mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-30 17:46:48 +01:00
9d88180df7
physical_base is a fastmem helper. Its access is unsafe and might not be available without a Jit.
1314 lines
37 KiB
C++
1314 lines
37 KiB
C++
// Copyright 2003 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "Core/PowerPC/MMU.h"
|
|
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
#include "Common/BitUtils.h"
|
|
#include "Common/CommonTypes.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/HW/CPU.h"
|
|
#include "Core/HW/GPFifo.h"
|
|
#include "Core/HW/MMIO.h"
|
|
#include "Core/HW/Memmap.h"
|
|
#include "Core/PowerPC/JitInterface.h"
|
|
#include "Core/PowerPC/PowerPC.h"
|
|
|
|
#include "VideoCommon/VideoBackendBase.h"
|
|
|
|
#ifdef USE_GDBSTUB
|
|
#include "Core/PowerPC/GDBStub.h"
|
|
#endif
|
|
|
|
namespace PowerPC
|
|
{
|
|
constexpr size_t HW_PAGE_SIZE = 4096;
|
|
constexpr u32 HW_PAGE_INDEX_SHIFT = 12;
|
|
constexpr u32 HW_PAGE_INDEX_MASK = 0x3f;
|
|
|
|
// EFB RE
|
|
/*
|
|
GXPeekZ
|
|
80322de8: rlwinm r0, r3, 2, 14, 29 (0003fffc) a = x << 2 & 0x3fffc
|
|
80322dec: oris r0, r0, 0xC800 a |= 0xc8000000
|
|
80322df0: rlwinm r3, r0, 0, 20, 9 (ffc00fff) x = a & 0xffc00fff
|
|
80322df4: rlwinm r0, r4, 12, 4, 19 (0ffff000) a = (y << 12) & 0x0ffff000;
|
|
80322df8: or r0, r3, r0 a |= x;
|
|
80322dfc: rlwinm r0, r0, 0, 10, 7 (ff3fffff) a &= 0xff3fffff
|
|
80322e00: oris r3, r0, 0x0040 x = a | 0x00400000
|
|
80322e04: lwz r0, 0 (r3) r0 = *r3
|
|
80322e08: stw r0, 0 (r5) z =
|
|
80322e0c: blr
|
|
*/
|
|
|
|
// =================================
|
|
// From Memmap.cpp
|
|
// ----------------
|
|
|
|
// Overloaded byteswap functions, for use within the templated functions below.
|
|
inline u8 bswap(u8 val)
|
|
{
|
|
return val;
|
|
}
|
|
inline s8 bswap(s8 val)
|
|
{
|
|
return val;
|
|
}
|
|
inline u16 bswap(u16 val)
|
|
{
|
|
return Common::swap16(val);
|
|
}
|
|
inline s16 bswap(s16 val)
|
|
{
|
|
return Common::swap16(val);
|
|
}
|
|
inline u32 bswap(u32 val)
|
|
{
|
|
return Common::swap32(val);
|
|
}
|
|
inline u64 bswap(u64 val)
|
|
{
|
|
return Common::swap64(val);
|
|
}
|
|
// =================
|
|
|
|
enum class XCheckTLBFlag
|
|
{
|
|
NoException,
|
|
Read,
|
|
Write,
|
|
Opcode,
|
|
OpcodeNoException
|
|
};
|
|
|
|
static bool IsOpcodeFlag(XCheckTLBFlag flag)
|
|
{
|
|
return flag == XCheckTLBFlag::Opcode || flag == XCheckTLBFlag::OpcodeNoException;
|
|
}
|
|
|
|
static bool IsNoExceptionFlag(XCheckTLBFlag flag)
|
|
{
|
|
return flag == XCheckTLBFlag::NoException || flag == XCheckTLBFlag::OpcodeNoException;
|
|
}
|
|
|
|
struct TranslateAddressResult
|
|
{
|
|
enum
|
|
{
|
|
BAT_TRANSLATED,
|
|
PAGE_TABLE_TRANSLATED,
|
|
DIRECT_STORE_SEGMENT,
|
|
PAGE_FAULT
|
|
} result;
|
|
u32 address;
|
|
bool Success() const { return result <= PAGE_TABLE_TRANSLATED; }
|
|
};
|
|
template <const XCheckTLBFlag flag>
|
|
static TranslateAddressResult TranslateAddress(u32 address);
|
|
|
|
// Nasty but necessary. Super Mario Galaxy pointer relies on this stuff.
