 0x07
"ERROR", // 0x08
"ERROR", // 0x09
"ERROR", // 0x0a
"ERROR", // 0x0b
"ERROR", // 0x0c
"ERROR", // 0x0d
"ERROR", // 0x0e
"ERROR", // 0x0f
I_KCOLORS"[0].r", // K0_R = 0x10
I_KCOLORS"[1].r", // K1_R = 0x11
I_KCOLORS"[2].r", // K2_R = 0x12
I_KCOLORS"[3].r", // K3_R = 0x13
I_KCOLORS"[0].g", // K0_G = 0x14
I_KCOLORS"[1].g", // K1_G = 0x15
I_KCOLORS"[2].g", // K2_G = 0x16
I_KCOLORS"[3].g", // K3_G = 0x17
I_KCOLORS"[0].b", // K0_B = 0x18
I_KCOLORS"[1].b", // K1_B = 0x19
I_KCOLORS"[2].b", // K2_B = 0x1A
I_KCOLORS"[3].b", // K3_B = 0x1B
I_KCOLORS"[0].a", // K0_A = 0x1C
I_KCOLORS"[1].a", // K1_A = 0x1D
I_KCOLORS"[2].a", // K2_A = 0x1E
I_KCOLORS"[3].a", // K3_A = 0x1F
};
static const char *tevScaleTable[] = // CS
{
"1.0f", // SCALE_1
"2.0f", // SCALE_2
"4.0f", // SCALE_4
"0.5f", // DIVIDE_2
};
static const char *tevBiasTable[] = // TB
{
"", // ZERO,
"+0.5f", // ADDHALF,
"-0.5f", // SUBHALF,
"",
};
static const char *tevOpTable[] = { // TEV
"+", // TEVOP_ADD = 0,
"-", // TEVOP_SUB = 1,
};
static const char *tevCInputTable[] = // CC
{
"(prev.rgb)", // CPREV,
"(prev.aaa)", // APREV,
"(c0.rgb)", // C0,
"(c0.aaa)", // A0,
"(c1.rgb)", // C1,
"(c1.aaa)", // A1,
"(c2.rgb)", // C2,
"(c2.aaa)", // A2,
"(textemp.rgb)", // TEXC,
"(textemp.aaa)", // TEXA,
"(rastemp.rgb)", // RASC,
"(rastemp.aaa)", // RASA,
"float3(1.0f, 1.0f, 1.0f)", // ONE
"float3(0.5f, 0.5f, 0.5f)", // HALF
"(konsttemp.rgb)", //"konsttemp.rgb", // KONST
"float3(0.0f, 0.0f, 0.0f)", // ZERO
///aded extra values to map clamped values
"(cprev.rgb)", // CPREV,
"(cprev.aaa)", // APREV,
"(cc0.rgb)", // C0,
"(cc0.aaa)", // A0,
"(cc1.rgb)", // C1,
"(cc1.aaa)", // A1,
"(cc2.rgb)", // C2,
"(cc2.aaa)", // A2,
"(textemp.rgb)", // TEXC,
"(textemp.aaa)", // TEXA,
"(crastemp.rgb)", // RASC,
"(crastemp.aaa)", // RASA,
"float3(1.0f, 1.0f, 1.0f)", // ONE
"float3(0.5f, 0.5f, 0.5f)", // HALF
"(ckonsttemp.rgb)", //"konsttemp.rgb", // KONST
"float3(0.0f, 0.0f, 0.0f)", // ZERO
"PADERROR", "PADERROR", "PADERROR", "PADERROR"
};
static const char *tevAInputTable[] = // CA
{
"prev", // APREV,
"c0", // A0,
"c1", // A1,
"c2", // A2,
"textemp", // TEXA,
"rastemp", // RASA,
"konsttemp", // KONST, (hw1 had quarter)
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO
///aded extra values to map clamped values
"cprev", // APREV,
"cc0", // A0,
"cc1", // A1,
"cc2", // A2,
"textemp", // TEXA,
"crastemp", // RASA,
"ckonsttemp", // KONST, (hw1 had quarter)
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // ZERO
"PADERROR", "PADERROR", "PADERROR", "PADERROR",
"PADERROR", "PADERROR", "PADERROR", "PADERROR",
};
static const char *tevRasTable[] =
{
"colors_0",
"colors_1",
"ERROR", //2
"ERROR", //3
"ERROR", //4
"alphabump", // use bump alpha
"(alphabump*(255.0f/248.0f))", //normalized
"float4(0.0f, 0.0f, 0.0f, 0.0f)", // zero
};
//static const char *tevTexFunc[] = { "tex2D", "texRECT" };
static const char *tevCOutputTable[] = { "prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb" };
static const char *tevAOutputTable[] = { "prev.a", "c0.a", "c1.a", "c2.a" };
static const char *tevIndAlphaSel[] = {"", "x", "y", "z"};
//static const char *tevIndAlphaScale[] = {"", "*32", "*16", "*8"};
static const char *tevIndAlphaScale[] = {"*(248.0f/255.0f)", "*(224.0f/255.0f)", "*(240.0f/255.0f)", "*(248.0f/255.0f)"};
static const char *tevIndBiasField[] = {"", "x", "y", "xy", "z", "xz", "yz", "xyz"}; // indexed by bias
static const char *tevIndBiasAdd[] = {"-128.0f", "1.0f", "1.0f", "1.0f" }; // indexed by fmt
static const char *tevIndWrapStart[] = {"0.0f", "256.0f", "128.0f", "64.0f", "32.0f", "16.0f", "0.001f" };
static const char *tevIndFmtScale[] = {"255.0f", "31.0f", "15.0f", "7.0f" };
