Ryan Houdek 6bdcde9dd6 [Android] Tegra 4 'support.' This brings up the OpenGL backend to support Tegra 4 to the point where it will run games but it doesn't have any video output for some reason. This is a large change that doesn't actually change much functionally. Walking through the changes.
It changes the string in the Android backend select to just OpenGL ES.
Adds a check in the Android code to check for Tegra 4 and to enable the option to select the OpenGL ES backend.
Adds a DriverDetails bug under BUG_ISTEGRA as a blanket case of Tegra 4 support.
The changes that effects most lines in this change. Removing all float suffixes in the pixel/vertex/util shaders since OpenGL ES 2 doesn't support float suffixes.
Disables the shaders for reinterpreting the EFB format since Tegra 4 doesn't support integers.
Changes GLFunctions.cpp to grab the correct Tegra extension functions.
Readds the GLSL 1.2 'hacks' as GLSLES2 'hacks' since they are required for GLSL ES 2
Adds a GLSLES2 to the GLSL_VERSION enum.
Disable the SamplerCache on Tegra since Tegra doesn't support samplers...
Enable glBufferSubData on Tegra since it is the only mobile GPU to correctly work with it.
Disable glDrawRangeElements on Tegra since it doesn't support it, This uses glDrawElements instead.
2013-10-06 03:12:29 -05:00

1901 lines
55 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Globals.h"
#include "Thread.h"
#include "Atomic.h"
#include <vector>
#include <cmath>
#include <cstdio>
#include "GLUtil.h"
#if defined(HAVE_WX) && HAVE_WX
#include "WxUtils.h"
#endif
#include "FileUtil.h"
#ifdef _WIN32
#include <mmsystem.h>
#endif
#include "CommonPaths.h"
#include "DriverDetails.h"
#include "VideoConfig.h"
#include "Statistics.h"
#include "ImageWrite.h"
#include "PixelEngine.h"
#include "Render.h"
#include "OpcodeDecoding.h"
#include "BPStructs.h"
#include "TextureCache.h"
#include "RasterFont.h"
#include "VertexShaderGen.h"
#include "DLCache.h"
#include "PixelShaderManager.h"
#include "ProgramShaderCache.h"
#include "VertexShaderManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "PostProcessing.h"
#include "TextureConverter.h"
#include "OnScreenDisplay.h"
#include "Timer.h"
#include "StringUtil.h"
#include "FramebufferManager.h"
#include "Fifo.h"
#include "Debugger.h"
#include "Core.h"
#include "Movie.h"
#include "Host.h"
#include "BPFunctions.h"
#include "FPSCounter.h"
#include "ConfigManager.h"
#include "VertexManager.h"
#include "SamplerCache.h"
#include "StreamBuffer.h"
#include "main.h" // Local
#ifdef _WIN32
#include "EmuWindow.h"
#endif
#if defined _WIN32 || defined HAVE_LIBAV
#include "AVIDump.h"
#endif
#if defined(HAVE_WX) && HAVE_WX
#include <wx/image.h>
#endif
// glew1.8 doesn't define KHR_debug
#ifndef GL_DEBUG_OUTPUT
#define GL_DEBUG_OUTPUT 0x92E0
#endif
void VideoConfig::UpdateProjectionHack()
{
::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue);
}
#if defined(HAVE_WX) && HAVE_WX
// Screenshot thread struct
typedef struct
{
int W, H;
std::string filename;
wxImage *img;
} ScrStrct;
#endif
int OSDInternalW, OSDInternalH;
namespace OGL
{
enum MultisampleMode {
MULTISAMPLE_OFF,
MULTISAMPLE_2X,
MULTISAMPLE_4X,
MULTISAMPLE_8X,
MULTISAMPLE_CSAA_8X,
MULTISAMPLE_CSAA_8XQ,
MULTISAMPLE_CSAA_16X,
MULTISAMPLE_CSAA_16XQ,
MULTISAMPLE_SSAA_4X,
};
VideoConfig g_ogl_config;
// Declarations and definitions
// ----------------------------
static int s_fps = 0;
static GLuint s_ShowEFBCopyRegions_VBO = 0;
static GLuint s_ShowEFBCopyRegions_VAO = 0;
static SHADER s_ShowEFBCopyRegions;
static RasterFont* s_pfont = NULL;
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static int s_MSAACoverageSamples = 0;
static int s_LastMultisampleMode = 0;
static u32 s_blendMode;
static bool s_vsync;
#if defined(HAVE_WX) && HAVE_WX
static std::thread scrshotThread;
#endif
// EFB cache related
static const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks.
