dolphin/Source/Core/Common/FatFsUtil.cpp

510 lines
12 KiB
C++

// Copyright 2022 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/FatFsUtil.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <string>
#include <vector>
// Does not compile if diskio.h is included first.
// clang-format off
#include "ff.h"
#include "diskio.h"
// clang-format on
#include "Common/Align.h"
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
enum : u32
{
SECTOR_SIZE = 512,
MAX_CLUSTER_SIZE = 64 * SECTOR_SIZE,
};
static std::mutex s_fatfs_mutex;
static File::IOFile s_image;
static bool s_deterministic;
extern "C" DSTATUS disk_status(BYTE pdrv)
{
return 0;
}
extern "C" DSTATUS disk_initialize(BYTE pdrv)
{
return 0;
}
extern "C" DRESULT disk_read(BYTE pdrv, BYTE* buff, LBA_t sector, UINT count)
{
const u64 offset = static_cast<u64>(sector) * SECTOR_SIZE;
if (!s_image.Seek(offset, File::SeekOrigin::Begin))
{
ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset);
return RES_ERROR;
}
const size_t size = static_cast<size_t>(count) * SECTOR_SIZE;
if (!s_image.ReadBytes(buff, size))
{
ERROR_LOG_FMT(COMMON, "SD image read failed (offset={}, size={})", offset, size);
return RES_ERROR;
}
return RES_OK;
}
extern "C" DRESULT disk_write(BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count)
{
const u64 offset = static_cast<u64>(sector) * SECTOR_SIZE;
if (!s_image.Seek(offset, File::SeekOrigin::Begin))
{
ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset);
return RES_ERROR;
}
const size_t size = static_cast<size_t>(count) * SECTOR_SIZE;
if (!s_image.WriteBytes(buff, size))
{
ERROR_LOG_FMT(COMMON, "SD image write failed (offset={}, size={})", offset, size);
return RES_ERROR;
}
return RES_OK;
}
extern "C" DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void* buff)
{
switch (cmd)
{
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*reinterpret_cast<LBA_t*>(buff) = s_image.GetSize() / SECTOR_SIZE;
return RES_OK;
default:
WARN_LOG_FMT(COMMON, "Unexpected SD image ioctl {}", cmd);
return RES_OK;
}
}
extern "C" DWORD get_fattime(void)
{
if (s_deterministic)
return 0;
const std::time_t time = std::time(nullptr);
std::tm tm;
#ifdef _WIN32
localtime_s(&tm, &time);
#else
localtime_r(&time, &tm);
#endif
DWORD fattime = 0;
fattime |= (tm.tm_year - 80) << 25;
fattime |= (tm.tm_mon + 1) << 21;
fattime |= tm.tm_mday << 16;
fattime |= tm.tm_hour << 11;
fattime |= tm.tm_min << 5;
fattime |= std::min(tm.tm_sec, 59) >> 1;
return fattime;
}
extern "C" void* ff_memalloc(UINT msize)
{
return std::malloc(msize);
}
extern "C" void ff_memfree(void* mblock)
{
return std::free(mblock);
}
extern "C" int ff_cre_syncobj(BYTE vol, FF_SYNC_t* sobj)
{
*sobj = new std::recursive_mutex();
return *sobj != nullptr;
}
extern "C" int ff_req_grant(FF_SYNC_t sobj)
{
std::recursive_mutex* m = reinterpret_cast<std::recursive_mutex*>(sobj);
m->lock();
return 1;
}
extern "C" void ff_rel_grant(FF_SYNC_t sobj)
{
std::recursive_mutex* m = reinterpret_cast<std::recursive_mutex*>(sobj);
m->unlock();
}
extern "C" int ff_del_syncobj(FF_SYNC_t sobj)
{
delete reinterpret_cast<std::recursive_mutex*>(sobj);
return 1;
}
namespace Common
{
static constexpr u64 MebibytesToBytes(u64 mebibytes)
{
return mebibytes * 1024 * 1024;
}
static constexpr u64 GibibytesToBytes(u64 gibibytes)
{
return gibibytes * 1024 * 1024 * 1024;
}
static bool CheckIfFATCompatible(const File::FSTEntry& entry)
{
if (!entry.isDirectory)
return true;
if (entry.children.size() > 65536)
{
ERROR_LOG_FMT(COMMON, "Directory {} has too many entries ({})", entry.physicalName,
entry.children.size());
return false;
}
for (const File::FSTEntry& child : entry.children)
{
const size_t size = UTF8ToUTF16(child.virtualName).size();
if (size > 255)
{
ERROR_LOG_FMT(COMMON, "Filename {0} (in directory {1}) is too long ({2})", child.virtualName,
entry.physicalName, size);
return false;
}
if (child.size >= GibibytesToBytes(4))
{
ERROR_LOG_FMT(COMMON, "File {0} (in directory {1}) is too large ({2})", child.virtualName,
entry.physicalName, child.size);
return false;
}
if (!CheckIfFATCompatible(child))
return false;
}
return true;
}
static u64 GetSize(const File::FSTEntry& entry)
{
if (!entry.isDirectory)
return AlignUp(entry.size, MAX_CLUSTER_SIZE);
u64 size = 0;
for (const File::FSTEntry& child : entry.children)
{
size += 32;
// For simplicity, assume that all names are LFN.
