Glenn Rice 5a800b765a Some more work on renaming variables and files to reflect that the plugins are no longer plugins.
Fix another minor issue with frame dumping.
Add the graphics config dialog button back to the main config.


git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@7041 8ced0084-cf51-0410-be5f-012b33b47a6e
2011-02-02 16:34:12 +00:00

1600 lines
42 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include "Thread.h"
#include "Atomic.h"
#include <vector>
#include <cmath>
#include <cstdio>
#include "GLUtil.h"
#include "FileUtil.h"
#ifdef _WIN32
#include <mmsystem.h>
#endif
#include "CommonPaths.h"
#include "VideoConfig.h"
#include "Statistics.h"
#include "ImageWrite.h"
#include "PixelEngine.h"
#include "Render.h"
#include "OpcodeDecoding.h"
#include "BPStructs.h"
#include "TextureCache.h"
#include "RasterFont.h"
#include "VertexShaderGen.h"
#include "DLCache.h"
#include "PixelShaderCache.h"
#include "PixelShaderManager.h"
#include "VertexShaderCache.h"
#include "VertexShaderManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "PostProcessing.h"
#include "TextureConverter.h"
#include "OnScreenDisplay.h"
#include "Timer.h"
#include "StringUtil.h"
#include "FramebufferManager.h"
#include "Fifo.h"
#include "Debugger.h"
#include "Core.h"
#include "main.h" // Local
#ifdef _WIN32
#include "EmuWindow.h"
#endif
#if defined _WIN32 || defined HAVE_LIBAV
#include "AVIDump.h"
#endif
#if defined(HAVE_WX) && HAVE_WX
#include <wx/image.h>
#endif
void VideoConfig::UpdateProjectionHack()
{
::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue);
}
#if defined(HAVE_WX) && HAVE_WX
// Screenshot thread struct
typedef struct
{
int W, H;
std::string filename;
wxImage *img;
} ScrStrct;
#endif
#if defined HAVE_CG && HAVE_CG
CGcontext g_cgcontext;
CGprofile g_cgvProf;
CGprofile g_cgfProf;
#endif
int OSDInternalW, OSDInternalH;
namespace OGL
{
// Declarations and definitions
// ----------------------------
int s_fps=0;
RasterFont* s_pfont = NULL;
#if defined _WIN32 || defined HAVE_LIBAV
static bool s_bAVIDumping = false;
#else
static FILE* f_pFrameDump;
#endif
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static int s_MSAACoverageSamples = 0;
bool s_bHaveFramebufferBlit = false; // export to FramebufferManager.cpp
static bool s_bHaveCoverageMSAA = false;
static u32 s_blendMode;
#if defined(HAVE_WX) && HAVE_WX
static std::thread scrshotThread;
#endif
static const GLenum glSrcFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA
};
static const GLenum glDestFactors[8] = {
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA
};
static const GLenum glCmpFuncs[8] = {
GL_NEVER,
GL_LESS,
GL_EQUAL,
GL_LEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_GEQUAL,
GL_ALWAYS
};
static const GLenum glLogicOpCodes[16] = {
GL_CLEAR,
GL_AND,
GL_AND_REVERSE,
GL_COPY,
GL_AND_INVERTED,
GL_NOOP,
GL_XOR,
GL_OR,
GL_NOR,
GL_EQUIV,
GL_INVERT,
GL_OR_REVERSE,
GL_COPY_INVERTED,
GL_OR_INVERTED,
GL_NAND,
GL_SET
};
#if defined HAVE_CG && HAVE_CG
void HandleCgError(CGcontext ctx, CGerror err, void* appdata)
{
DEBUG_LOG(VIDEO, "Cg error: %s", cgGetErrorString(err));
const char* listing = cgGetLastListing(g_cgcontext);
if (listing != NULL)
DEBUG_LOG(VIDEO, " last listing: %s", listing);
}
#endif
// Init functions
Renderer::Renderer()
{
bool bSuccess = true;
s_blendMode = 0;
s_MSAACoverageSamples = 0;
GLint numvertexattribs = 0;
switch (g_ActiveConfig.iMultisampleMode)
{
case MULTISAMPLE_OFF:
s_MSAASamples = 1;
break;
case MULTISAMPLE_2X:
s_MSAASamples = 2;
break;
case MULTISAMPLE_4X:
s_MSAASamples = 4;
break;
case MULTISAMPLE_8X:
s_MSAASamples = 8;
break;
case MULTISAMPLE_CSAA_8X:
s_MSAASamples = 4;
s_MSAACoverageSamples = 8;
break;
case MULTISAMPLE_CSAA_8XQ:
s_MSAASamples = 8;
s_MSAACoverageSamples = 8;
break;
case MULTISAMPLE_CSAA_16X:
s_MSAASamples = 4;
s_MSAACoverageSamples = 16;
break;
case MULTISAMPLE_CSAA_16XQ:
s_MSAASamples = 8;
s_MSAACoverageSamples = 16;
break;
default:
s_MSAASamples = 1;
break;
}
#if defined HAVE_CG && HAVE_CG
g_cgcontext = cgCreateContext();
cgGetError();
cgSetErrorHandler(HandleCgError, NULL);
#endif
// Look for required extensions.