static const u32 EFB_CACHE_WIDTH = (EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up
static const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE;
static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT];
static std::vector<u32> s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PEEK_Z and PEEK_COLOR
int GetNumMSAASamples(int MSAAMode)
{
int samples;
switch (MSAAMode)
{
case MULTISAMPLE_OFF:
samples = 1;
break;
case MULTISAMPLE_2X:
samples = 2;
break;
case MULTISAMPLE_4X:
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_SSAA_4X:
samples = 4;
break;
case MULTISAMPLE_8X:
case MULTISAMPLE_CSAA_8XQ:
case MULTISAMPLE_CSAA_16XQ:
samples = 8;
break;
default:
samples = 1;
}
if(samples <= g_ogl_config.max_samples) return samples;
// TODO: move this to InitBackendInfo
OSD::AddMessage(StringFromFormat("%d Anti Aliasing samples selected, but only %d supported by your GPU.", samples, g_ogl_config.max_samples), 10000);
return g_ogl_config.max_samples;
}
int GetNumMSAACoverageSamples(int MSAAMode)
{
int samples;
switch (g_ActiveConfig.iMultisampleMode)
{
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_8XQ:
samples = 8;
break;
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_CSAA_16XQ:
samples = 16;
break;
default:
samples = 0;
}
if(g_ogl_config.bSupportCoverageMSAA || samples == 0) return samples;
// TODO: move this to InitBackendInfo
OSD::AddMessage("CSAA Anti Aliasing isn't supported by your GPU.", 10000);
return 0;
}
void ApplySSAASettings() {
// GLES3 doesn't support SSAA
#ifndef USE_GLES3
if(g_ActiveConfig.iMultisampleMode == MULTISAMPLE_SSAA_4X) {
if(g_ogl_config.bSupportSampleShading) {
glEnable(GL_SAMPLE_SHADING_ARB);
glMinSampleShadingARB(s_MSAASamples);
} else {
// TODO: move this to InitBackendInfo
OSD::AddMessage("SSAA Anti Aliasing isn't supported by your GPU.", 10000);
}
} else if(g_ogl_config.bSupportSampleShading) {
glDisable(GL_SAMPLE_SHADING_ARB);
}
#endif
}
void GLAPIENTRY ErrorCallback( GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const char* message, void* userParam)
{
// GLES3 doesn't natively support this
// XXX: Include GLES2 extensions header so we can use this
#ifndef USE_GLES3
const char *s_source;
const char *s_type;
switch(source)
{
case GL_DEBUG_SOURCE_API_ARB: s_source = "API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB: s_source = "Window System"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB: s_source = "Shader Compiler"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB: s_source = "Third Party"; break;
case GL_DEBUG_SOURCE_APPLICATION_ARB: s_source = "Application"; break;
case GL_DEBUG_SOURCE_OTHER_ARB: s_source = "Other"; break;
default: s_source = "Unknown"; break;
}
switch(type)
{
case GL_DEBUG_TYPE_ERROR_ARB: s_type = "Error"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB: s_type = "Deprecated"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB: s_type = "Undefined"; break;
case GL_DEBUG_TYPE_PORTABILITY_ARB: s_type = "Portability"; break;
case GL_DEBUG_TYPE_PERFORMANCE_ARB: s_type = "Performance"; break;
case GL_DEBUG_TYPE_OTHER_ARB: s_type = "Other"; break;
default: s_type = "Unknown"; break;
}
switch(severity)
{
case GL_DEBUG_SEVERITY_HIGH_ARB: ERROR_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
case GL_DEBUG_SEVERITY_MEDIUM_ARB: WARN_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
case GL_DEBUG_SEVERITY_LOW_ARB: WARN_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
default: ERROR_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
}
#endif
}
#ifndef USE_GLES3
// Two small Fallbacks to avoid GL_ARB_ES2_compatibility
void GLAPIENTRY DepthRangef(GLfloat neardepth, GLfloat fardepth)
{
glDepthRange(neardepth, fardepth);
}
void GLAPIENTRY ClearDepthf(GLfloat depthval)
{
glClearDepth(depthval);
}
#endif
void InitDriverInfo()
{
std::string svendor = std::string(g_ogl_config.gl_vendor);
std::string srenderer = std::string(g_ogl_config.gl_renderer);
std::string sversion = std::string(g_ogl_config.gl_version);
DriverDetails::Vendor vendor = DriverDetails::VENDOR_UNKNOWN;
DriverDetails::Driver driver = DriverDetails::DRIVER_UNKNOWN;
double version = 0.0;
// Get the vendor first
if (svendor == "NVIDIA Corporation" && srenderer != "NVIDIA Tegra")
vendor = DriverDetails::VENDOR_NVIDIA;
else if (svendor == "ATI Technologies Inc." || svendor == "Advanced Micro Devices, Inc.")
vendor = DriverDetails::VENDOR_ATI;
else if (std::string::npos != sversion.find("Mesa"))
vendor = DriverDetails::VENDOR_MESA;
else if (std::string::npos != svendor.find("Intel"))
vendor = DriverDetails::VENDOR_INTEL;
else if (svendor == "ARM")
vendor = DriverDetails::VENDOR_ARM;
else if (svendor == "http://limadriver.org/")
{
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_LIMA;
}
else if (svendor == "Qualcomm")
vendor = DriverDetails::VENDOR_QUALCOMM;
else if (svendor == "Imagination Technologies")
vendor = DriverDetails::VENDOR_IMGTEC;
else if (svendor == "NVIDIA Corporation" && srenderer == "NVIDIA Tegra")
vendor = DriverDetails::VENDOR_TEGRA;
else if (svendor == "Vivante Corporation")
vendor = DriverDetails::VENDOR_VIVANTE;
// Get device family and driver version...if we care about it
switch(vendor)
{
case DriverDetails::VENDOR_QUALCOMM:
{
if (std::string::npos != srenderer.find("Adreno (TM) 3"))
driver = DriverDetails::DRIVER_QUALCOMM_3XX;
else
driver = DriverDetails::DRIVER_QUALCOMM_2XX;
double glVersion;
sscanf(g_ogl_config.gl_version, "OpenGL ES %lg V@%lg", &glVersion, &version);
}
break;
case DriverDetails::VENDOR_ARM:
if (std::string::npos != srenderer.find("Mali-T6"))
driver = DriverDetails::DRIVER_ARM_T6XX;
else if(std::string::npos != srenderer.find("Mali-4"))
driver = DriverDetails::DRIVER_ARM_4XX;
break;
case DriverDetails::VENDOR_MESA:
{
if(svendor == "nouveau")
driver = DriverDetails::DRIVER_NOUVEAU;
else if(svendor == "Intel Open Source Technology Center")
driver = DriverDetails::DRIVER_I965;
else if(std::string::npos != srenderer.find("AMD") || std::string::npos != srenderer.find("ATI"))
driver = DriverDetails::DRIVER_R600;
int major = 0;
int minor = 0;
int release = 0;
sscanf(g_ogl_config.gl_version, "%*s Mesa %d.%d.%d", &major, &minor, &release);
version = 100*major + 10*minor + release;
}
break;
// We don't care about these
default:
break;
}
DriverDetails::Init(vendor, driver, version);
}
// Init functions
Renderer::Renderer()
{
OSDInternalW = 0;
OSDInternalH = 0;
s_fps=0;
s_ShowEFBCopyRegions_VBO = 0;
s_blendMode = 0;
InitFPSCounter();
bool bSuccess = true;
g_ogl_config.gl_vendor = (const char*)glGetString(GL_VENDOR);
g_ogl_config.gl_renderer = (const char*)glGetString(GL_RENDERER);
g_ogl_config.gl_version = (const char*)glGetString(GL_VERSION);
g_ogl_config.glsl_version = (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION);
InitDriverInfo();
// Init extension support.