#define WRITE p+=sprintf
static char swapModeTable[4][5];
static char text[16384];
static bool DepthTextureEnable;
struct RegisterState
{
bool ColorNeedOverflowControl;
bool AlphaNeedOverflowControl;
bool AuxStored;
};
static RegisterState RegisterStates[4];
static void BuildSwapModeTable()
{
static const char *swapColors = "rgba";
for (int i = 0; i < 4; i++)
{
swapModeTable[i][0] = swapColors[bpmem.tevksel[i*2].swap1];
swapModeTable[i][1] = swapColors[bpmem.tevksel[i*2].swap2];
swapModeTable[i][2] = swapColors[bpmem.tevksel[i*2+1].swap1];
swapModeTable[i][3] = swapColors[bpmem.tevksel[i*2+1].swap2];
swapModeTable[i][4] = 0;
}
}
const char* WriteRegister(API_TYPE ApiType, const char *prefix, const u32 num)
{
if(ApiType == API_GLSL)
return ""; // Nothing to do here
static char result[64];
sprintf(result, " : register(%s%d)", prefix, num);
return result;
}
const char *GeneratePixelShaderCode(DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
WRITE(p, "uniform float4 "I_COLORS"[4] %s;\n", WriteRegister(ApiType, "c", C_COLORS));
WRITE(p, "uniform float4 "I_KCOLORS"[4] %s;\n", WriteRegister(ApiType, "c", C_KCOLORS));
WRITE(p, "uniform float4 "I_ALPHA"[1] %s;\n", WriteRegister(ApiType, "c", C_ALPHA));
WRITE(p, "uniform float4 "I_TEXDIMS"[8] %s;\n", WriteRegister(ApiType, "c", C_TEXDIMS));
WRITE(p, "uniform float4 "I_ZBIAS"[2] %s;\n", WriteRegister(ApiType, "c", C_ZBIAS));
WRITE(p, "uniform float4 "I_INDTEXSCALE"[2] %s;\n", WriteRegister(ApiType, "c", C_INDTEXSCALE));
WRITE(p, "uniform float4 "I_INDTEXMTX"[6] %s;\n", WriteRegister(ApiType, "c", C_INDTEXMTX));
WRITE(p, "uniform float4 "I_FOG"[3] %s;\n", WriteRegister(ApiType, "c", C_FOG));
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
WRITE(p, "uniform float4 "I_PLIGHTS"[40] %s;\n", WriteRegister(ApiType, "c", C_PLIGHTS));
WRITE(p, "uniform float4 "I_PMATERIALS"[4] %s;\n", WriteRegister(ApiType, "c", C_PMATERIALS));
}
if(ApiType != API_GLSL)
{
WRITE(p, "void main(\n");
if(ApiType != API_D3D11)
{
WRITE(p, " out float4 ocol0 : COLOR0,%s%s\n in float4 rawpos : %s,\n",
dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : COLOR1," : "",
DepthTextureEnable ? "\n out float depth : DEPTH," : "",
ApiType & API_OPENGL ? "WPOS" : ApiType & API_D3D9_SM20 ? "POSITION" : "VPOS");
}
else
{
WRITE(p, " out float4 ocol0 : SV_Target0,%s%s\n in float4 rawpos : SV_Position,\n",
dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : SV_Target1," : "",
DepthTextureEnable ? "\n out float depth : SV_Depth," : "");
}
WRITE(p, " in float4 colors_0 : COLOR0,\n");
WRITE(p, " in float4 colors_1 : COLOR1");
// compute window position if needed because binding semantic WPOS is not widely supported
if (numTexgen < 7)
{
for (int i = 0; i < numTexgen; ++i)
WRITE(p, ",\n in float3 uv%d : TEXCOORD%d", i, i);
WRITE(p, ",\n in float4 clipPos : TEXCOORD%d", numTexgen);
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
WRITE(p, ",\n in float4 Normal : TEXCOORD%d", numTexgen + 1);
}
else
{
// wpos is in w of first 4 texcoords
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
for (int i = 0; i < 8; ++i)
WRITE(p, ",\n in float4 uv%d : TEXCOORD%d", i, i);
}
else
{
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
WRITE(p, ",\n in float%d uv%d : TEXCOORD%d", i < 4 ? 4 : 3 , i, i);
}
}
WRITE(p, " ) {\n");
}
else
{
// GLSL doesn't do main arguments
// Once we switch to GLSL 1.3 we will bind a lot of these.
WRITE(p, " float4 ocol0;\n");
if(dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, " float4 ocol1;\n"); // Will be supported later
if(DepthTextureEnable)
WRITE(p, " float depth;\n"); // TODO: Passed to Vertex Shader right?