const char *ptoken = (const char*)glGetString(GL_EXTENSIONS);
if (!ptoken)
{
PanicAlert("Your OpenGL Driver seems to be not working.\n"
"Please make sure your drivers are up-to-date and\n"
"that your video hardware is OpenGL 2.x compatible.");
return; // TODO: fail
}
INFO_LOG(VIDEO, "Supported OpenGL Extensions:");
INFO_LOG(VIDEO, "%s", ptoken); // write to the log file
INFO_LOG(VIDEO, "\n");
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s",
glGetString(GL_VENDOR),
glGetString(GL_RENDERER),
glGetString(GL_VERSION)).c_str(), 5000);
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs);
if (numvertexattribs < 11)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Number of attributes %d not enough.\n"
"GPU: Does your video card support OpenGL 2.x?",
numvertexattribs);
bSuccess = false;
}
// Init extension support.
if (glewInit() != GLEW_OK)
{
ERROR_LOG(VIDEO, "glewInit() failed! Does your video card support OpenGL 2.x?");
return; // TODO: fail
}
if (!GLEW_EXT_framebuffer_object)
{
ERROR_LOG(VIDEO, "GPU: ERROR: Need GL_EXT_framebufer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
if (!GLEW_EXT_secondary_color)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_EXT_secondary_color.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
s_bHaveFramebufferBlit = strstr(ptoken, "GL_EXT_framebuffer_blit") != NULL;
if (!s_bHaveFramebufferBlit)
{
// MSAA ain't gonna work. turn it off if enabled.
s_MSAASamples = 1;
}
s_bHaveCoverageMSAA = strstr(ptoken, "GL_NV_framebuffer_multisample_coverage") != NULL;
if (!s_bHaveCoverageMSAA)
{
s_MSAACoverageSamples = 0;
}
if (!bSuccess)
return; // TODO: fail
// Decide frambuffer size
s_backbuffer_width = (int)OpenGL_GetBackbufferWidth();
s_backbuffer_height = (int)OpenGL_GetBackbufferHeight();
// Handle VSync on/off
#ifdef __APPLE__
int swapInterval = g_ActiveConfig.bVSync ? 1 : 0;
#if defined USE_WX && USE_WX
NSOpenGLContext *ctx = GLWin.glCtxt->GetWXGLContext();
#else
NSOpenGLContext *ctx = GLWin.cocoaCtx;
#endif
[ctx setValues: &swapInterval forParameter: NSOpenGLCPSwapInterval];
#elif defined _WIN32
if (WGLEW_EXT_swap_control)
wglSwapIntervalEXT(g_ActiveConfig.bVSync ? 1 : 0);
else
ERROR_LOG(VIDEO, "No support for SwapInterval (framerate clamped to monitor refresh rate).");
#elif defined(HAVE_X11) && HAVE_X11
if (glXSwapIntervalSGI)
glXSwapIntervalSGI(g_ActiveConfig.bVSync ? 1 : 0);
else
ERROR_LOG(VIDEO, "No support for SwapInterval (framerate clamped to monitor refresh rate).");
#endif
// check the max texture width and height
GLint max_texture_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint *)&max_texture_size);
if (max_texture_size < 1024)
ERROR_LOG(VIDEO, "GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.",
max_texture_size);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
if (glDrawBuffers == NULL && !GLEW_ARB_draw_buffers)
glDrawBuffers = glDrawBuffersARB;
if (!GLEW_ARB_texture_non_power_of_two)
WARN_LOG(VIDEO, "ARB_texture_non_power_of_two not supported.");
s_XFB_width = MAX_XFB_WIDTH;
s_XFB_height = MAX_XFB_HEIGHT;
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize();
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
g_Config.bRunning = true;
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
// Initialize the FramebufferManager
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
s_pfont = new RasterFont();
#if defined HAVE_CG && HAVE_CG
// load the effect, find the best profiles (if any)
if (cgGLIsProfileSupported(CG_PROFILE_ARBVP1) != CG_TRUE)
{
ERROR_LOG(VIDEO, "arbvp1 not supported");
return; // TODO: fail
}
if (cgGLIsProfileSupported(CG_PROFILE_ARBFP1) != CG_TRUE)
{
ERROR_LOG(VIDEO, "arbfp1 not supported");
return; // TODO: fail
}
g_cgvProf = cgGLGetLatestProfile(CG_GL_VERTEX);
g_cgfProf = cgGLGetLatestProfile(CG_GL_FRAGMENT);
if (strstr((const char*)glGetString(GL_VENDOR), "Humper") == NULL)
{
#if CG_VERSION_NUM == 2100
// A bug was introduced in Cg2.1's handling of very large profile option values
// so this will not work on ATI. ATI returns MAXINT = 2147483647 (0x7fffffff)
// which is correct in OpenGL but Cg fails to handle it properly. As a result
// -1 is used by Cg resulting (signedness incorrect) and compilation fails.