#ifdef USE_GLES3
// Set default GLES3 options
GLFunc::Init();
WARN_LOG(VIDEO, "Running the OpenGL ES 3 backend!");
g_Config.backend_info.bSupportsDualSourceBlend = false;
g_Config.backend_info.bSupportsGLSLUBO = !DriverDetails::HasBug(DriverDetails::BUG_ANNIHILATEDUBOS);
g_Config.backend_info.bSupportsPrimitiveRestart = true;
g_Config.backend_info.bSupportsEarlyZ = false;
#ifdef ANDROID
g_ogl_config.bSupportsGLSLCache = false;
#else
g_ogl_config.bSupportsGLSLCache = true;
#endif
g_ogl_config.bSupportsGLPinnedMemory = false;
g_ogl_config.bSupportsGLSync = true;
g_ogl_config.bSupportsGLBaseVertex = false;
g_ogl_config.bSupportCoverageMSAA = false; // XXX: GLES3 spec has MSAA
g_ogl_config.bSupportSampleShading = false;
g_ogl_config.bSupportOGL31 = false;
if (DriverDetails::HasBug(DriverDetails::BUG_ISTEGRA))
g_ogl_config.eSupportedGLSLVersion = GLSLES2;
else
g_ogl_config.eSupportedGLSLVersion = GLSLES3;
#else
#ifdef __APPLE__
glewExperimental = 1;
#endif
if (glewInit() != GLEW_OK)
{
PanicAlert("glewInit() failed! Does your video card support OpenGL 2.x?");
return;
}
// check for the max vertex attributes
GLint numvertexattribs = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs);
if (numvertexattribs < 16)
{
PanicAlert("GPU: OGL ERROR: Number of attributes %d not enough.\n"
"GPU: Does your video card support OpenGL 2.x?",
numvertexattribs);
bSuccess = false;
}
// check the max texture width and height
GLint max_texture_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint *)&max_texture_size);
if (max_texture_size < 1024)
{
PanicAlert("GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.",
max_texture_size);
bSuccess = false;
}
#if defined(_DEBUG) || defined(DEBUGFAST)
if (GLEW_ARB_debug_output)
{
glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, true);
glDebugMessageCallbackARB( ErrorCallback, NULL );
glEnable( GL_DEBUG_OUTPUT );
}
#endif
if (!GLEW_VERSION_2_0)
{
// OpenGL 2.0 is required for all shader based drawings. There is no way to get this by extensions
PanicAlert("GPU: OGL ERROR: Does your video card support OpenGL 2.0?");
bSuccess = false;
}
if (!GLEW_ARB_framebuffer_object)
{
// We want the ogl3 framebuffer instead of the ogl2 one for better blitting support.
// It's also compatible with the gles3 one.
PanicAlert("GPU: ERROR: Need GL_ARB_framebuffer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_vertex_array_object)
{
// This extension is used to replace lots of pointer setting function.
// Also gles3 requires to use it.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_vertex_array_object.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_map_buffer_range)
{
// ogl3 buffer mapping for better streaming support.
// The ogl2 one also isn't in gles3.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_map_buffer_range.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_sampler_objects && bSuccess)
{
// Our sampler cache uses this extension. It could easyly be workaround and it's by far the
// highest requirement, but it seems that no driver lacks support for it.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_sampler_objects."
"GPU: Does your video card support OpenGL 3.3?"
"Please report this issue, then there will be a workaround");
bSuccess = false;
}
// OpenGL 3 doesn't provide GLES like float functions for depth.
// They are in core in OpenGL 4.1, so almost every driver should support them.
// But for the oldest ones, we provide fallbacks to the old double functions.
if (!GLEW_ARB_ES2_compatibility)
{
glDepthRangef = DepthRangef;
glClearDepthf = ClearDepthf;
}
g_Config.backend_info.bSupportsDualSourceBlend = GLEW_ARB_blend_func_extended;
g_Config.backend_info.bSupportsGLSLUBO = GLEW_ARB_uniform_buffer_object;
g_Config.backend_info.bSupportsPrimitiveRestart = GLEW_VERSION_3_1 || GLEW_NV_primitive_restart;
g_Config.backend_info.bSupportsEarlyZ = GLEW_ARB_shader_image_load_store;
g_ogl_config.bSupportsGLSLCache = GLEW_ARB_get_program_binary;
g_ogl_config.bSupportsGLPinnedMemory = GLEW_AMD_pinned_memory;
g_ogl_config.bSupportsGLSync = GLEW_ARB_sync;
g_ogl_config.bSupportsGLBaseVertex = GLEW_ARB_draw_elements_base_vertex;
g_ogl_config.bSupportCoverageMSAA = GLEW_NV_framebuffer_multisample_coverage;
g_ogl_config.bSupportSampleShading = GLEW_ARB_sample_shading;
g_ogl_config.bSupportOGL31 = GLEW_VERSION_3_1;
if(strstr(g_ogl_config.glsl_version, "1.00") || strstr(g_ogl_config.glsl_version, "1.10") || strstr(g_ogl_config.glsl_version, "1.20"))
{
PanicAlert("GPU: OGL ERROR: Need at least GLSL 1.30\n"
"GPU: Does your video card support OpenGL 3.0?\n"
"GPU: Your driver supports GLSL %s", g_ogl_config.glsl_version);
bSuccess = false;
}
else if(strstr(g_ogl_config.glsl_version, "1.30"))
{
g_ogl_config.eSupportedGLSLVersion = GLSL_130;
g_Config.backend_info.bSupportsEarlyZ = false; // layout keyword is only supported on glsl150+
}
else if(strstr(g_ogl_config.glsl_version, "1.40"))
{
g_ogl_config.eSupportedGLSLVersion = GLSL_140;
g_Config.backend_info.bSupportsEarlyZ = false; // layout keyword is only supported on glsl150+
}
else
{
g_ogl_config.eSupportedGLSLVersion = GLSL_150;
}
#endif
if (!bSuccess)
{
// Not all needed extensions are supported, so we have to stop here.
