2017-08-03 13:16:17 -07:00

541 lines
20 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cmath>
#include <string>
#include <wx/app.h>
#include <wx/bitmap.h>
#include <wx/choice.h>
#include <wx/combo.h>
#include <wx/combobox.h>
#include <wx/display.h>
#include <wx/gdicmn.h>
#include <wx/image.h>
#include <wx/msgdlg.h>
#include <wx/sizer.h>
#include <wx/spinctrl.h>
#include <wx/toolbar.h>
#include <wx/toplevel.h>
#include <wx/utils.h>
#include "Common/CommonPaths.h"
#include "Common/FileUtil.h"
#include "Common/StringUtil.h"
#include "Core/ConfigManager.h"
#include "DolphinWX/WxUtils.h"
#ifdef _WIN32
#include <Windows.h>
#endif
namespace WxUtils
{
// Launch a file according to its mime type
void Launch(const std::string& filename)
{
if (!::wxLaunchDefaultBrowser(StrToWxStr(filename)))
{
// WARN_LOG
}
}
// Launch an file explorer window on a certain path
void Explore(const std::string& path)
{
wxString wxPath = StrToWxStr(path);
#ifndef _WIN32
// Default to file
if (!wxPath.Contains("://"))
{
wxPath = "file://" + wxPath;
}
#endif
#ifdef __WXGTK__
wxPath.Replace(" ", "\\ ");
#endif
if (!::wxLaunchDefaultBrowser(wxPath))
{
// WARN_LOG
}
}
void ShowErrorDialog(const wxString& error_msg)
{
wxMessageBox(error_msg, _("Error"), wxOK | wxICON_ERROR);
}
wxBitmap CreateDisabledButtonBitmap(const wxBitmap& original)
{
wxImage image = original.ConvertToImage();
return wxBitmap(image.ConvertToDisabled(240), wxBITMAP_SCREEN_DEPTH, original.GetScaleFactor());
}
void AddToolbarButton(wxToolBar* toolbar, int toolID, const wxString& label, const wxBitmap& bitmap,
const wxString& shortHelp)
{
// Must explicitly set the disabled button bitmap because wxWidgets
// incorrectly desaturates it instead of lightening it.
toolbar->AddTool(toolID, label, bitmap, WxUtils::CreateDisabledButtonBitmap(bitmap),
wxITEM_NORMAL, shortHelp);
}
wxIconBundle GetDolphinIconBundle()
{
static wxIconBundle s_bundle;
if (!s_bundle.IsEmpty())
return s_bundle;
#ifdef _WIN32
// Convert the Windows ICO file into a wxIconBundle by tearing it apart into each individual
// sub-icon using the Win32 API. This is necessary because WX uses its own wxIcons internally
// which (unlike QIcon in Qt) only contain 1 image per icon, hence why wxIconBundle exists.
HINSTANCE dolphin = GetModuleHandleW(nullptr);
for (int size : {16, 32, 48, 256})
{
// Extract resource from embedded DolphinWX.rc
HANDLE win32_icon =
LoadImageW(dolphin, L"\"DOLPHIN\"", IMAGE_ICON, size, size, LR_CREATEDIBSECTION);
if (win32_icon && win32_icon != INVALID_HANDLE_VALUE)
{
wxIcon icon;
icon.CreateFromHICON(reinterpret_cast<HICON>(win32_icon));
s_bundle.AddIcon(icon);
}
}
#else
for (const char* fname : {"Dolphin.png", "dolphin_logo.png", "dolphin_logo@2x.png"})
{
wxImage image{StrToWxStr(File::GetSysDirectory() + RESOURCES_DIR DIR_SEP + fname),
wxBITMAP_TYPE_PNG};
if (image.IsOk())
{
wxIcon icon;
icon.CopyFromBitmap(image);
s_bundle.AddIcon(icon);
}
}
#endif
return s_bundle;
}
wxRect GetVirtualScreenGeometry()
{
wxRect geometry;
for (unsigned int i = 0, end = wxDisplay::GetCount(); i < end; ++i)
geometry.Union(wxDisplay(i).GetGeometry());
return geometry;
}
void SetWindowSizeAndFitToScreen(wxTopLevelWindow* tlw, wxPoint pos, wxSize size,
wxSize default_size)
{
if (tlw->IsMaximized())
return;
// NOTE: Positions can be negative and still be valid. Coordinates are relative to the
// primary monitor so if the primary monitor is in the middle then (-1000, 10) is a
// valid position on the monitor to the left of the primary. (This does not apply to
// sizes obviously)
wxRect screen_geometry;
wxRect window_geometry{pos, size};
if (wxDisplay::GetCount() > 1)
screen_geometry = GetVirtualScreenGeometry();
else
screen_geometry = wxDisplay(0).GetClientArea();
// Initialize the default size if it is wxDefaultSize or otherwise negative.