if (strstr((const char*)glGetString(GL_VENDOR), "ATI") == NULL)
#endif
{
cgGLSetOptimalOptions(g_cgvProf);
cgGLSetOptimalOptions(g_cgfProf);
}
}
#endif // HAVE_CG
int nenvvertparams, nenvfragparams, naddrregisters[2];
glGetProgramivARB(GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ENV_PARAMETERS_ARB,
(GLint *)&nenvvertparams);
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB,
GL_MAX_PROGRAM_ENV_PARAMETERS_ARB,
(GLint *)&nenvfragparams);
glGetProgramivARB(GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB,
(GLint *)&naddrregisters[0]);
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB,
GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB,
(GLint *)&naddrregisters[1]);
DEBUG_LOG(VIDEO, "Max program env parameters: vert=%d, frag=%d",
nenvvertparams, nenvfragparams);
DEBUG_LOG(VIDEO, "Max program address register parameters: vert=%d, frag=%d",
naddrregisters[0], naddrregisters[1]);
if (nenvvertparams < 238)
ERROR_LOG(VIDEO, "Not enough vertex shader environment constants!!");
#if defined HAVE_CG && HAVE_CG
INFO_LOG(VIDEO, "Max buffer sizes: %d %d",
cgGetProgramBufferMaxSize(g_cgvProf),
cgGetProgramBufferMaxSize(g_cgfProf));
#ifndef _DEBUG
cgGLSetDebugMode(GL_FALSE);
#endif
#endif
glStencilFunc(GL_ALWAYS, 0, 0);
glBlendFunc(GL_ONE, GL_ONE);
glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glShadeModel(GL_SMOOTH);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glDepthFunc(GL_LEQUAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glDisable(GL_STENCIL_TEST);
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendColorEXT(0, 0, 0, 0.5f);
glClearDepth(1.0f);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// legacy multitexturing: select texture channel only.
glActiveTexture(GL_TEXTURE0);
glClientActiveTexture(GL_TEXTURE0);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
UpdateActiveConfig();
//return GL_REPORT_ERROR() == GL_NO_ERROR && bSuccess;
return;
}
Renderer::~Renderer()
{
g_Config.bRunning = false;
UpdateActiveConfig();
delete s_pfont;
s_pfont = 0;
#if defined HAVE_CG && HAVE_CG
if (g_cgcontext)
{
cgDestroyContext(g_cgcontext);
g_cgcontext = 0;
}
#endif
#if defined(HAVE_WX) && HAVE_WX
if (scrshotThread.joinable())
scrshotThread.join();
#endif
delete g_framebuffer_manager;
#if defined _WIN32 || defined HAVE_LIBAV
if(s_bAVIDumping)
{
AVIDump::Stop();
s_bLastFrameDumped = false;
s_bAVIDumping = false;
}
#else
if(f_pFrameDump != NULL)
fclose(f_pFrameDump);
#endif
}
// Create On-Screen-Messages
void Renderer::DrawDebugInfo()
{
// Reset viewport for drawing text
glViewport(0, 0, OpenGL_GetBackbufferWidth(), OpenGL_GetBackbufferHeight());
// Draw various messages on the screen, like FPS, statistics, etc.
char debugtext_buffer[8192];
char *p = debugtext_buffer;
p[0] = 0;
if (g_ActiveConfig.bShowFPS)
p+=sprintf(p, "FPS: %d\n", s_fps);
if (g_ActiveConfig.bShowEFBCopyRegions)
{
// Store Line Size
GLfloat lSize;
glGetFloatv(GL_LINE_WIDTH, &lSize);
// Set Line Size
glLineWidth(3.0f);
glBegin(GL_LINES);
// Draw EFB copy regions rectangles
for (std::vector<EFBRectangle>::const_iterator it = stats.efb_regions.begin();
it != stats.efb_regions.end(); ++it)
{
GLfloat halfWidth = EFB_WIDTH / 2.0f;
GLfloat halfHeight = EFB_HEIGHT / 2.0f;
GLfloat x = (GLfloat) -1.0f + ((GLfloat)it->left / halfWidth);
GLfloat y = (GLfloat) 1.0f - ((GLfloat)it->top / halfHeight);
GLfloat x2 = (GLfloat) -1.0f + ((GLfloat)it->right / halfWidth);
GLfloat y2 = (GLfloat) 1.0f - ((GLfloat)it->bottom / halfHeight);
// Draw shadow of rect
glColor3f(0.0f, 0.0f, 0.0f);
glVertex2f(x, y - 0.01); glVertex2f(x2, y - 0.01);
glVertex2f(x, y2 - 0.01); glVertex2f(x2, y2 - 0.01);
glVertex2f(x + 0.005, y); glVertex2f(x + 0.005, y2);
glVertex2f(x2 + 0.005, y); glVertex2f(x2 + 0.005, y2);
// Draw rect
glColor3f(0.0f, 1.0f, 1.0f);
glVertex2f(x, y); glVertex2f(x2, y);
glVertex2f(x, y2); glVertex2f(x2, y2);
glVertex2f(x, y); glVertex2f(x, y2);
glVertex2f(x2, y); glVertex2f(x2, y2);
}
glEnd();
// Restore Line Size
glLineWidth(lSize);
// Clear stored regions
stats.efb_regions.clear();
}
if (g_ActiveConfig.bOverlayStats)
p = Statistics::ToString(p);
if (g_ActiveConfig.bOverlayProjStats)
p = Statistics::ToStringProj(p);
// Render a shadow, and then the text.