WRITE(p, " float4 rawpos = gl_FragCoord;\n");
WRITE(p, " float4 colors_0 = gl_Color;\n");
WRITE(p, " float4 colors_1 = gl_SecondaryColor;\n");
// compute window position if needed because binding semantic WPOS is not widely supported
if (numTexgen < 7)
{
for (int i = 0; i < numTexgen; ++i)
WRITE(p, " float3 uv%d = gl_TexCoord[%d].xyz;\n", i, i);
WRITE(p, " float4 clipPos = gl_TexCoord[%d];\n", numTexgen);
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
WRITE(p, " float4 Normal = gl_TexCoord[%d];\n", numTexgen + 1);
}
else
{
// wpos is in w of first 4 texcoords
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
for (int i = 0; i < 8; ++i)
WRITE(p, " float4 uv%d = gl_TexCoord[%d];\n", i, i);
}
else
{
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
WRITE(p, " float%d uv%d = gl_TexCoord[%d]%s;\n", i < 4 ? 4 : 3 , i, i, i < 4 ? ".xyz" : "");
}
}
WRITE(p, "void main()\n{\n");
}
char* pmainstart = p;
int Pretest = AlphaPreTest();
if(Pretest >= 0 && !DepthTextureEnable)
{
if (!Pretest)
{
// alpha test will always fail, so restart the shader and just make it an empty function
WRITE(p, "ocol0 = 0;\n");
if(DepthTextureEnable)
WRITE(p, "depth = 1.f;\n");
if(dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, "ocol1 = 0;\n");
if(ApiType == API_GLSL)
WRITE(p, "gl_FragData[0] = ocol0;\n");
if(ApiType != API_D3D11)
WRITE(p, "return;\n");
}
else if (dstAlphaMode == DSTALPHA_ALPHA_PASS)
{
WRITE(p, " ocol0 = " I_ALPHA"[0].aaaa;\n");
}
if(!Pretest || dstAlphaMode == DSTALPHA_ALPHA_PASS)
{
WRITE(p, "}\n");
return text;
}
}
WRITE(p, " float4 c0 = " I_COLORS"[1], c1 = " I_COLORS"[2], c2 = " I_COLORS"[3], prev = float4(0.0f, 0.0f, 0.0f, 0.0f), textemp = float4(0.0f, 0.0f, 0.0f, 0.0f), rastemp = float4(0.0f, 0.0f, 0.0f, 0.0f), konsttemp = float4(0.0f, 0.0f, 0.0f, 0.0f);\n"
" float3 comp16 = float3(1.0f, 255.0f, 0.0f), comp24 = float3(1.0f, 255.0f, 255.0f*255.0f);\n"
" float4 alphabump=float4(0.0f,0.0f,0.0f,0.0f);\n"
" float3 tevcoord=float3(0.0f, 0.0f, 0.0f);\n"
" float2 wrappedcoord=float2(0.0f,0.0f), tempcoord=float2(0.0f,0.0f);\n"
" float4 cc0=float4(0.0f,0.0f,0.0f,0.0f), cc1=float4(0.0f,0.0f,0.0f,0.0f);\n"
" float4 cc2=float4(0.0f,0.0f,0.0f,0.0f), cprev=float4(0.0f,0.0f,0.0f,0.0f);\n"
" float4 crastemp=float4(0.0f,0.0f,0.0f,0.0f),ckonsttemp=float4(0.0f,0.0f,0.0f,0.0f);\n\n");
if(g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
if (xfregs.numTexGen.numTexGens < 7)
{
WRITE(p,"float3 _norm0 = normalize(Normal.xyz);\n\n");
WRITE(p,"float3 pos = float3(clipPos.x,clipPos.y,Normal.w);\n");
}
else
{
WRITE(p," float3 _norm0 = normalize(float3(uv4.w,uv5.w,uv6.w));\n\n");
WRITE(p,"float3 pos = float3(uv0.w,uv1.w,uv7.w);\n");
}
WRITE(p, "float4 mat, lacc;\n"
"float3 ldir, h;\n"
"float dist, dist2, attn;\n");
p = GenerateLightingShader(p, components, I_PMATERIALS, I_PLIGHTS, "colors_", "colors_");
}
if (numTexgen < 7)
WRITE(p, "clipPos = float4(rawpos.x, rawpos.y, clipPos.z, clipPos.w);\n");
else
WRITE(p, "float4 clipPos = float4(rawpos.x, rawpos.y, uv2.w, uv3.w);\n");
// HACK to handle cases where the tex gen is not enabled
if (numTexgen == 0)
{
WRITE(p, "float3 uv0 = float3(0.0f, 0.0f, 0.0f);\n");
}
else
{
for (int i = 0; i < numTexgen; ++i)
{
// optional perspective divides
if (xfregs.texMtxInfo[i].projection == XF_TEXPROJ_STQ)
{
WRITE(p, "if (uv%d.z)", i);
WRITE(p, " uv%d.xy = uv%d.xy / uv%d.z;\n", i, i, i);
}
WRITE(p, "uv%d.xy = uv%d.xy * " I_TEXDIMS"[%d].zw;\n", i, i, i);
}
}
// indirect texture map lookup
for(u32 i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (nIndirectStagesUsed & (1<<i))
{
int texcoord = bpmem.tevindref.getTexCoord(i);
if (texcoord < numTexgen)
WRITE(p, "tempcoord = uv%d.xy * " I_INDTEXSCALE"[%d].%s;\n", texcoord, i/2, (i&1)?"zw":"xy");
else
WRITE(p, "tempcoord = float2(0.0f, 0.0f);\n");
char buffer[32];
sprintf(buffer, "float3 indtex%d", i);
SampleTexture(p, buffer, "tempcoord", "abg", bpmem.tevindref.getTexMap(i), ApiType);
}
}
RegisterStates[0].AlphaNeedOverflowControl = false;
RegisterStates[0].ColorNeedOverflowControl = false;
RegisterStates[0].AuxStored = false;
for(int i = 1; i < 4; i++)
{
RegisterStates[i].AlphaNeedOverflowControl = true;
RegisterStates[i].ColorNeedOverflowControl = true;