default_size.DecTo(screen_geometry.GetSize());
default_size.IncTo(tlw->GetMinSize());
if (!default_size.IsFullySpecified())
default_size.SetDefaults(wxDisplay(0).GetClientArea().GetSize() / 2);
// If the position we're given doesn't make sense then go with the current position.
// (Assuming the window was created with wxDefaultPosition then this should be reasonable)
if (pos.x - screen_geometry.GetLeft() < -1000 || pos.y - screen_geometry.GetTop() < -1000 ||
pos.x - screen_geometry.GetRight() > 1000 || pos.y - screen_geometry.GetBottom() > 1000)
{
window_geometry.SetPosition(tlw->GetPosition());
}
// If the window is bigger than all monitors combined, or negative (uninitialized) then reset it.
if (window_geometry.IsEmpty() || window_geometry.GetWidth() > screen_geometry.GetWidth() ||
window_geometry.GetHeight() > screen_geometry.GetHeight())
{
window_geometry.SetSize(default_size);
}
// Check if the window entirely lives on a single monitor without spanning.
// If the window does not span multiple screens then we should constrain it within that
// single monitor instead of the entire virtual desktop space.
// The benefit to doing this is that we can account for the OS X menu bar and Windows task
// bar which are treated as invisible when only looking at the virtual desktop instead of
// an individual screen.
if (wxDisplay::GetCount() > 1)
{
// SPECIAL CASE: If the window is entirely outside the visible area of the desktop then we
// put it back on the primary (zero) monitor.
wxRect monitor_intersection{window_geometry};
int the_monitor = 0;
if (!monitor_intersection.Intersect(screen_geometry).IsEmpty())
{
std::array<int, 4> monitors{{wxDisplay::GetFromPoint(monitor_intersection.GetTopLeft()),
wxDisplay::GetFromPoint(monitor_intersection.GetTopRight()),
wxDisplay::GetFromPoint(monitor_intersection.GetBottomLeft()),
wxDisplay::GetFromPoint(monitor_intersection.GetBottomRight())}};
the_monitor = wxNOT_FOUND;
bool intersected = false;
for (int one_monitor : monitors)
{
if (one_monitor == the_monitor || one_monitor == wxNOT_FOUND)
continue;
if (the_monitor != wxNOT_FOUND)
{
// The window is spanning multiple screens.
the_monitor = wxNOT_FOUND;
break;
}
the_monitor = one_monitor;
intersected = true;
}
// If we get wxNOT_FOUND for all corners then there are holes in the virtual desktop and the
// entire window is lost in one. (e.g. 3 monitors in an 'L', window in top-right)
if (!intersected)
the_monitor = 0;
}
if (the_monitor != wxNOT_FOUND)
{
// We'll only use the client area of this monitor if the window will actually fit.
// (It may not fit if the window is spilling off the edge so it isn't entirely visible)
wxRect client_area{wxDisplay(the_monitor).GetClientArea()};
if (client_area.GetWidth() >= window_geometry.GetWidth() &&
client_area.GetHeight() >= window_geometry.GetHeight())
{
screen_geometry = client_area;
}
}
}
// The window SHOULD be small enough to fit on the screen, but it might be spilling off an edge
// so we'll snap it to the nearest edge as necessary.
if (!screen_geometry.Contains(window_geometry))
{
// NOTE: The order is important here, if the window *is* too big to fit then it will snap to
// the top-left corner.