if (p != debugtext_buffer)
{
Renderer::RenderText(debugtext_buffer, 21, 21, 0xDD000000);
Renderer::RenderText(debugtext_buffer, 20, 20, 0xFF00FFFF);
}
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
const int nBackbufferWidth = (int)OpenGL_GetBackbufferWidth();
const int nBackbufferHeight = (int)OpenGL_GetBackbufferHeight();
glColor4f(((color>>16) & 0xff)/255.0f, ((color>> 8) & 0xff)/255.0f,
((color>> 0) & 0xff)/255.0f, ((color>>24) & 0xFF)/255.0f);
s_pfont->printMultilineText(text,
left * 2.0f / (float)nBackbufferWidth - 1,
1 - top * 2.0f / (float)nBackbufferHeight,
0, nBackbufferWidth, nBackbufferHeight);
GL_REPORT_ERRORD();
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left) + TargetStrideX();
result.top = EFBToScaledY(EFB_HEIGHT - rc.top) + TargetStrideY();
result.right = EFBToScaledX(rc.right) - (TargetStrideX() * 2);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom) - (TargetStrideY() * 2);
return result;
}
// Function: This function handles the OpenGL glScissor() function
// ----------------------------
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
// case 0x52 > SetScissorRect()
// ----------------------------
// bpmem.scissorTL.x, y = 342x342
// bpmem.scissorBR.x, y = 981x821
// Renderer::GetTargetHeight() = the fixed ini file setting
// donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box
// therefore the width and height are (scissorBR + 1) - scissorTL
bool Renderer::SetScissorRect()
{
MathUtil::Rectangle<float> rc;
GetScissorRect(rc);
if (rc.left < 0) rc.left = 0;
if (rc.top < 0) rc.top = 0;
if (rc.right > EFB_WIDTH) rc.right = EFB_WIDTH;
if (rc.bottom > EFB_HEIGHT) rc.bottom = EFB_HEIGHT;
if (rc.left > rc.right)
{
int temp = rc.right;
rc.right = rc.left;
rc.left = temp;
}
if (rc.top > rc.bottom)
{
int temp = rc.bottom;
rc.bottom = rc.top;
rc.top = temp;
}
// Check that the coordinates are good
if (rc.right != rc.left && rc.bottom != rc.top)
{
glScissor(
EFBToScaledX(rc.left), // x = 0 for example
EFBToScaledY(EFB_HEIGHT - rc.bottom), // y = 0 for example
EFBToScaledX(rc.right - rc.left), // width = 640 for example
EFBToScaledY(rc.bottom - rc.top)); // height = 480 for example
return true;
}
else
{
glScissor(
0,
0,
Renderer::GetTargetWidth(),
Renderer::GetTargetHeight()
);
}
return false;
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (bpmem.blendmode.colorupdate)
ColorMask = GL_TRUE;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
AlphaMask = GL_TRUE;
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
// Get the rectangular target region covered by the EFB pixel
EFBRectangle efbPixelRc;
efbPixelRc.left = x;
efbPixelRc.top = y;
efbPixelRc.right = x + 1;
efbPixelRc.bottom = y + 1;
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case PEEK_Z:
{
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, FramebufferManager::GetResolvedFramebuffer());
}
// Sample from the center of the target region.
int srcX = (targetPixelRc.left + targetPixelRc.right) / 2;
int srcY = (targetPixelRc.top + targetPixelRc.bottom) / 2;
u32 z = 0;
glReadPixels(srcX, srcY, 1, 1, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, &z);
GL_REPORT_ERRORD();
// Scale the 32-bit value returned by glReadPixels to a 24-bit
// value (GC uses a 24-bit Z-buffer).
// TODO: in RE0 this value is often off by one, which causes lighting to disappear
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
z = z >> 16;
}
else
{
z = z >> 8;
}
return z;
}
case PEEK_COLOR: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, FramebufferManager::GetResolvedFramebuffer());
}
// Sample from the center of the target region.
int srcX = (targetPixelRc.left + targetPixelRc.right) / 2;
int srcY = (targetPixelRc.top + targetPixelRc.bottom) / 2;
// Read back pixel in BGRA format, then byteswap to get GameCube's ARGB Format.
u32 color = 0;
glReadPixels(srcX, srcY, 1, 1, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, &color);
GL_REPORT_ERRORD();
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
color |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return color; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (color | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (color & 0x00FFFFFF); // GX_READ_00
}
case POKE_COLOR:
case POKE_Z:
// TODO: Implement. One way is to draw a tiny pixel-sized rectangle at
// the exact location. Note: EFB pokes are susceptible to Z-buffering
// and perhaps blending.