RegisterStates[i].AuxStored = false;
}
for (int i = 0; i < numStages; i++)
WriteStage(p, i, ApiType); //build the equation for this stage
if(numStages)
{
// The results of the last texenv stage are put onto the screen,
// regardless of the used destination register
if(bpmem.combiners[numStages - 1].colorC.dest != 0)
{
bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].AuxStored;
WRITE(p, "prev.rgb = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevCOutputTable[bpmem.combiners[numStages - 1].colorC.dest]);
RegisterStates[0].ColorNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].colorC.dest].ColorNeedOverflowControl;
}
if(bpmem.combiners[numStages - 1].alphaC.dest != 0)
{
bool retrieveFromAuxRegister = !RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl && RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AuxStored;
WRITE(p, "prev.a = %s%s;\n", retrieveFromAuxRegister ? "c" : "" , tevAOutputTable[bpmem.combiners[numStages - 1].alphaC.dest]);
RegisterStates[0].AlphaNeedOverflowControl = RegisterStates[bpmem.combiners[numStages - 1].alphaC.dest].AlphaNeedOverflowControl;
}
}
// emulation of unsigned 8 overflow when casting if needed
if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl)
WRITE(p, "prev = frac(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n");
if(Pretest == -1)
{
WriteAlphaTest(p, ApiType, dstAlphaMode);
// alpha test will always fail, so restart the shader and just make it an empty function
/* p = pmainstart;
WRITE(p, "ocol0 = 0;\n");
if(DepthTextureEnable)
WRITE(p, "depth = 1.f;\n");
if(dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, "ocol1 = 0;\n");
if(ApiType == API_GLSL)
{
// Once we switch to GLSL 1.3 and bind variables, we won't need to do this
WRITE(p, "gl_FragData[0] = ocol0;\n");
if(DepthTextureEnable)
WRITE(p, "gl_FragDepth = depth;\n");
if(dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
; // TODO: Will do this later
}
WRITE(p, "discard;\n");
if(ApiType != API_D3D11)
WRITE(p, "return;\n");*/
}
if((bpmem.fog.c_proj_fsel.fsel != 0) || DepthTextureEnable)
{
// the screen space depth value = far z + (clip z / clip w) * z range
WRITE(p, "float zCoord = " I_ZBIAS"[1].x + (clipPos.z / clipPos.w) * " I_ZBIAS"[1].y;\n");
}
if (DepthTextureEnable)
{
// use the texture input of the last texture stage (textemp), hopefully this has been read and is in correct format...
if (bpmem.ztex2.op != ZTEXTURE_DISABLE && !bpmem.zcontrol.zcomploc && bpmem.zmode.testenable && bpmem.zmode.updateenable)
{
if (bpmem.ztex2.op == ZTEXTURE_ADD)
WRITE(p, "zCoord = dot(" I_ZBIAS"[0].xyzw, textemp.xyzw) + " I_ZBIAS"[1].w + zCoord;\n");
else
WRITE(p, "zCoord = dot(" I_ZBIAS"[0].xyzw, textemp.xyzw) + " I_ZBIAS"[1].w;\n");
// scale to make result from frac correct
WRITE(p, "zCoord = zCoord * (16777215.0f/16777216.0f);\n");
WRITE(p, "zCoord = frac(zCoord);\n");
WRITE(p, "zCoord = zCoord * (16777216.0f/16777215.0f);\n");
}
WRITE(p, "depth = zCoord;\n");
}
if (dstAlphaMode == DSTALPHA_ALPHA_PASS)
WRITE(p, " ocol0 = float4(prev.rgb, " I_ALPHA"[0].a);\n");
else
{
WriteFog(p);
WRITE(p, " ocol0 = prev;\n");
}
// On D3D11, use dual-source color blending to perform dst alpha in a
// single pass
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
{
// Colors will be blended against the alpha from ocol1...
WRITE(p, " ocol1 = ocol0;\n");
// ...and the alpha from ocol0 will be written to the framebuffer.
WRITE(p, " ocol0.a = " I_ALPHA"[0].a;\n");
if(ApiType == API_GLSL)
{
if(DepthTextureEnable)
WRITE(p, "gl_FragDepth = depth;\n");
WRITE(p, "gl_FragData[0] = ocol0;\n");
}
}
WRITE(p, "}\n");
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("PixelShader generator - buffer too small, canary has been eaten!");
setlocale(LC_NUMERIC, ""); // restore locale
return text;
}
//table with the color compare operations
static const char *TEVCMPColorOPTable[16] =
{
"float3(0.0f, 0.0f, 0.0f)",//0
"float3(0.0f, 0.0f, 0.0f)",//1
"float3(0.0f, 0.0f, 0.0f)",//2
"float3(0.0f, 0.0f, 0.0f)",//3
"float3(0.0f, 0.0f, 0.0f)",//4
"float3(0.0f, 0.0f, 0.0f)",//5
"float3(0.0f, 0.0f, 0.0f)",//6
"float3(0.0f, 0.0f, 0.0f)",//7
" %s + ((%s.r >= %s.r + (0.25f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_GT 8