const u64 num_lfn_entries = (UTF8ToUTF16(child.virtualName).size() + 13 - 1) / 13;
size += num_lfn_entries * 32;
}
size = AlignUp(size, MAX_CLUSTER_SIZE);
for (const File::FSTEntry& child : entry.children)
size += GetSize(child);
return size;
}
static bool Pack(const File::FSTEntry& entry, bool is_root, std::vector<u8>& tmp_buffer)
{
if (!entry.isDirectory)
{
File::IOFile src(entry.physicalName, "rb");
if (!src)
return false;
FIL dst;
if (f_open(&dst, entry.virtualName.c_str(), FA_CREATE_ALWAYS | FA_WRITE) != FR_OK)
return false;
if (src.GetSize() != entry.size)
return false;
if (entry.size >= GibibytesToBytes(4))
return false;
u64 size = entry.size;
while (size > 0)
{
u32 chunk_size = static_cast<u32>(std::min(size, static_cast<u64>(tmp_buffer.size())));
if (!src.ReadBytes(tmp_buffer.data(), chunk_size))
return false;
u32 written_size;
if (f_write(&dst, tmp_buffer.data(), chunk_size, &written_size) != FR_OK)
return false;
if (written_size != chunk_size)
return false;
size -= chunk_size;
}
if (f_close(&dst) != FR_OK)
return false;
if (!src.Close())
return false;
return true;
}
if (!is_root)
{
if (f_mkdir(entry.virtualName.c_str()) != FR_OK)
return false;
if (f_chdir(entry.virtualName.c_str()) != FR_OK)
return false;
}
for (const File::FSTEntry& child : entry.children)
{
if (!Pack(child, false, tmp_buffer))
return false;
}
if (!is_root)
{
if (f_chdir("..") != FR_OK)
return false;
}
return true;
}
static void SortFST(File::FSTEntry* root)
{
std::sort(root->children.begin(), root->children.end(),
[](const File::FSTEntry& lhs, const File::FSTEntry& rhs) {
return lhs.virtualName < rhs.virtualName;
});
for (auto& child : root->children)
SortFST(&child);
}
bool SyncSDFolderToSDImage(bool deterministic)
{
deterministic = true;
const std::string root_path = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX);
if (!File::IsDirectory(root_path))
return false;
File::FSTEntry root = File::ScanDirectoryTree(root_path, true);
if (deterministic)
SortFST(&root);
if (!CheckIfFATCompatible(root))
return false;
u64 size = GetSize(root);
// Allocate a reasonable amount of free space
size += std::clamp(size / 2, MebibytesToBytes(512), GibibytesToBytes(8));
size = AlignUp(size, MAX_CLUSTER_SIZE);
std::lock_guard lk(s_fatfs_mutex);
s_deterministic = deterministic;
const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX);
const std::string temp_image_path = File::GetTempFilenameForAtomicWrite(image_path);
if (!s_image.Open(temp_image_path, "w+b"))
{
ERROR_LOG_FMT(COMMON, "Failed to open SD image");
return false;
}
if (!s_image.Resize(size))
{
ERROR_LOG_FMT(COMMON, "Failed to allocate space for SD image");
s_image.Close();
File::Delete(temp_image_path);
return false;
}
MKFS_PARM options = {};
options.fmt = FM_FAT32;
options.n_fat = 0; // Number of FATs: automatic
options.align = 1; // Alignment of the data region (in sectors)
options.n_root = 0; // Number of root directory entries: automatic (and unused for FAT32)
options.au_size = 0; // Cluster size: automatic
std::vector<u8> tmp_buffer(MAX_CLUSTER_SIZE);
if (f_mkfs("", &options, tmp_buffer.data(), static_cast<UINT>(tmp_buffer.size())) != FR_OK)
{
ERROR_LOG_FMT(COMMON, "Failed to initialize SD image filesystem");