// Else some of the next calls might crash.
return;
}
glGetIntegerv(GL_MAX_SAMPLES, &g_ogl_config.max_samples);
if(g_ogl_config.max_samples < 1)
g_ogl_config.max_samples = 1;
if(g_Config.backend_info.bSupportsGLSLUBO && DriverDetails::HasBug(DriverDetails::BUG_BROKENUBO))
{
g_Config.backend_info.bSupportsGLSLUBO = false;
ERROR_LOG(VIDEO, "Buggy driver detected. Disable UBO");
OSD::AddMessage("Major performance warning: Buggy GPU driver detected.", 20000);
OSD::AddMessage("Please either install the closed-source GPU driver or update your Mesa 3D version.", 20000);
}
UpdateActiveConfig();
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s",
g_ogl_config.gl_vendor,
g_ogl_config.gl_renderer,
g_ogl_config.gl_version), 5000);
WARN_LOG(VIDEO,"Missing OGL Extensions: %s%s%s%s%s%s%s%s%s%s",
g_ActiveConfig.backend_info.bSupportsDualSourceBlend ? "" : "DualSourceBlend ",
g_ActiveConfig.backend_info.bSupportsGLSLUBO ? "" : "UniformBuffer ",
g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? "" : "PrimitiveRestart ",
g_ActiveConfig.backend_info.bSupportsEarlyZ ? "" : "EarlyZ ",
g_ogl_config.bSupportsGLPinnedMemory ? "" : "PinnedMemory ",
g_ogl_config.bSupportsGLSLCache ? "" : "ShaderCache ",
g_ogl_config.bSupportsGLBaseVertex ? "" : "BaseVertex ",
g_ogl_config.bSupportsGLSync ? "" : "Sync ",
g_ogl_config.bSupportCoverageMSAA ? "" : "CSAA ",
g_ogl_config.bSupportSampleShading ? "" : "SSAA "
);
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
ApplySSAASettings();
// Decide framebuffer size
s_backbuffer_width = (int)GLInterface->GetBackBufferWidth();
s_backbuffer_height = (int)GLInterface->GetBackBufferHeight();
// Handle VSync on/off
s_vsync = g_ActiveConfig.IsVSync();
GLInterface->SwapInterval(s_vsync);
// TODO: Move these somewhere else?
FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize(s_backbuffer_width, s_backbuffer_height);
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
g_Config.bRunning = true;
glStencilFunc(GL_ALWAYS, 0, 0);
glBlendFunc(GL_ONE, GL_ONE);
glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepthf(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glDisable(GL_STENCIL_TEST);
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendColor(0, 0, 0, 0.5f);
glClearDepthf(1.0f);
if(g_ActiveConfig.backend_info.bSupportsPrimitiveRestart)
{
#ifdef USE_GLES3
glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
#else
if(g_ogl_config.bSupportOGL31)
{
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(65535);
}
else
{
glEnableClientState(GL_PRIMITIVE_RESTART_NV);
glPrimitiveRestartIndexNV(65535);
}
#endif
}
UpdateActiveConfig();
}
Renderer::~Renderer()
{
#if defined(HAVE_WX) && HAVE_WX
if (scrshotThread.joinable())
scrshotThread.join();
#endif
}
void Renderer::Shutdown()
{
delete g_framebuffer_manager;
g_Config.bRunning = false;
UpdateActiveConfig();
glDeleteBuffers(1, &s_ShowEFBCopyRegions_VBO);
glDeleteVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
s_ShowEFBCopyRegions_VBO = 0;
delete s_pfont;
s_pfont = 0;
s_ShowEFBCopyRegions.Destroy();
}
void Renderer::Init()
{
// Initialize the FramebufferManager
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
s_pfont = new RasterFont();
ProgramShaderCache::CompileShader(s_ShowEFBCopyRegions,
"ATTRIN vec2 rawpos;\n"
"ATTRIN vec3 color0;\n"
"VARYOUT vec4 c;\n"
"void main(void) {\n"
" gl_Position = vec4(rawpos, 0.0, 1.0);\n"
" c = vec4(color0, 1.0);\n"
"}\n",
"VARYIN vec4 c;\n"
"COLOROUT(ocol0)\n"
"void main(void) {\n"
" ocol0 = c;\n"
"}\n");
// creating buffers
glGenBuffers(1, &s_ShowEFBCopyRegions_VBO);
glGenVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glEnableVertexAttribArray(SHADER_POSITION_ATTRIB);
glVertexAttribPointer(SHADER_POSITION_ATTRIB, 2, GL_FLOAT, 0, sizeof(GLfloat)*5, NULL);
glEnableVertexAttribArray(SHADER_COLOR0_ATTRIB);
glVertexAttribPointer(SHADER_COLOR0_ATTRIB, 3, GL_FLOAT, 0, sizeof(GLfloat)*5, (GLfloat*)NULL+2);
}
// Create On-Screen-Messages
void Renderer::DrawDebugInfo()
{
// Reset viewport for drawing text
glViewport(0, 0, GLInterface->GetBackBufferWidth(), GLInterface->GetBackBufferHeight());
// Draw various messages on the screen, like FPS, statistics, etc.