" %s + ((abs(%s.r - %s.r) < (0.5f/255.0f)) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_R8_EQ 9
" %s + (( dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_GT 10
" %s + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_GR16_EQ 11
" %s + (( dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_GT 12
" %s + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s : float3(0.0f, 0.0f, 0.0f))",//#define TEVCMP_BGR24_EQ 13
" %s + (max(sign(%s.rgb - %s.rgb - (0.25f/255.0f)), float3(0.0f, 0.0f, 0.0f)) * %s)",//#define TEVCMP_RGB8_GT 14
" %s + ((float3(1.0f, 1.0f, 1.0f) - max(sign(abs(%s.rgb - %s.rgb) - (0.5f/255.0f)), float3(0.0f, 0.0f, 0.0f))) * %s)"//#define TEVCMP_RGB8_EQ 15
};
//table with the alpha compare operations
static const char *TEVCMPAlphaOPTable[16] =
{
"0.0f",//0
"0.0f",//1
"0.0f",//2
"0.0f",//3
"0.0f",//4
"0.0f",//5
"0.0f",//6
"0.0f",//7
" %s.a + ((%s.r >= (%s.r + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_R8_GT 8
" %s.a + (abs(%s.r - %s.r) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_R8_EQ 9
" %s.a + ((dot(%s.rgb, comp16) >= (dot(%s.rgb, comp16) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_GR16_GT 10
" %s.a + (abs(dot(%s.rgb, comp16) - dot(%s.rgb, comp16)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_GR16_EQ 11
" %s.a + ((dot(%s.rgb, comp24) >= (dot(%s.rgb, comp24) + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_GT 12
" %s.a + (abs(dot(%s.rgb, comp24) - dot(%s.rgb, comp24)) < (0.5f/255.0f) ? %s.a : 0.0f)",//#define TEVCMP_BGR24_EQ 13
" %s.a + ((%s.a >= (%s.a + (0.25f/255.0f))) ? %s.a : 0.0f)",//#define TEVCMP_A8_GT 14
" %s.a + (abs(%s.a - %s.a) < (0.5f/255.0f) ? %s.a : 0.0f)"//#define TEVCMP_A8_EQ 15
};
static void WriteStage(char *&p, int n, API_TYPE ApiType)
{
int texcoord = bpmem.tevorders[n/2].getTexCoord(n&1);
bool bHasTexCoord = (u32)texcoord < bpmem.genMode.numtexgens;
bool bHasIndStage = bpmem.tevind[n].IsActive() && bpmem.tevind[n].bt < bpmem.genMode.numindstages;
// HACK to handle cases where the tex gen is not enabled
if (!bHasTexCoord)
texcoord = 0;
WRITE(p, "// TEV stage %d\n", n);
if (bHasIndStage)
{
WRITE(p, "// indirect op\n");
// perform the indirect op on the incoming regular coordinates using indtex%d as the offset coords
if (bpmem.tevind[n].bs != ITBA_OFF)
{
WRITE(p, "alphabump = indtex%d.%s %s;\n",
bpmem.tevind[n].bt,
tevIndAlphaSel[bpmem.tevind[n].bs],
tevIndAlphaScale[bpmem.tevind[n].fmt]);
}
// format
WRITE(p, "float3 indtevcrd%d = indtex%d * %s;\n", n, bpmem.tevind[n].bt, tevIndFmtScale[bpmem.tevind[n].fmt]);
// bias
if (bpmem.tevind[n].bias != ITB_NONE )
WRITE(p, "indtevcrd%d.%s += %s;\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt]);
// multiply by offset matrix and scale
if (bpmem.tevind[n].mid != 0)
{
if (bpmem.tevind[n].mid <= 3)
{
int mtxidx = 2*(bpmem.tevind[n].mid-1);
WRITE(p, "float2 indtevtrans%d = float2(dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d), dot(" I_INDTEXMTX"[%d].xyz, indtevcrd%d));\n",
n, mtxidx, n, mtxidx+1, n);
}
else if (bpmem.tevind[n].mid <= 7 && bHasTexCoord)
{ // s matrix
_assert_(bpmem.tevind[n].mid >= 5);
int mtxidx = 2*(bpmem.tevind[n].mid-5);
WRITE(p, "float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.xx;\n", n, mtxidx, texcoord, n);
}
else if (bpmem.tevind[n].mid <= 11 && bHasTexCoord)
{ // t matrix
_assert_(bpmem.tevind[n].mid >= 9);
int mtxidx = 2*(bpmem.tevind[n].mid-9);
WRITE(p, "float2 indtevtrans%d = " I_INDTEXMTX"[%d].ww * uv%d.xy * indtevcrd%d.yy;\n", n, mtxidx, texcoord, n);
}
else
WRITE(p, "float2 indtevtrans%d = 0;\n", n);
}
else
WRITE(p, "float2 indtevtrans%d = 0;\n", n);
// ---------
// Wrapping
// ---------
// wrap S
if (bpmem.tevind[n].sw == ITW_OFF)
WRITE(p, "wrappedcoord.x = uv%d.x;\n", texcoord);
else if (bpmem.tevind[n].sw == ITW_0)
WRITE(p, "wrappedcoord.x = 0.0f;\n");
else
WRITE(p, "wrappedcoord.x = fmod( uv%d.x, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].sw]);
// wrap T
if (bpmem.tevind[n].tw == ITW_OFF)
WRITE(p, "wrappedcoord.y = uv%d.y;\n", texcoord);
else if (bpmem.tevind[n].tw == ITW_0)
WRITE(p, "wrappedcoord.y = 0.0f;\n");
else
WRITE(p, "wrappedcoord.y = fmod( uv%d.y, %s );\n", texcoord, tevIndWrapStart[bpmem.tevind[n].tw]);