s_image.Close();
File::Delete(temp_image_path);
return false;
}
FATFS fs;
f_mount(&fs, "", 0);
if (!Pack(root, true, tmp_buffer))
{
ERROR_LOG_FMT(COMMON, "Failed to pack SD image");
s_image.Close();
File::Delete(temp_image_path);
return false;
}
f_unmount("");
if (!s_image.Close())
{
ERROR_LOG_FMT(COMMON, "Failed to close SD image");
return false;
}
if (!File::Rename(temp_image_path, image_path))
{
ERROR_LOG_FMT(COMMON, "Failed to rename SD image");
return false;
}
INFO_LOG_FMT(COMMON, "Successfully packed SD image");
return true;
}
static bool Unpack(const std::string path, bool is_directory, const char* name,
std::vector<u8>& tmp_buffer)
{
if (!is_directory)
{
FIL src;
if (f_open(&src, name, FA_READ) != FR_OK)
return false;
File::IOFile dst(path, "wb");
if (!dst)
return false;
u32 size = f_size(&src);
while (size > 0)
{
u32 chunk_size = std::min(size, static_cast<u32>(tmp_buffer.size()));
u32 read_size;
if (f_read(&src, tmp_buffer.data(), chunk_size, &read_size) != FR_OK)
return false;
if (read_size != chunk_size)
return false;
if (!dst.WriteBytes(tmp_buffer.data(), chunk_size))
return false;
size -= chunk_size;
}
if (!dst.Close())
return false;
if (f_close(&src) != FR_OK)
return false;
return true;
}
if (!File::CreateDir(path))
return false;
if (f_chdir(name) != FR_OK)
return false;
DIR directory;
if (f_opendir(&directory, ".") != FR_OK)
return false;
FILINFO entry;
while (true)
{
if (f_readdir(&directory, &entry) != FR_OK)
return false;
if (entry.fname[0] == '\0')
break;
if (!Unpack(path + "/" + entry.fname, entry.fattrib & AM_DIR, entry.fname, tmp_buffer))
return false;
}
if (f_closedir(&directory) != FR_OK)
return false;
if (f_chdir("..") != FR_OK)
return false;
return true;
}
bool SyncSDImageToSDFolder()
{
const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX);
std::lock_guard lk(s_fatfs_mutex);
if (!s_image.Open(image_path, "r+b"))
{
ERROR_LOG_FMT(COMMON, "Failed to open SD image");
return false;
}
FATFS fs;
f_mount(&fs, "", 0);
// Most systems don't offer atomic directory renaming, so it's simpler to directly work on the
// actual one and rollback if needed.
const std::string root_path = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX);
if (root_path.empty())
return false;
// Unpack() and GetTempFilenameForAtomicWrite() don't want the trailing separator.
const std::string target_dir = root_path.substr(0, root_path.length() - 1);
File::CreateDir(root_path);
const std::string temp_root_path = File::GetTempFilenameForAtomicWrite(target_dir);
if (!File::Rename(target_dir, temp_root_path))
{
ERROR_LOG_FMT(COMMON, "Failed to backup SD folder");
return false;
}
std::vector<u8> tmp_buffer(MAX_CLUSTER_SIZE);
if (!Unpack(target_dir, true, "", tmp_buffer))
{
ERROR_LOG_FMT(COMMON, "Failed to unpack SD image");
File::DeleteDirRecursively(target_dir);
File::Rename(temp_root_path, target_dir);
return false;
}
f_unmount("");
if (!s_image.Close())
{
ERROR_LOG_FMT(COMMON, "Failed to close SD image");
File::DeleteDirRecursively(target_dir);
File::Rename(temp_root_path, target_dir);
return false;
}
File::DeleteDirRecursively(temp_root_path);
INFO_LOG_FMT(COMMON, "Successfully unpacked SD image");
return true;
}
} // namespace Common