char debugtext_buffer[8192];
char *p = debugtext_buffer;
p[0] = 0;
if (g_ActiveConfig.bShowFPS)
p+=sprintf(p, "FPS: %d\n", s_fps);
if (SConfig::GetInstance().m_ShowLag)
p+=sprintf(p, "Lag: %llu\n", Movie::g_currentLagCount);
if (g_ActiveConfig.bShowInputDisplay)
p+=sprintf(p, "%s", Movie::GetInputDisplay().c_str());
#ifndef USE_GLES3
if (g_ActiveConfig.bShowEFBCopyRegions)
{
// Set Line Size
glLineWidth(3.0f);
// 2*Coords + 3*Color
u32 length = stats.efb_regions.size() * sizeof(GLfloat) * (2+3)*2*6;
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBufferData(GL_ARRAY_BUFFER, length, NULL, GL_STREAM_DRAW);
GLfloat *Vertices = (GLfloat*)glMapBufferRange(GL_ARRAY_BUFFER, 0, length, GL_MAP_WRITE_BIT);
// Draw EFB copy regions rectangles
int a = 0;
GLfloat color[3] = {0.0f, 1.0f, 1.0f};
for (std::vector<EFBRectangle>::const_iterator it = stats.efb_regions.begin();
it != stats.efb_regions.end(); ++it)
{
GLfloat halfWidth = EFB_WIDTH / 2.0f;
GLfloat halfHeight = EFB_HEIGHT / 2.0f;
GLfloat x = (GLfloat) -1.0f + ((GLfloat)it->left / halfWidth);
GLfloat y = (GLfloat) 1.0f - ((GLfloat)it->top / halfHeight);
GLfloat x2 = (GLfloat) -1.0f + ((GLfloat)it->right / halfWidth);
GLfloat y2 = (GLfloat) 1.0f - ((GLfloat)it->bottom / halfHeight);
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
// TO DO: build something nicer here
GLfloat temp = color[0];
color[0] = color[1];
color[1] = color[2];
color[2] = temp;
}
glUnmapBuffer(GL_ARRAY_BUFFER);
s_ShowEFBCopyRegions.Bind();
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glDrawArrays(GL_LINES, 0, stats.efb_regions.size() * 2*6);
// Restore Line Size
SetLineWidth();
// Clear stored regions
stats.efb_regions.clear();
}
#endif
if (g_ActiveConfig.bOverlayStats)
p = Statistics::ToString(p);
if (g_ActiveConfig.bOverlayProjStats)
p = Statistics::ToStringProj(p);
// Render a shadow, and then the text.
if (p != debugtext_buffer)
{
Renderer::RenderText(debugtext_buffer, 21, 21, 0xDD000000);
Renderer::RenderText(debugtext_buffer, 20, 20, 0xFF00FFFF);
}
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
const int nBackbufferWidth = (int)GLInterface->GetBackBufferWidth();
const int nBackbufferHeight = (int)GLInterface->GetBackBufferHeight();
s_pfont->printMultilineText(text,
left * 2.0f / (float)nBackbufferWidth - 1,
1 - top * 2.0f / (float)nBackbufferHeight,
0, nBackbufferWidth, nBackbufferHeight, color);
GL_REPORT_ERRORD();
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(EFB_HEIGHT - rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom);
return result;
}
// Function: This function handles the OpenGL glScissor() function
// ----------------------------
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
// case 0x52 > SetScissorRect()
// ----------------------------
// bpmem.scissorTL.x, y = 342x342
// bpmem.scissorBR.x, y = 981x821
// Renderer::GetTargetHeight() = the fixed ini file setting
// donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box
// therefore the width and height are (scissorBR + 1) - scissorTL
void Renderer::SetScissorRect(const TargetRectangle& rc)
{
glScissor(rc.left, rc.bottom, rc.GetWidth(), rc.GetHeight());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL)
{
if (bpmem.blendmode.colorupdate)
ColorMask = GL_TRUE;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
AlphaMask = GL_TRUE;
}
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
}
void ClearEFBCache()
{
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[0][i] = false;
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[1][i] = false;
}
void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc, const TargetRectangle& targetPixelRc, const u32* data)
{
u32 cacheType = (type == PEEK_Z ? 0 : 1);
if (!s_efbCache[cacheType][cacheRectIdx].size())
s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 efbPixelRcHeight = efbPixelRc.bottom - efbPixelRc.top;
u32 efbPixelRcWidth = efbPixelRc.right - efbPixelRc.left;
for (u32 yCache = 0; yCache < efbPixelRcHeight; ++yCache)
{
u32 yEFB = efbPixelRc.top + yCache;
u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2;
u32 yData = yPixel - targetPixelRc.bottom;
for (u32 xCache = 0; xCache < efbPixelRcWidth; ++xCache)
{
u32 xEFB = efbPixelRc.left + xCache;
u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2;
u32 xData = xPixel - targetPixelRc.left;
s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = data[yData * targetPixelRcWidth + xData];
}
}
s_efbCacheValid[cacheType][cacheRectIdx] = true;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH
+ (x / EFB_CACHE_RECT_SIZE);
// Get the rectangular target region containing the EFB pixel
EFBRectangle efbPixelRc;
efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.right = std::min(efbPixelRc.left + EFB_CACHE_RECT_SIZE, (u32)EFB_WIDTH);
efbPixelRc.bottom = std::min(efbPixelRc.top + EFB_CACHE_RECT_SIZE, (u32)EFB_HEIGHT);
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom;
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case PEEK_Z:
{
u32 z;
if (!s_efbCacheValid[0][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
g_renderer->ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
g_renderer->RestoreAPIState();
}
u32* depthMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, depthMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap);
delete[] depthMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// Scale the 32-bit value returned by glReadPixels to a 24-bit
// value (GC uses a 24-bit Z-buffer).
// TODO: in RE0 this value is often off by one, which causes lighting to disappear
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
z = z >> 16;
}
else
{
z = z >> 8;
}
return z;
}
case PEEK_COLOR: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
u32 color;
if (!s_efbCacheValid[1][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
g_renderer->ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
g_renderer->RestoreAPIState();
}
u32* colorMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
#ifdef USE_GLES3
// XXX: Swap colours
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_RGBA, GL_UNSIGNED_BYTE, colorMap);
#else
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap);
#endif
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap);
delete[] colorMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
color |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return color; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (color | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (color & 0x00FFFFFF); // GX_READ_00
}
case POKE_COLOR:
case POKE_Z:
// TODO: Implement. One way is to draw a tiny pixel-sized rectangle at
// the exact location. Note: EFB pokes are susceptible to Z-buffering
// and perhaps blending.