if (bpmem.tevind[n].fb_addprev) // add previous tevcoord
WRITE(p, "tevcoord.xy += wrappedcoord + indtevtrans%d;\n", n);
else
WRITE(p, "tevcoord.xy = wrappedcoord + indtevtrans%d;\n", n);
}
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[n].colorC;
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[n].alphaC;
if(cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC
|| cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC
|| cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC
|| cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC
|| ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA
|| ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
char *rasswap = swapModeTable[bpmem.combiners[n].alphaC.rswap];
WRITE(p, "rastemp = %s.%s;\n", tevRasTable[bpmem.tevorders[n / 2].getColorChan(n & 1)], rasswap);
WRITE(p, "crastemp = frac(rastemp * (255.0f/256.0f)) * (256.0f/255.0f);\n");
}
if (bpmem.tevorders[n/2].getEnable(n&1))
{
if(!bHasIndStage)
{
// calc tevcord
if(bHasTexCoord)
WRITE(p, "tevcoord.xy = uv%d.xy;\n", texcoord);
else
WRITE(p, "tevcoord.xy = float2(0.0f, 0.0f);\n");
}
char *texswap = swapModeTable[bpmem.combiners[n].alphaC.tswap];
int texmap = bpmem.tevorders[n/2].getTexMap(n&1);
SampleTexture(p, "textemp", "tevcoord", texswap, texmap, ApiType);
}
else
WRITE(p, "textemp = float4(1.0f, 1.0f, 1.0f, 1.0f);\n");
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST
|| ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST || ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
int kc = bpmem.tevksel[n / 2].getKC(n & 1);
int ka = bpmem.tevksel[n / 2].getKA(n & 1);
WRITE(p, "konsttemp = float4(%s, %s);\n", tevKSelTableC[kc], tevKSelTableA[ka]);
if(kc > 7 || ka > 7)
{
WRITE(p, "ckonsttemp = frac(konsttemp * (255.0f/256.0f)) * (256.0f/255.0f);\n");
}
else
{
WRITE(p, "ckonsttemp = konsttemp;\n");
}
}
if(cc.a == TEVCOLORARG_CPREV || cc.a == TEVCOLORARG_APREV
|| cc.b == TEVCOLORARG_CPREV || cc.b == TEVCOLORARG_APREV
|| cc.c == TEVCOLORARG_CPREV || cc.c == TEVCOLORARG_APREV
|| ac.a == TEVALPHAARG_APREV || ac.b == TEVALPHAARG_APREV || ac.c == TEVALPHAARG_APREV)
{
if(RegisterStates[0].AlphaNeedOverflowControl || RegisterStates[0].ColorNeedOverflowControl)
{
WRITE(p, "cprev = frac(prev * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[0].AlphaNeedOverflowControl = false;
RegisterStates[0].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cprev = prev;\n");
}
RegisterStates[0].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C0 || cc.a == TEVCOLORARG_A0
|| cc.b == TEVCOLORARG_C0 || cc.b == TEVCOLORARG_A0
|| cc.c == TEVCOLORARG_C0 || cc.c == TEVCOLORARG_A0
|| ac.a == TEVALPHAARG_A0 || ac.b == TEVALPHAARG_A0 || ac.c == TEVALPHAARG_A0)
{
if(RegisterStates[1].AlphaNeedOverflowControl || RegisterStates[1].ColorNeedOverflowControl)
{
WRITE(p, "cc0 = frac(c0 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[1].AlphaNeedOverflowControl = false;
RegisterStates[1].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc0 = c0;\n");
}
RegisterStates[1].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C1 || cc.a == TEVCOLORARG_A1
|| cc.b == TEVCOLORARG_C1 || cc.b == TEVCOLORARG_A1
|| cc.c == TEVCOLORARG_C1 || cc.c == TEVCOLORARG_A1
|| ac.a == TEVALPHAARG_A1 || ac.b == TEVALPHAARG_A1 || ac.c == TEVALPHAARG_A1)
{
if(RegisterStates[2].AlphaNeedOverflowControl || RegisterStates[2].ColorNeedOverflowControl)
{
WRITE(p, "cc1 = frac(c1 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[2].AlphaNeedOverflowControl = false;
RegisterStates[2].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc1 = c1;\n");
}
RegisterStates[2].AuxStored = true;
}
if(cc.a == TEVCOLORARG_C2 || cc.a == TEVCOLORARG_A2
|| cc.b == TEVCOLORARG_C2 || cc.b == TEVCOLORARG_A2
|| cc.c == TEVCOLORARG_C2 || cc.c == TEVCOLORARG_A2
|| ac.a == TEVALPHAARG_A2 || ac.b == TEVALPHAARG_A2 || ac.c == TEVALPHAARG_A2)
{
if(RegisterStates[3].AlphaNeedOverflowControl || RegisterStates[3].ColorNeedOverflowControl)
{
WRITE(p, "cc2 = frac(c2 * (255.0f/256.0f)) * (256.0f/255.0f);\n");
RegisterStates[3].AlphaNeedOverflowControl = false;
RegisterStates[3].ColorNeedOverflowControl = false;
}
else
{
WRITE(p, "cc2 = c2;\n");
}