int spill_x = std::max(0, window_geometry.GetRight() - screen_geometry.GetRight());
int spill_y = std::max(0, window_geometry.GetBottom() - screen_geometry.GetBottom());
window_geometry.Offset(-spill_x, -spill_y);
if (window_geometry.GetTop() < screen_geometry.GetTop())
window_geometry.SetTop(screen_geometry.GetTop());
if (window_geometry.GetLeft() < screen_geometry.GetLeft())
window_geometry.SetLeft(screen_geometry.GetLeft());
}
tlw->SetSize(window_geometry, wxSIZE_ALLOW_MINUS_ONE);
}
wxSizer* GiveMinSize(wxWindow* window, const wxSize& min_size)
{
wxBoxSizer* sizer = new wxBoxSizer(wxHORIZONTAL);
int flags = wxEXPAND;
// On Windows comboboxes will misrender when stretched vertically.
if (wxDynamicCast(window, wxChoice) || wxDynamicCast(window, wxComboBox) ||
wxDynamicCast(window, wxComboCtrl))
flags = wxALIGN_CENTER_VERTICAL;
sizer->Add(window, 1, flags);
sizer->SetMinSize(min_size);
return sizer;
}
wxSizer* GiveMinSizeDIP(wxWindow* window, const wxSize& min_size)
{
return GiveMinSize(window, window->FromDIP(min_size));
}
wxSize GetTextWidgetMinSize(const wxControl* control, const wxString& value)
{
return control->GetSizeFromTextSize(control->GetTextExtent(value));
}
wxSize GetTextWidgetMinSize(const wxControl* control, unsigned int value)
{
return GetTextWidgetMinSize(control, wxString::Format("%u", value));
}
wxSize GetTextWidgetMinSize(const wxControl* control, int value)
{
return GetTextWidgetMinSize(control, wxString::Format("%d", value));
}
wxSize GetTextWidgetMinSize(const wxSpinCtrl* spinner)
{
wxSize size = GetTextWidgetMinSize(spinner, spinner->GetMin());
size.IncTo(GetTextWidgetMinSize(spinner, spinner->GetMax()));
return size;
}
static wxImage LoadScaledImage(const std::string& file_path, const wxWindow* context,
const wxSize& output_size, const wxRect& usable_rect, LSIFlags flags,
const wxColour& fill_color)
{
std::string fpath, fname, fext;
SplitPath(file_path, &fpath, &fname, &fext);
const double window_scale_factor = context->GetContentScaleFactor();
// Compute the total scale factor from the ratio of DIPs to window pixels (FromDIP) and
// window pixels to framebuffer pixels (GetContentScaleFactor).
// NOTE: Usually only one of these is meaningful:
// - On Windows/GTK2: content_scale = 1.0, FromDIP = 96DPI -> Screen DPI
// - On Mac OS X: content_scale = screen_dpi / 96, FromDIP = 96DPI -> 96DPI (no-op)
// [The 1024 is arbitrarily large to minimise rounding error, it has no significance]
const double scale_factor = (context->FromDIP(1024) / 1024.0) * window_scale_factor;
// We search for files on quarter ratios of DIPs to framebuffer pixels.
// By default, the algorithm prefers to find an exact or bigger size then downscale if
// needed but will resort to upscaling if a bigger image cannot be found.
// E.g. A basic retina screen on Mac OS X has a scale_factor of 2.0, so we would look for
// @2x, @2.25x, @2.5x, @2.75x, @3x, @1.75x, @1.5x, @1.25x, @1x, then give up.
// (At 125% on Windows the search is @1.25, @1.5, @1.75, @2, @2.25, @1)
// If flags does not include LSI_SCALE_DOWN (i.e. we would be forced to crop big
// images instead of scaling them) then we will only accept smaller sizes, i.e.
// @2x, @1.75, @1.5, @1.25, @1, then give up.
// NOTE: We do a lot of exact comparisons against floating point here but it's fine
// because the numbers involved are all powers of 2 so can be represented exactly.
wxImage image;
double selected_image_scale = 1;
{
auto image_check = [&](double scale) -> bool {
std::string path = fpath + fname + StringFromFormat("@%gx", scale) + fext;
if (!File::Exists(path))
{
// Special Case: @1x may not have a suffix at all.
if (scale != 1.0 || !File::Exists(file_path))
return false;
path = file_path;
}
if (!image.LoadFile(StrToWxStr(path), wxBITMAP_TYPE_ANY))
return false;
selected_image_scale = scale;
return true;
};
const bool prefer_smaller = !(flags & LSI_SCALE_DOWN);
const double scale_factor_quarter =
prefer_smaller ? std::floor(scale_factor * 4) / 4 : std::ceil(scale_factor * 4) / 4;
// Search for bigger sizes first (preferred)
if (!prefer_smaller)
{
// We search within a 'circle' of the exact match limited by scale=1.0.