//WARN_LOG(VIDEOINTERFACE, "This is probably some kind of software rendering");
break;
default:
break;
}
return 0;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
int X = EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - (float)scissorXOff));
int Y = EFBToScaledY((int)ceil((float)EFB_HEIGHT - xfregs.viewport.yOrig + xfregs.viewport.ht + (float)scissorYOff));
int Width = EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
int Height = EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
double GLNear = (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
double GLFar = xfregs.viewport.farZ / 16777216.0f;
if (Width < 0)
{
X += Width;
Width *= -1;
}
if (Height < 0)
{
Y += Height;
Height *= -1;
}
// OpenGL does not require any viewport correct
Matrix44::LoadIdentity(vpCorrection);
// Update the view port
glViewport(X, Y, Width, Height);
glDepthRangef(GLNear, GLFar);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
// color
GLboolean const
color_mask = colorEnable ? GL_TRUE : GL_FALSE,
alpha_mask = alphaEnable ? GL_TRUE : GL_FALSE;
glColorMask(color_mask, color_mask, color_mask, alpha_mask);
glClearColor(
float((color >> 16) & 0xFF) / 255.0f,
float((color >> 8) & 0xFF) / 255.0f,
float((color >> 0) & 0xFF) / 255.0f,
float((color >> 24) & 0xFF) / 255.0f);
// depth
glDepthMask(zEnable ? GL_TRUE : GL_FALSE);
glClearDepthf(float(z & 0xFFFFFF) / float(0xFFFFFF));
// Update rect for clearing the picture
glEnable(GL_SCISSOR_TEST);
TargetRectangle const targetRc = ConvertEFBRectangle(rc);
glScissor(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
// glColorMask/glDepthMask/glScissor affect glClear (glViewport does not)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RestoreAPIState();
ClearEFBCache();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
if (convtype == 0 || convtype == 2)
{
FramebufferManager::ReinterpretPixelData(convtype);
}
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype);
}
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// Our render target always uses an alpha channel, so we need to override the blend functions to assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel
// Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel is assumed to always be 1.
bool target_has_alpha = bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24;
bool useDstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha;
bool useDualSource = useDstAlpha && g_ActiveConfig.backend_info.bSupportsDualSourceBlend;
const GLenum glSrcFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
(useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
(useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA,
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
const GLenum glDestFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
(useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
(useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA,
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
// blend mode bit mask
// 0 - blend enable
// 1 - dst alpha enabled
// 2 - reverse subtract enable (else add)
// 3-5 - srcRGB function
// 6-8 - dstRGB function
u32 newval = useDualSource << 1;
newval |= bpmem.blendmode.subtract << 2;
if (bpmem.blendmode.subtract)
newval |= 0x0049; // enable blending src 1 dst 1
else if (bpmem.blendmode.blendenable)
{
newval |= 1; // enable blending
newval |= bpmem.blendmode.srcfactor << 3;
newval |= bpmem.blendmode.dstfactor << 6;
}
u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode;
if (changes & 1)
// blend enable change
(newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
if (changes & 4)
{
// subtract enable change
GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = useDualSource ? GL_FUNC_ADD : equation;
glBlendEquationSeparate(equation, equationAlpha);
}
if (changes & 0x1FA)
{
u32 srcidx = (newval >> 3) & 7;
u32 dstidx = (newval >> 6) & 7;
GLenum srcFactor = glSrcFactors[srcidx];
GLenum dstFactor = glDestFactors[dstidx];
// adjust alpha factors
if (useDualSource)
{
srcidx = GX_BL_ONE;
dstidx = GX_BL_ZERO;
}
else
{
// we can't use GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for source in alpha channel so use their alpha equivalent instead
if (srcidx == GX_BL_DSTCLR) srcidx = GX_BL_DSTALPHA;
if (srcidx == GX_BL_INVDSTCLR) srcidx = GX_BL_INVDSTALPHA;
// we can't use GL_SRC_COLOR or GL_ONE_MINUS_SRC_COLOR for destination in alpha channel so use their alpha equivalent instead
if (dstidx == GX_BL_SRCCLR) dstidx = GX_BL_SRCALPHA;
if (dstidx == GX_BL_INVSRCCLR) dstidx = GX_BL_INVSRCALPHA;
}
GLenum srcFactorAlpha = glSrcFactors[srcidx];
GLenum dstFactorAlpha = glDestFactors[dstidx];
// blend RGB change
glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha);
}
s_blendMode = newval;
}
void DumpFrame(const std::vector<u8>& data, int w, int h)
{
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (g_ActiveConfig.bDumpFrames && !data.empty())
{
AVIDump::AddFrame(&data[0], w, h);
}
#endif
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
static int w = 0, h = 0;
if (g_bSkipCurrentFrame || (!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight)
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if (g_ActiveConfig.VirtualXFBEnabled() && (!xfbSourceList || xfbCount == 0))
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
PostProcessing::Update(s_backbuffer_width, s_backbuffer_height);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
TargetRectangle flipped_trc = GetTargetRectangle();
// Flip top and bottom for some reason; TODO: Fix the code to suck less?
int tmp = flipped_trc.top;
flipped_trc.top = flipped_trc.bottom;
flipped_trc.bottom = tmp;
GL_REPORT_ERRORD();
// Copy the framebuffer to screen.
const XFBSourceBase* xfbSource = NULL;
if(g_ActiveConfig.bUseXFB)
{
// Render to the real/postprocessing buffer now.