//WARN_LOG(VIDEOINTERFACE, "This is probably some kind of software rendering");
break;
default:
break;
}
return 0;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport()
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x << 1;
int scissorYOff = bpmem.scissorOffset.y << 1;
// TODO: ceil, floor or just cast to int?
int X = EFBToScaledX((int)ceil(xfregs.rawViewport[3] - xfregs.rawViewport[0] - (float)scissorXOff));
int Y = EFBToScaledY((int)ceil((float)EFB_HEIGHT - xfregs.rawViewport[4] + xfregs.rawViewport[1] + (float)scissorYOff));
int Width = EFBToScaledX((int)ceil(2.0f * xfregs.rawViewport[0]));
int Height = EFBToScaledY((int)ceil(-2.0f * xfregs.rawViewport[1]));
double GLNear = (xfregs.rawViewport[5] - xfregs.rawViewport[2]) / 16777216.0f;
double GLFar = xfregs.rawViewport[5] / 16777216.0f;
if (Width < 0)
{
X += Width;
Width *= -1;
}
if (Height < 0)
{
Y += Height;
Height *= -1;
}
// Update the view port
glViewport(X, Y, Width, Height);
glDepthRange(GLNear, GLFar);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (colorEnable) ColorMask = GL_TRUE;
if (alphaEnable) AlphaMask = GL_TRUE;
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
if (zEnable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_ALWAYS);
}
else
{
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDepthFunc(GL_NEVER);
}
// Update viewport for clearing the picture
TargetRectangle targetRc = ConvertEFBRectangle(rc);
glViewport(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
glDepthRange(0.0, (float)(z & 0xFFFFFF) / float(0xFFFFFF));
glColor4f((float)((color >> 16) & 0xFF) / 255.0f,
(float)((color >> 8) & 0xFF) / 255.0f,
(float)(color & 0xFF) / 255.0f,
(float)((color >> 24) & 0xFF) / 255.0f);
glBegin(GL_QUADS);
glVertex3f(-1.f, -1.f, 1.f);
glVertex3f(-1.f, 1.f, 1.f);
glVertex3f( 1.f, 1.f, 1.f);
glVertex3f( 1.f, -1.f, 1.f);
glEnd();
RestoreAPIState();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// blend mode bit mask
// 0 - blend enable
// 2 - reverse subtract enable (else add)
// 3-5 - srcRGB function
// 6-8 - dstRGB function
u32 newval = bpmem.blendmode.subtract << 2;
if (bpmem.blendmode.subtract)
newval |= 0x0049; // enable blending src 1 dst 1
else if (bpmem.blendmode.blendenable)
{
newval |= 1; // enable blending
newval |= bpmem.blendmode.srcfactor << 3;
newval |= bpmem.blendmode.dstfactor << 6;
}
u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode;
#ifdef USE_DUAL_SOURCE_BLEND
bool useDstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate
&& bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24;
bool useDualSource = useDstAlpha && GLEW_ARB_blend_func_extended;
#endif
if (changes & 1)
// blend enable change
(newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
if (changes & 4)
{
#ifdef USE_DUAL_SOURCE_BLEND
// subtract enable change
GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = useDualSource ? GL_FUNC_ADD : equation;
glBlendEquationSeparate(equation, equationAlpha);
#else
glBlendEquation(newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD);
#endif
}
if (changes & 0x1F8)
{
#ifdef USE_DUAL_SOURCE_BLEND
GLenum srcFactor = glSrcFactors[(newval >> 3) & 7];
GLenum srcFactorAlpha = srcFactor;
GLenum dstFactor = glDestFactors[(newval >> 6) & 7];
GLenum dstFactorAlpha = dstFactor;
if (useDualSource)
{
srcFactorAlpha = GL_ONE;
dstFactorAlpha = GL_ZERO;
if (srcFactor == GL_SRC_ALPHA)
srcFactor = GL_SRC1_ALPHA;
else if (srcFactor == GL_ONE_MINUS_SRC_ALPHA)
srcFactor = GL_ONE_MINUS_SRC1_ALPHA;
if (dstFactor == GL_SRC_ALPHA)
dstFactor = GL_SRC1_ALPHA;
else if (dstFactor == GL_ONE_MINUS_SRC_ALPHA)
dstFactor = GL_ONE_MINUS_SRC1_ALPHA;
}
// blend RGB change
glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha);
#else
glBlendFunc(glSrcFactors[(newval >> 3) & 7], glDestFactors[(newval >> 6) & 7]);
#endif
}
s_blendMode = newval;
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
if (g_bSkipCurrentFrame || (!XFBWrited && (!g_ActiveConfig.bUseXFB || !g_ActiveConfig.bUseRealXFB)) || !fbWidth || !fbHeight)
{
Core::Callback_VideoCopiedToXFB(false);
return;
}
// this function is called after the XFB field is changed, not after
// EFB is copied to XFB. In this way, flickering is reduced in games
// and seems to also give more FPS in ZTP
if (field == FIELD_LOWER) xfbAddr -= fbWidth * 2;
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
{
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, true, &dst_rect);
// Make sure that the wireframe setting doesn't screw up the screen copy.