// i.e. scale_factor = 1.5, radius = 0.5; scale = 2.5, radius = 1.5.
// The minimum radius is 1.0.
double limit = std::max(scale_factor_quarter * 2 - 1, scale_factor_quarter + 1);
for (double quarter = scale_factor_quarter; quarter <= limit; quarter += 0.25)
{
if (image_check(quarter))
break;
}
}
// If we didn't hit a bigger size then we'll fallback to looking for smaller ones
if (!image.IsOk())
{
double quarter = scale_factor_quarter;
if (!prefer_smaller) // So we don't recheck the exact match
quarter -= 0.25;
for (; quarter >= 1.0; quarter -= 0.25)
{
if (image_check(quarter))
break;
}
}
}
// The file apparently does not exist so we give up. Create a white square placeholder instead.
if (!image.IsOk())
{
wxLogError("Could not find resource: %s", StrToWxStr(file_path));
image.Create(1, 1, false);
image.Clear(0xFF);
}
return ScaleImage(image, selected_image_scale, window_scale_factor, output_size, usable_rect,
flags, fill_color);
}
wxBitmap LoadScaledBitmap(const std::string& file_path, const wxWindow* context,
const wxSize& output_size, const wxRect& usable_rect, LSIFlags flags,
const wxColour& fill_color)
{
return wxBitmap(LoadScaledImage(file_path, context, output_size, usable_rect, flags, fill_color),
wxBITMAP_SCREEN_DEPTH, context->GetContentScaleFactor());
}
wxBitmap LoadScaledResourceBitmap(const std::string& name, const wxWindow* context,
const wxSize& output_size, const wxRect& usable_rect,
LSIFlags flags, const wxColour& fill_color)
{
std::string path = File::GetSysDirectory() + RESOURCES_DIR DIR_SEP + name + ".png";
return LoadScaledBitmap(path, context, output_size, usable_rect, flags, fill_color);
}
wxBitmap LoadScaledThemeBitmap(const std::string& name, const wxWindow* context,
const wxSize& output_size, const wxRect& usable_rect, LSIFlags flags,
const wxColour& fill_color)
{
std::string path = File::GetThemeDir(SConfig::GetInstance().theme_name) + name + ".png";
return LoadScaledBitmap(path, context, output_size, usable_rect, flags, fill_color);
}
wxBitmap ScaleImageToBitmap(const wxImage& image, const wxWindow* context,
const wxSize& output_size, const wxRect& usable_rect, LSIFlags flags,
const wxColour& fill_color)
{
double scale_factor = context->GetContentScaleFactor();
return wxBitmap(ScaleImage(image, 1.0, scale_factor, output_size, usable_rect, flags, fill_color),
wxBITMAP_SCREEN_DEPTH, scale_factor);
}
wxBitmap ScaleImageToBitmap(const wxImage& image, const wxWindow* context, double source_scale,
LSIFlags flags, const wxColour& fill_color)
{
double scale_factor = context->GetContentScaleFactor();
return wxBitmap(ScaleImage(image, source_scale, scale_factor, wxDefaultSize, wxDefaultSize, flags,
fill_color),
wxBITMAP_SCREEN_DEPTH, scale_factor);
}
wxImage ScaleImage(wxImage image, double source_scale_factor, double content_scale_factor,
wxSize output_size, wxRect usable_rect, LSIFlags flags,
const wxColour& fill_color)
{
if (!image.IsOk())
{
wxFAIL_MSG("WxUtils::ScaleImage expects a valid image.");
return image;
}
if (content_scale_factor != 1.0)
{
output_size *= content_scale_factor;
usable_rect.SetPosition(usable_rect.GetPosition() * content_scale_factor);
usable_rect.SetSize(usable_rect.GetSize() * content_scale_factor);
}
// Fix the output size if it's unset.
wxSize img_size = image.GetSize();
if (output_size.GetWidth() < 1)
output_size.SetWidth(
static_cast<int>(img_size.GetWidth() * (content_scale_factor / source_scale_factor)));
if (output_size.GetHeight() < 1)
output_size.SetHeight(
static_cast<int>(img_size.GetHeight() * (content_scale_factor / source_scale_factor)));
// Fix the usable rect. If it's empty then the whole canvas is usable.