PostProcessing::BindTargetFramebuffer();
// draw each xfb source
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetXFBFramebuffer());
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> drawRc;
if (g_ActiveConfig.bUseRealXFB)
{
drawRc.top = flipped_trc.top;
drawRc.bottom = flipped_trc.bottom;
drawRc.left = flipped_trc.left;
drawRc.right = flipped_trc.right;
}
else
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = flipped_trc.top - hOffset * flipped_trc.GetHeight() / fbHeight;
drawRc.bottom = flipped_trc.top - (hOffset + xfbHeight) * flipped_trc.GetHeight() / fbHeight;
drawRc.left = flipped_trc.left + (flipped_trc.GetWidth() - xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
drawRc.right = flipped_trc.left + (flipped_trc.GetWidth() + xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)flipped_trc.GetHeight();
//float hScale = (float)fbWidth / (float)flipped_trc.GetWidth();
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
// Tell the OSD Menu about the current internal resolution
OSDInternalW = xfbSource->sourceRc.GetWidth(); OSDInternalH = xfbSource->sourceRc.GetHeight();
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.bottom = xfbSource->sourceRc.bottom;
xfbSource->Draw(sourceRc, drawRc, 0, 0);
}
}
else
{
TargetRectangle targetRc = ConvertEFBRectangle(rc);
// for msaa mode, we must resolve the efb content to non-msaa
FramebufferManager::ResolveAndGetRenderTarget(rc);
// Render to the real/postprocessing buffer now. (resolve have changed this in msaa mode)
PostProcessing::BindTargetFramebuffer();
// always the non-msaa fbo
GLuint fb = s_MSAASamples>1?FramebufferManager::GetResolvedFramebuffer():FramebufferManager::GetEFBFramebuffer();
glBindFramebuffer(GL_READ_FRAMEBUFFER, fb);
glBlitFramebuffer(targetRc.left, targetRc.bottom, targetRc.right, targetRc.top,
flipped_trc.left, flipped_trc.bottom, flipped_trc.right, flipped_trc.top,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
}
PostProcessing::BlitToScreen();
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
// Save screenshot
if (s_bScreenshot)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
SaveScreenshot(s_sScreenshotName, flipped_trc);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
}
// Frame dumps are handled a little differently in Windows
// Frame dumping disabled entirely on GLES3
#ifndef USE_GLES3
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (frame_data.empty() || w != flipped_trc.GetWidth() ||
h != flipped_trc.GetHeight())
{
w = flipped_trc.GetWidth();
h = flipped_trc.GetHeight();
frame_data.resize(3 * w * h);
}
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(flipped_trc.left, flipped_trc.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR && w > 0 && h > 0)
{
if (!bLastFrameDumped)
{
#ifdef _WIN32
bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), w, h);
#else
bAVIDumping = AVIDump::Start(w, h);
#endif
if (!bAVIDumping)
OSD::AddMessage("AVIDump Start failed", 2000);
else
{
OSD::AddMessage(StringFromFormat(
"Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h).c_str(), 2000);
}
}
if (bAVIDumping)
{
#ifndef _WIN32
FlipImageData(&frame_data[0], w, h);
#endif
AVIDump::AddFrame(&frame_data[0], w, h);
}
bLastFrameDumped = true;
}
else
NOTICE_LOG(VIDEO, "Error reading framebuffer");
}
else
{
if (bLastFrameDumped && bAVIDumping)
{
std::vector<u8>().swap(frame_data);
w = h = 0;
AVIDump::Stop();
bAVIDumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
bLastFrameDumped = false;
}
#else
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
std::string movie_file_name;
w = GetTargetRectangle().GetWidth();
h = GetTargetRectangle().GetHeight();
frame_data.resize(3 * w * h);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(GetTargetRectangle().left, GetTargetRectangle().bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR)
{
if (!bLastFrameDumped)
{
movie_file_name = File::GetUserPath(D_DUMPFRAMES_IDX) + "framedump.raw";
pFrameDump.Open(movie_file_name, "wb");
if (!pFrameDump)
OSD::AddMessage("Error opening framedump.raw for writing.", 2000);
else
{
OSD::AddMessage(StringFromFormat("Dumping Frames to \"%s\" (%dx%d RGB24)", movie_file_name.c_str(), w, h).c_str(), 2000);
}
}
if (pFrameDump)
{
FlipImageData(&frame_data[0], w, h);
pFrameDump.WriteBytes(&frame_data[0], w * 3 * h);
pFrameDump.Flush();
}
bLastFrameDumped = true;
}
}
else
{
if (bLastFrameDumped)
pFrameDump.Close();
bLastFrameDumped = false;
}
#endif
#endif
// Finish up the current frame, print some stats
SetWindowSize(fbWidth, fbHeight);
GLInterface->Update(); // just updates the render window position and the backbuffer size
bool xfbchanged = false;
if (FramebufferManagerBase::LastXfbWidth() != fbWidth || FramebufferManagerBase::LastXfbHeight() != fbHeight)
{
xfbchanged = true;
unsigned int const last_w = (fbWidth < 1 || fbWidth > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbWidth;
unsigned int const last_h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
FramebufferManagerBase::SetLastXfbWidth(last_w);
FramebufferManagerBase::SetLastXfbHeight(last_h);
}
bool WindowResized = false;
int W = (int)GLInterface->GetBackBufferWidth();
int H = (int)GLInterface->GetBackBufferHeight();
if (W != s_backbuffer_width || H != s_backbuffer_height || s_LastEFBScale != g_ActiveConfig.iEFBScale)
{
WindowResized = true;
s_backbuffer_width = W;
s_backbuffer_height = H;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
}
if (xfbchanged || WindowResized || (s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode))
{
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height) || s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode)
{
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
ApplySSAASettings();
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
}
}
if (XFBWrited)
s_fps = UpdateFPSCounter();
// ---------------------------------------------------------------------
if (!DriverDetails::HasBug(DriverDetails::BUG_BROKENSWAP))
{
GL_REPORT_ERRORD();
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
DrawDebugInfo();
DrawDebugText();
GL_REPORT_ERRORD();
// Do our OSD callbacks
OSD::DoCallbacks(OSD::OSD_ONFRAME);
OSD::DrawMessages();
GL_REPORT_ERRORD();
}
// Copy the rendered frame to the real window
GLInterface->Swap();
GL_REPORT_ERRORD();
// Clear framebuffer
if (!DriverDetails::HasBug(DriverDetails::BUG_BROKENSWAP))
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
GL_REPORT_ERRORD();
}
if(s_vsync != g_ActiveConfig.IsVSync())
{
s_vsync = g_ActiveConfig.IsVSync();
GLInterface->SwapInterval(s_vsync);
}
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Render to the framebuffer.