RegisterStates[3].AuxStored = true;
}
RegisterStates[cc.dest].ColorNeedOverflowControl = (cc.clamp == 0);
RegisterStates[cc.dest].AuxStored = false;
// combine the color channel
WRITE(p, "// color combine\n");
if (cc.clamp)
WRITE(p, "%s = saturate(", tevCOutputTable[cc.dest]);
else
WRITE(p, "%s = ", tevCOutputTable[cc.dest]);
// combine the color channel
if (cc.bias != TevBias_COMPARE) // if not compare
{
//normal color combiner goes here
if (cc.shift > TEVSCALE_1)
WRITE(p, "%s*(", tevScaleTable[cc.shift]);
if(!(cc.d == TEVCOLORARG_ZERO && cc.op == TEVOP_ADD))
WRITE(p, "%s%s", tevCInputTable[cc.d], tevOpTable[cc.op]);
if (cc.a == cc.b)
WRITE(p, "%s", tevCInputTable[cc.a + 16]);
else if (cc.c == TEVCOLORARG_ZERO)
WRITE(p, "%s", tevCInputTable[cc.a + 16]);
else if (cc.c == TEVCOLORARG_ONE)
WRITE(p, "%s", tevCInputTable[cc.b + 16]);
else if (cc.a == TEVCOLORARG_ZERO)
WRITE(p, "%s*%s", tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]);
else if (cc.b == TEVCOLORARG_ZERO)
WRITE(p, "%s*(float3(1.0f, 1.0f, 1.0f)-%s)", tevCInputTable[cc.a + 16], tevCInputTable[cc.c + 16]);
else
WRITE(p, "lerp(%s, %s, %s)", tevCInputTable[cc.a + 16], tevCInputTable[cc.b + 16], tevCInputTable[cc.c + 16]);
WRITE(p, "%s", tevBiasTable[cc.bias]);
if (cc.shift > TEVSCALE_1)
WRITE(p, ")");
}
else
{
int cmp = (cc.shift<<1)|cc.op|8; // comparemode stored here
WRITE(p, TEVCMPColorOPTable[cmp],//lookup the function from the op table
tevCInputTable[cc.d],
tevCInputTable[cc.a + 16],
tevCInputTable[cc.b + 16],
tevCInputTable[cc.c + 16]);
}
if (cc.clamp)
WRITE(p, ")");
WRITE(p,";\n");
RegisterStates[ac.dest].AlphaNeedOverflowControl = (ac.clamp == 0);
RegisterStates[ac.dest].AuxStored = false;
// combine the alpha channel
WRITE(p, "// alpha combine\n");
if (ac.clamp)
WRITE(p, "%s = saturate(", tevAOutputTable[ac.dest]);
else
WRITE(p, "%s = ", tevAOutputTable[ac.dest]);
if (ac.bias != TevBias_COMPARE) // if not compare
{
//normal alpha combiner goes here
if (ac.shift > TEVSCALE_1)
WRITE(p, "%s*(", tevScaleTable[ac.shift]);
if(!(ac.d == TEVALPHAARG_ZERO && ac.op == TEVOP_ADD))
WRITE(p, "%s.a%s", tevAInputTable[ac.d], tevOpTable[ac.op]);
if (ac.a == ac.b)
WRITE(p, "%s.a", tevAInputTable[ac.a + 8]);
else if (ac.c == TEVALPHAARG_ZERO)
WRITE(p, "%s.a", tevAInputTable[ac.a + 8]);
else if (ac.a == TEVALPHAARG_ZERO)
WRITE(p, "%s.a*%s.a", tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]);
else if (ac.b == TEVALPHAARG_ZERO)
WRITE(p, "%s.a*(1.0f-%s.a)", tevAInputTable[ac.a + 8], tevAInputTable[ac.c + 8]);
else
WRITE(p, "lerp(%s.a, %s.a, %s.a)", tevAInputTable[ac.a + 8], tevAInputTable[ac.b + 8], tevAInputTable[ac.c + 8]);
WRITE(p, "%s",tevBiasTable[ac.bias]);
if (ac.shift>0)
WRITE(p, ")");
}
else
{
//compare alpha combiner goes here
int cmp = (ac.shift<<1)|ac.op|8; // comparemode stored here
WRITE(p, TEVCMPAlphaOPTable[cmp],
tevAInputTable[ac.d],
tevAInputTable[ac.a + 8],
tevAInputTable[ac.b + 8],
tevAInputTable[ac.c + 8]);
}
if (ac.clamp)
WRITE(p, ")");
WRITE(p, ";\n\n");
WRITE(p, "// TEV done\n");
}
void SampleTexture(char *&p, const char *destination, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType)
{
if (ApiType == API_D3D11)
WRITE(p, "%s=Tex%d.Sample(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, texmap,texmap, texcoords, texmap, texswap);
else
WRITE(p, "%s=tex2D(samp%d,%s.xy * " I_TEXDIMS"[%d].xy).%s;\n", destination, texmap, texcoords, texmap, texswap);
}
static const char *tevAlphaFuncsTable[] =
{
"(false)", //ALPHACMP_NEVER 0
"(prev.a <= %s - (0.25f/255.0f))", //ALPHACMP_LESS 1
"(abs( prev.a - %s ) < (0.5f/255.0f))", //ALPHACMP_EQUAL 2
"(prev.a < %s + (0.25f/255.0f))", //ALPHACMP_LEQUAL 3
"(prev.a >= %s + (0.25f/255.0f))", //ALPHACMP_GREATER 4
"(abs( prev.a - %s ) >= (0.5f/255.0f))", //ALPHACMP_NEQUAL 5
"(prev.a > %s - (0.25f/255.0f))", //ALPHACMP_GEQUAL 6
"(true)" //ALPHACMP_ALWAYS 7
};
static const char *tevAlphaFunclogicTable[] =
{
" && ", // and
" || ", // or
" != ", // xor
" == " // xnor
};
static int AlphaPreTest()
{
u32 op = bpmem.alphaFunc.logic;
u32 comp[2] = {bpmem.alphaFunc.comp0, bpmem.alphaFunc.comp1};
// First kill all the simple cases
switch(op)
{
case 0: // AND
if (comp[0] == ALPHACMP_ALWAYS && comp[1] == ALPHACMP_ALWAYS) return true;