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// Textured triangles are necessary because of post-processing shaders
// Disable all other stages
for (int i = 1; i < 8; ++i)
OGL::TextureCache::DisableStage(i);
// Update GLViewPort
glViewport(dst_rect.left, dst_rect.bottom, dst_rect.GetWidth(), dst_rect.GetHeight());
GL_REPORT_ERRORD();
// Copy the framebuffer to screen.
// Texture map s_xfbTexture onto the main buffer
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_RECTANGLE_ARB);
// Use linear filtering.
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// We must call ApplyShader here even if no post proc is selected - it takes
// care of disabling it in that case. It returns false in case of no post processing.
bool applyShader = PostProcessing::ApplyShader();
const XFBSourceBase* xfbSource = NULL;
if(g_ActiveConfig.bUseXFB)
{
// draw each xfb source
// Render to the real buffer now.
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // switch to the window backbuffer
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> drawRc;
if (!g_ActiveConfig.bUseRealXFB)
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = 1.0f - (2.0f * (hOffset) / (float)fbHeight);
drawRc.bottom = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight);
drawRc.left = -(xfbWidth / (float)fbWidth);
drawRc.right = (xfbWidth / (float)fbWidth);
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)dst_rect.GetHeight();
//float hScale = (float)fbWidth / (float)dst_rect.GetWidth();
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
else
{
drawRc.top = 1;
drawRc.bottom = -1;
drawRc.left = -1;
drawRc.right = 1;
}
// Tell the OSD Menu about the current internal resolution
OSDInternalW = xfbSource->sourceRc.GetWidth(); OSDInternalH = xfbSource->sourceRc.GetHeight();
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.bottom = xfbSource->sourceRc.bottom;
xfbSource->Draw(sourceRc, drawRc, 0, 0);
// We must call ApplyShader here even if no post proc is selected.
// It takes care of disabling it in that case. It returns false in
// case of no post processing.
if (applyShader)
PixelShaderCache::DisableShader();
}
}
else
{
TargetRectangle targetRc = ConvertEFBRectangle(rc);
GLuint read_texture = FramebufferManager::ResolveAndGetRenderTarget(rc);
// Render to the real buffer now.
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // switch to the window backbuffer
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, read_texture);
if (applyShader)
{
glBegin(GL_QUADS);
glTexCoord2f(targetRc.left, targetRc.bottom);
glMultiTexCoord2fARB(GL_TEXTURE1, 0, 0);
glVertex2f(-1, -1);
glTexCoord2f(targetRc.left, targetRc.top);
glMultiTexCoord2fARB(GL_TEXTURE1, 0, 1);
glVertex2f(-1, 1);
glTexCoord2f(targetRc.right, targetRc.top);
glMultiTexCoord2fARB(GL_TEXTURE1, 1, 1);
glVertex2f( 1, 1);
glTexCoord2f(targetRc.right, targetRc.bottom);
glMultiTexCoord2fARB(GL_TEXTURE1, 1, 0);
glVertex2f( 1, -1);
glEnd();
PixelShaderCache::DisableShader();
}
else
{
glBegin(GL_QUADS);
glTexCoord2f(targetRc.left, targetRc.bottom);
glVertex2f(-1, -1);
glTexCoord2f(targetRc.left, targetRc.top);
glVertex2f(-1, 1);
glTexCoord2f(targetRc.right, targetRc.top);
glVertex2f( 1, 1);
glTexCoord2f(targetRc.right, targetRc.bottom);
glVertex2f( 1, -1);
glEnd();
}
}
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0);
OGL::TextureCache::DisableStage(0);
// Wireframe
if (g_ActiveConfig.bWireFrame)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
// Save screenshot
if (s_bScreenshot)
{
s_criticalScreenshot.Enter();
SaveScreenshot(s_sScreenshotName, dst_rect);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
s_criticalScreenshot.Leave();
}
// Frame dumps are handled a little differently in Windows
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames)
{
s_criticalScreenshot.Enter();
int w = dst_rect.GetWidth();
int h = dst_rect.GetHeight();
u8 *data = new u8[3 * w * h];
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(dst_rect.left, dst_rect.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, data);