FramebufferManager::SetFramebuffer(0);
GL_REPORT_ERRORD();
RestoreAPIState();
GL_REPORT_ERRORD();
g_Config.iSaveTargetId = 0;
UpdateActiveConfig();
TextureCache::OnConfigChanged(g_ActiveConfig);
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.tga", GL_TEXTURE_2D, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
// Invalidate EFB cache
ClearEFBCache();
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
#ifndef USE_GLES3
glDisable(GL_COLOR_LOGIC_OP);
#endif
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
SetGenerationMode();
BPFunctions::SetScissor();
SetColorMask();
SetDepthMode();
SetBlendMode(true);
SetLogicOpMode();
VertexShaderManager::SetViewportChanged();
#ifndef USE_GLES3
glPolygonMode(GL_FRONT_AND_BACK, g_ActiveConfig.bWireFrame ? GL_LINE : GL_FILL);
#endif
VertexManager *vm = (OGL::VertexManager*)g_vertex_manager;
glBindBuffer(GL_ARRAY_BUFFER, vm->m_vertex_buffers);
vm->m_last_vao = 0;
TextureCache::SetStage();
}
void Renderer::SetGenerationMode()
{
// none, ccw, cw, ccw
if (bpmem.genMode.cullmode > 0)
{
glEnable(GL_CULL_FACE);
glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW);
}
else
glDisable(GL_CULL_FACE);
}
void Renderer::SetDepthMode()
{
const GLenum glCmpFuncs[8] =
{
GL_NEVER,
GL_LESS,
GL_EQUAL,
GL_LEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_GEQUAL,
GL_ALWAYS
};
if (bpmem.zmode.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[bpmem.zmode.func]);
}
else
{
// if the test is disabled write is disabled too
// TODO: When PE performance metrics are being emulated via occlusion queries, we should (probably?) enable depth test with depth function ALWAYS here
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
}
void Renderer::SetLogicOpMode()
{
// Logic ops aren't available in GLES3/GLES2
#ifndef USE_GLES3
const GLenum glLogicOpCodes[16] =
{
GL_CLEAR,
GL_AND,
GL_AND_REVERSE,
GL_COPY,
GL_AND_INVERTED,
GL_NOOP,
GL_XOR,
GL_OR,
GL_NOR,
GL_EQUIV,
GL_INVERT,
GL_OR_REVERSE,
GL_COPY_INVERTED,
GL_OR_INVERTED,
GL_NAND,
GL_SET
};
if (bpmem.blendmode.logicopenable)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
#endif
}
void Renderer::SetDitherMode()
{
if (bpmem.blendmode.dither)
glEnable(GL_DITHER);
else
glDisable(GL_DITHER);
}
void Renderer::SetLineWidth()
{
float fratio = xfregs.viewport.wd != 0 ?
((float)Renderer::GetTargetWidth() / EFB_WIDTH) : 1.0f;
if (bpmem.lineptwidth.linesize > 0)
// scale by ratio of widths
glLineWidth((float)bpmem.lineptwidth.linesize * fratio / 6.0f);
#ifndef USE_GLES3
if (bpmem.lineptwidth.pointsize > 0)
glPointSize((float)bpmem.lineptwidth.pointsize * fratio / 6.0f);
#endif
}
void Renderer::SetSamplerState(int stage, int texindex)
{
auto const& tex = bpmem.tex[texindex];
auto const& tm0 = tex.texMode0[stage];
auto const& tm1 = tex.texMode1[stage];
g_sampler_cache->SetSamplerState((texindex * 4) + stage, tm0, tm1);
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::FlipImageData(u8 *data, int w, int h)
{
// Flip image upside down. Damn OpenGL.
for (int y = 0; y < h / 2; y++)
{
for(int x = 0; x < w; x++)
{
std::swap(data[(y * w + x) * 3], data[((h - 1 - y) * w + x) * 3]);
std::swap(data[(y * w + x) * 3 + 1], data[((h - 1 - y) * w + x) * 3 + 1]);
std::swap(data[(y * w + x) * 3 + 2], data[((h - 1 - y) * w + x) * 3 + 2]);
}
}
}
}
// TODO: remove
extern bool g_aspect_wide;
#if defined(HAVE_WX) && HAVE_WX
void TakeScreenshot(ScrStrct* threadStruct)
{
// These will contain the final image size
float FloatW = (float)threadStruct->W;
float FloatH = (float)threadStruct->H;
// Handle aspect ratio for the final ScrStrct to look exactly like what's on screen.
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
bool use16_9 = g_aspect_wide;
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
float Ratio = (FloatW / FloatH) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// If ratio > 1 the picture is too wide and we have to limit the width.
if (Ratio > 1)
FloatW /= Ratio;
// ratio == 1 or the image is too high, we have to limit the height.
else
FloatH *= Ratio;
// This is a bit expensive on high resolutions
threadStruct->img->Rescale((int)FloatW, (int)FloatH, wxIMAGE_QUALITY_HIGH);
}
// Save the screenshot and finally kill the wxImage object
// This is really expensive when saving to PNG, but not at all when using BMP
threadStruct->img->SaveFile(StrToWxStr(threadStruct->filename),
wxBITMAP_TYPE_PNG);
threadStruct->img->Destroy();
// Show success messages
OSD::AddMessage(StringFromFormat("Saved %i x %i %s", (int)FloatW, (int)FloatH,
threadStruct->filename.c_str()), 2000);
delete threadStruct;
}
#endif
namespace OGL
{
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &back_rc)
{
u32 W = back_rc.GetWidth();
u32 H = back_rc.GetHeight();
u8 *data = (u8 *)malloc((sizeof(u8) * 3 * W * H));
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(back_rc.left, back_rc.bottom, W, H, GL_RGB, GL_UNSIGNED_BYTE, data);
// Show failure message
if (GL_REPORT_ERROR() != GL_NO_ERROR)
{
free(data);
OSD::AddMessage("Error capturing or saving screenshot.", 2000);
return false;
}
// Turn image upside down
FlipImageData(data, W, H);
#if defined(HAVE_WX) && HAVE_WX
// Create wxImage
wxImage *a = new wxImage(W, H, data);
if (scrshotThread.joinable())
scrshotThread.join();
ScrStrct *threadStruct = new ScrStrct;
threadStruct->filename = filename;
threadStruct->img = a;
threadStruct->H = H; threadStruct->W = W;
scrshotThread = std::thread(TakeScreenshot, threadStruct);
#ifdef _WIN32
SetThreadPriority(scrshotThread.native_handle(), THREAD_PRIORITY_BELOW_NORMAL);
#endif
bool result = true;
OSD::AddMessage("Saving Screenshot... ", 2000);
#else
bool result = SaveTGA(filename.c_str(), W, H, data);
free(data);
#endif
return result;
}
}