if (comp[0] == ALPHACMP_NEVER || comp[1] == ALPHACMP_NEVER) return false;
break;
case 1: // OR
if (comp[0] == ALPHACMP_ALWAYS || comp[1] == ALPHACMP_ALWAYS) return true;
if (comp[0] == ALPHACMP_NEVER && comp[1] == ALPHACMP_NEVER)return false;
break;
case 2: // XOR
if ((comp[0] == ALPHACMP_ALWAYS && comp[1] == ALPHACMP_NEVER) || (comp[0] == ALPHACMP_NEVER && comp[1] == ALPHACMP_ALWAYS))
return true;
if ((comp[0] == ALPHACMP_ALWAYS && comp[1] == ALPHACMP_ALWAYS) || (comp[0] == ALPHACMP_NEVER && comp[1] == ALPHACMP_NEVER))
return false;
break;
case 3: // XNOR
if ((comp[0] == ALPHACMP_ALWAYS && comp[1] == ALPHACMP_NEVER) || (comp[0] == ALPHACMP_NEVER && comp[1] == ALPHACMP_ALWAYS))
return false;
if ((comp[0] == ALPHACMP_ALWAYS && comp[1] == ALPHACMP_ALWAYS) || (comp[0] == ALPHACMP_NEVER && comp[1] == ALPHACMP_NEVER))
return true;
break;
default: PanicAlert("bad logic for alpha test? %08x", op);
}
return -1;
}
static void WriteAlphaTest(char *&p, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode)
{
static const char *alphaRef[2] =
{
I_ALPHA"[0].r",
I_ALPHA"[0].g"
};
// using discard then return works the same in cg and dx9 but not in dx11
WRITE(p, "if(!( ");
int compindex = bpmem.alphaFunc.comp0 % 8;
WRITE(p, tevAlphaFuncsTable[compindex],alphaRef[0]);//lookup the first component from the alpha function table
WRITE(p, "%s", tevAlphaFunclogicTable[bpmem.alphaFunc.logic % 4]);//lookup the logic op
compindex = bpmem.alphaFunc.comp1 % 8;
WRITE(p, tevAlphaFuncsTable[compindex],alphaRef[1]);//lookup the second component from the alpha function table
WRITE(p, ")) {\n");
WRITE(p, "ocol0 = 0;\n");
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
WRITE(p, "ocol1 = 0;\n");
if (DepthTextureEnable)
WRITE(p, "depth = 1.f;\n");
// HAXX: zcomploc is a way to control whether depth test is done before
// or after texturing and alpha test. PC GPU does depth test before texturing ONLY if depth value is
// not updated during shader execution.
// We implement "depth test before texturing" by discarding the fragment
// when the alpha test fail. This is not a correct implementation because
// even if the depth test fails the fragment could be alpha blended.
// this implemnetation is a trick to keep speed.
// the correct, but slow, way to implement a correct zComploc is :
// 1 - if zcomplock is enebled make a first pass, with color channel write disabled updating only
// depth channel.
// 2 - in the next pass disable depth chanel update, but proccess the color data normally
// this way is the only CORRECT way to emulate perfectly the zcomplock behaviour
if (!(bpmem.zcontrol.zcomploc && bpmem.zmode.updateenable))
{
WRITE(p, "discard;\n");
if (ApiType != API_D3D11)
WRITE(p, "return;\n");
}
WRITE(p, "}\n");
}
static const char *tevFogFuncsTable[] =
{
"", //No Fog
"", //?
"", //Linear
"", //?
" fog = 1.0f - pow(2.0f, -8.0f * fog);\n", //exp
" fog = 1.0f - pow(2.0f, -8.0f * fog * fog);\n", //exp2
" fog = pow(2.0f, -8.0f * (1.0f - fog));\n", //backward exp
" fog = 1.0f - fog;\n fog = pow(2.0f, -8.0f * fog * fog);\n" //backward exp2
};
static void WriteFog(char *&p)
{
if(bpmem.fog.c_proj_fsel.fsel == 0)return;//no Fog
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF)
WRITE (p, " float ze = " I_FOG"[1].x / (" I_FOG"[1].y - (zCoord / " I_FOG"[1].w));\n");
}
else
{
// orthographic
// ze = a*Zs (here, no B_SHF)
WRITE (p, " float ze = " I_FOG"[1].x * zCoord;\n");
}
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
//this is complitly teorical as the real hard seems to use a table intead of calculate the values.
if(bpmem.fogRange.Base.Enabled)
{
WRITE (p, " float x_adjust = (2.0f * (clipPos.x / " I_FOG"[2].y)) - 1.0f - " I_FOG"[2].x;\n");
WRITE (p, " x_adjust = sqrt(x_adjust * x_adjust + " I_FOG"[2].z * " I_FOG"[2].z) / " I_FOG"[2].z;\n");
WRITE (p, " ze *= x_adjust;\n");
}
WRITE (p, " float fog = saturate(ze - " I_FOG"[1].z);\n");
if(bpmem.fog.c_proj_fsel.fsel > 3)
{
WRITE(p, "%s", tevFogFuncsTable[bpmem.fog.c_proj_fsel.fsel]);
}
else
{
if(bpmem.fog.c_proj_fsel.fsel != 2)
WARN_LOG(VIDEO, "Unknown Fog Type! %08x", bpmem.fog.c_proj_fsel.fsel);
}
WRITE(p, " prev.rgb = lerp(prev.rgb," I_FOG"[0].rgb,fog);\n");
}