if (GL_REPORT_ERROR() == GL_NO_ERROR && w > 0 && h > 0)
{
if (!s_bLastFrameDumped)
{
#ifdef _WIN32
s_bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), w, h);
#else
s_bAVIDumping = AVIDump::Start(w, h);
#endif
if (!s_bAVIDumping)
OSD::AddMessage("AVIDump Start failed", 2000);
else
{
OSD::AddMessage(StringFromFormat(
"Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX), w, h).c_str(), 2000);
}
}
if (s_bAVIDumping)
{
#ifdef _WIN32
AVIDump::AddFrame((char *) data);
#else
FlipImageData(data, w, h);
AVIDump::AddFrame(data);
#endif
}
s_bLastFrameDumped = true;
}
else
NOTICE_LOG(VIDEO, "Error reading framebuffer");
delete[] data;
s_criticalScreenshot.Leave();
}
else
{
if (s_bLastFrameDumped && s_bAVIDumping)
{
AVIDump::Stop();
s_bAVIDumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
s_bLastFrameDumped = false;
}
#else
if (g_ActiveConfig.bDumpFrames)
{
s_criticalScreenshot.Enter();
char movie_file_name[255];
int w = dst_rect.GetWidth();
int h = dst_rect.GetHeight();
u8 *data = new u8[3 * w * h];
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(dst_rect.left, dst_rect.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, data);
if (GL_REPORT_ERROR() == GL_NO_ERROR)
{
if (!s_bLastFrameDumped)
{
sprintf(movie_file_name, "%sframedump.raw", File::GetUserPath(D_DUMPFRAMES_IDX));
f_pFrameDump = fopen(movie_file_name, "wb");
if (f_pFrameDump == NULL)
OSD::AddMessage("Error opening framedump.raw for writing.", 2000);
else
{
char msg [255];
sprintf(msg, "Dumping Frames to \"%s\" (%dx%d RGB24)", movie_file_name, w, h);
OSD::AddMessage(msg, 2000);
}
}
if (f_pFrameDump != NULL)
{
FlipImageData(data, w, h);
fwrite(data, w * 3, h, f_pFrameDump);
fflush(f_pFrameDump);
}
s_bLastFrameDumped = true;
}
delete[] data;
s_criticalScreenshot.Leave();
}
else
{
if (s_bLastFrameDumped && f_pFrameDump != NULL)
{
fclose(f_pFrameDump);
f_pFrameDump = NULL;
}
s_bLastFrameDumped = false;
}
#endif
// Finish up the current frame, print some stats
SetWindowSize(fbWidth, fbHeight);
OpenGL_Update(); // just updates the render window position and the backbuffer size
bool xfbchanged = false;
if (s_XFB_width != fbWidth || s_XFB_height != fbHeight)
{
xfbchanged = true;
s_XFB_width = fbWidth;
s_XFB_height = fbHeight;
if (s_XFB_width < 1) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_width > MAX_XFB_WIDTH) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_height < 1) s_XFB_height = MAX_XFB_HEIGHT;
if (s_XFB_height > MAX_XFB_HEIGHT) s_XFB_height = MAX_XFB_HEIGHT;
}
bool WindowResized = false;
int W = (int)OpenGL_GetBackbufferWidth();
int H = (int)OpenGL_GetBackbufferHeight();
if (W != s_backbuffer_width || H != s_backbuffer_height || s_LastEFBScale != g_ActiveConfig.iEFBScale)
{
WindowResized = true;
s_backbuffer_width = W;
s_backbuffer_height = H;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
}
if (xfbchanged || WindowResized)
{
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
if (CalculateTargetSize())
{
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
}
}
// Place messages on the picture, then copy it to the screen
// ---------------------------------------------------------------------
// Count FPS.
// -------------
static int fpscount = 0;
static unsigned long lasttime = 0;
if (Common::Timer::GetTimeMs() - lasttime >= 1000)
{
lasttime = Common::Timer::GetTimeMs();
s_fps = fpscount;
fpscount = 0;
}
if (XFBWrited)
++fpscount;
// ---------------------------------------------------------------------
GL_REPORT_ERRORD();
DrawDebugText();
DrawDebugInfo();
GL_REPORT_ERRORD();
// Get the status of the Blend mode
GLboolean blend_enabled = glIsEnabled(GL_BLEND);
glDisable(GL_BLEND);
OSD::DrawMessages();
if (blend_enabled)
glEnable(GL_BLEND);
GL_REPORT_ERRORD();
// Copy the rendered frame to the real window
OpenGL_SwapBuffers();
GL_REPORT_ERRORD();
// Clear framebuffer
if(!g_ActiveConfig.bAnaglyphStereo)
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
}
GL_REPORT_ERRORD();
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Render to the framebuffer.