if (usable_rect.IsEmpty())
{
// Constructs a temp wxRect 0,0->output_size then move assigns it.
usable_rect = output_size;
}
else if (!usable_rect.Intersects(output_size))
{
wxFAIL_MSG("Usable Zone Rectangle is not inside the canvas. Check the output size is correct.");
image.Create(1, 1, false);
image.SetRGB(0, 0, fill_color.Red(), fill_color.Green(), fill_color.Blue());
if (fill_color.Alpha() == wxALPHA_TRANSPARENT)
image.SetMaskColour(fill_color.Red(), fill_color.Green(), fill_color.Blue());
usable_rect = output_size;
}
// Step 1: Scale the image
if ((flags & LSI_SCALE) != LSI_SCALE_NONE)
{
if (flags & LSI_SCALE_NO_ASPECT)
{
// Stretch scale without preserving the aspect ratio.
bool scale_width = (img_size.GetWidth() > usable_rect.GetWidth() && flags & LSI_SCALE_DOWN) ||
(img_size.GetWidth() < usable_rect.GetWidth() && flags & LSI_SCALE_UP);
bool scale_height =
(img_size.GetHeight() > usable_rect.GetHeight() && flags & LSI_SCALE_DOWN) ||
(img_size.GetHeight() < usable_rect.GetHeight() && flags & LSI_SCALE_UP);
if (scale_width || scale_height)
{
// NOTE: Using BICUBIC instead of HIGH because it's the same internally
// except that downscaling uses a box filter with awful obvious aliasing
// for non-integral scale factors.
image.Rescale(scale_width ? usable_rect.GetWidth() : img_size.GetWidth(),
scale_height ? usable_rect.GetHeight() : img_size.GetHeight(),
wxIMAGE_QUALITY_BICUBIC);
}
}
else
{
// Scale while preserving the aspect ratio.
double scale = std::min(static_cast<double>(usable_rect.GetWidth()) / img_size.GetWidth(),
static_cast<double>(usable_rect.GetHeight()) / img_size.GetHeight());
int target_width = static_cast<int>(img_size.GetWidth() * scale);
int target_height = static_cast<int>(img_size.GetHeight() * scale);
// Bilinear produces sharper images when upscaling, bicubic tends to smear/blur sharp edges.
if (scale > 1.0 && flags & LSI_SCALE_UP)
image.Rescale(target_width, target_height, wxIMAGE_QUALITY_BILINEAR);
else if (scale < 1.0 && flags & LSI_SCALE_DOWN)
image.Rescale(target_width, target_height, wxIMAGE_QUALITY_BICUBIC);
}
img_size = image.GetSize();
}
// Step 2: Resize the canvas to match the output size.
// NOTE: If NOT using LSI_SCALE_DOWN then this will implicitly crop the image
if (img_size != output_size || usable_rect.GetPosition() != wxPoint())
{
wxPoint base = usable_rect.GetPosition();
if (flags & LSI_ALIGN_HCENTER)
base.x += (usable_rect.GetWidth() - img_size.GetWidth()) / 2;
else if (flags & LSI_ALIGN_RIGHT)
base.x += usable_rect.GetWidth() - img_size.GetWidth();
if (flags & LSI_ALIGN_VCENTER)
base.y += (usable_rect.GetHeight() - img_size.GetHeight()) / 2;
else if (flags & LSI_ALIGN_BOTTOM)
base.y += usable_rect.GetHeight() - img_size.GetHeight();
int r = -1, g = -1, b = -1;
if (fill_color.Alpha() != wxALPHA_TRANSPARENT)
{
r = fill_color.Red();
g = fill_color.Green();
b = fill_color.Blue();
}
image.Resize(output_size, base, r, g, b);
}
return image;
}
} // namespace
std::string WxStrToStr(const wxString& str)
{
return str.ToUTF8().data();
}
wxString StrToWxStr(const std::string& str)
{
// return wxString::FromUTF8Unchecked(str.c_str());
return wxString::FromUTF8(str.c_str());
}
unsigned long WxStrToUL(const wxString& str)
{
unsigned long value = 0;
str.ToULong(&value);
return value;
}