FramebufferManager::SetFramebuffer(0);
GL_REPORT_ERRORD();
RestoreAPIState();
GL_REPORT_ERRORD();
g_Config.iSaveTargetId = 0;
// reload textures if these settings changed
if (g_Config.bSafeTextureCache != g_ActiveConfig.bSafeTextureCache ||
g_Config.bUseNativeMips != g_ActiveConfig.bUseNativeMips)
TextureCache::Invalidate(false);
if (g_Config.bCopyEFBToTexture != g_ActiveConfig.bCopyEFBToTexture)
TextureCache::ClearRenderTargets();
UpdateActiveConfig();
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.tga", GL_TEXTURE_RECTANGLE_ARB, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
VertexShaderCache::DisableShader();
PixelShaderCache::DisableShader();
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
SetGenerationMode();
SetScissorRect();
SetColorMask();
SetDepthMode();
SetBlendMode(true);
UpdateViewport();
VertexShaderCache::SetCurrentShader(0);
PixelShaderCache::SetCurrentShader(0);
}
void Renderer::SetGenerationMode()
{
// none, ccw, cw, ccw
if (bpmem.genMode.cullmode > 0)
{
glEnable(GL_CULL_FACE);
glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW);
}
else
glDisable(GL_CULL_FACE);
}
void Renderer::SetDepthMode()
{
if (bpmem.zmode.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[bpmem.zmode.func]);
}
else
{
// if the test is disabled write is disabled too
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
}
void Renderer::SetLogicOpMode()
{
if (bpmem.blendmode.logicopenable && bpmem.blendmode.logicmode != 3)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
}
void Renderer::SetDitherMode()
{
if (bpmem.blendmode.dither)
glEnable(GL_DITHER);
else
glDisable(GL_DITHER);
}
void Renderer::SetLineWidth()
{
float fratio = xfregs.rawViewport[0] != 0 ?
((float)Renderer::GetTargetWidth() / EFB_WIDTH) : 1.0f;
if (bpmem.lineptwidth.linesize > 0)
// scale by ratio of widths
glLineWidth((float)bpmem.lineptwidth.linesize * fratio / 6.0f);
if (bpmem.lineptwidth.pointsize > 0)
glPointSize((float)bpmem.lineptwidth.pointsize * fratio / 6.0f);
}
void Renderer::SetSamplerState(int stage, int texindex)
{
// TODO
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::FlipImageData(u8 *data, int w, int h)
{
// Flip image upside down. Damn OpenGL.
for (int y = 0; y < h / 2; y++)
{
for(int x = 0; x < w; x++)
{
std::swap(data[(y * w + x) * 3], data[((h - 1 - y) * w + x) * 3]);
std::swap(data[(y * w + x) * 3 + 1], data[((h - 1 - y) * w + x) * 3 + 1]);
std::swap(data[(y * w + x) * 3 + 2], data[((h - 1 - y) * w + x) * 3 + 2]);
}
}
}
}
// TODO: remove
extern bool g_aspect_wide;
#if defined(HAVE_WX) && HAVE_WX
void TakeScreenshot(ScrStrct* threadStruct)
{
// These will contain the final image size
float FloatW = (float)threadStruct->W;
float FloatH = (float)threadStruct->H;
// Handle aspect ratio for the final ScrStrct to look exactly like what's on screen.
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
bool use16_9 = g_aspect_wide;
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
float Ratio = (FloatW / FloatH) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// If ratio > 1 the picture is too wide and we have to limit the width.
if (Ratio > 1)
FloatW /= Ratio;
// ratio == 1 or the image is too high, we have to limit the height.
else
FloatH *= Ratio;
// This is a bit expensive on high resolutions
threadStruct->img->Rescale((int)FloatW, (int)FloatH, wxIMAGE_QUALITY_HIGH);
}
// Save the screenshot and finally kill the wxImage object
// This is really expensive when saving to PNG, but not at all when using BMP
threadStruct->img->SaveFile(wxString::FromAscii(threadStruct->filename.c_str()),
wxBITMAP_TYPE_PNG);
threadStruct->img->Destroy();
// Show success messages
OSD::AddMessage(StringFromFormat("Saved %i x %i %s", (int)FloatW, (int)FloatH,
threadStruct->filename.c_str()).c_str(), 2000);
delete threadStruct;
}
#endif
namespace OGL
{
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &back_rc)
{
u32 W = back_rc.GetWidth();
u32 H = back_rc.GetHeight();
u8 *data = new u8[3 * W * H];
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(back_rc.left, back_rc.bottom, W, H, GL_RGB, GL_UNSIGNED_BYTE, data);
// Show failure message
if (GL_REPORT_ERROR() != GL_NO_ERROR)
{
OSD::AddMessage("Error capturing or saving screenshot.", 2000);
return false;
}
// Turn image upside down
FlipImageData(data, W, H);
#if defined(HAVE_WX) && HAVE_WX
// Create wxImage
wxImage *a = new wxImage(W, H, data);
if (scrshotThread.joinable())
scrshotThread.join();
ScrStrct *threadStruct = new ScrStrct;
threadStruct->filename = filename;
threadStruct->img = a;
threadStruct->H = H; threadStruct->W = W;
scrshotThread = std::thread(TakeScreenshot, threadStruct);
#ifdef _WIN32
SetThreadPriority(scrshotThread.native_handle(), THREAD_PRIORITY_BELOW_NORMAL);
#endif
bool result = true;
OSD::AddMessage("Saving Screenshot... ", 2000);
#else
bool result = SaveTGA(filename.c_str(), W, H, data);
delete[] data;
#endif
return result;
}
void Renderer::SetWindowSize(int width, int height)
{
if (width < 1)
width = 1;
if (height < 1)
height = 1;
// Scale the window size by the EFB scale.
CalculateTargetScale(width, height, width, height);
Core::Callback_VideoRequestWindowSize(width, height);
}
}