|
|
static u32 EFB_Read(const u32 addr)
|
|
{
|
|
u32 var = 0;
|
|
// Convert address to coordinates. It's possible that this should be done
|
|
// differently depending on color depth, especially regarding PeekColor.
|
|
const u32 x = (addr & 0xfff) >> 2;
|
|
const u32 y = (addr >> 12) & 0x3ff;
|
|
|
|
if (addr & 0x00800000)
|
|
{
|
|
ERROR_LOG(MEMMAP, "Unimplemented Z+Color EFB read @ 0x%08x", addr);
|
|
}
|
|
else if (addr & 0x00400000)
|
|
{
|
|
var = g_video_backend->Video_AccessEFB(EFBAccessType::PeekZ, x, y, 0);
|
|
DEBUG_LOG(MEMMAP, "EFB Z Read @ %u, %u\t= 0x%08x", x, y, var);
|
|
}
|
|
else
|
|
{
|
|
var = g_video_backend->Video_AccessEFB(EFBAccessType::PeekColor, x, y, 0);
|
|
DEBUG_LOG(MEMMAP, "EFB Color Read @ %u, %u\t= 0x%08x", x, y, var);
|
|
}
|
|
|
|
return var;
|
|
}
|
|
|
|
static void EFB_Write(u32 data, u32 addr)
|
|
{
|
|
const u32 x = (addr & 0xfff) >> 2;
|
|
const u32 y = (addr >> 12) & 0x3ff;
|
|
|
|
if (addr & 0x00800000)
|
|
{
|
|
// It's possible to do a z-tested write to EFB by writing a 64bit value to this address range.
|
|
// Not much is known, but let's at least get some loging.
|
|
ERROR_LOG(MEMMAP, "Unimplemented Z+Color EFB write. %08x @ 0x%08x", data, addr);
|
|
}
|
|
else if (addr & 0x00400000)
|
|
{
|
|
g_video_backend->Video_AccessEFB(EFBAccessType::PokeZ, x, y, data);
|
|
DEBUG_LOG(MEMMAP, "EFB Z Write %08x @ %u, %u", data, x, y);
|
|
}
|
|
else
|
|
{
|
|
g_video_backend->Video_AccessEFB(EFBAccessType::PokeColor, x, y, data);
|
|
DEBUG_LOG(MEMMAP, "EFB Color Write %08x @ %u, %u", data, x, y);
|
|
}
|
|
}
|
|
|
|
BatTable ibat_table;
|
|
BatTable dbat_table;
|
|
|
|
static void GenerateDSIException(u32 effective_address, bool write);
|
|
|
|
template <XCheckTLBFlag flag, typename T, bool never_translate = false>
|
|
static T ReadFromHardware(u32 em_address)
|
|
{
|
|
if (!never_translate && MSR.DR)
|
|
{
|
|
auto translated_addr = TranslateAddress<flag>(em_address);
|
|
if (!translated_addr.Success())
|
|
{
|
|
if (flag == XCheckTLBFlag::Read)
|
|
GenerateDSIException(em_address, false);
|
|
return 0;
|
|
}
|
|
if ((em_address & (HW_PAGE_SIZE - 1)) > HW_PAGE_SIZE - sizeof(T))
|
|
{
|
|
// This could be unaligned down to the byte level... hopefully this is rare, so doing it this
|
|
// way isn't too terrible.
|
|
// TODO: floats on non-word-aligned boundaries should technically cause alignment exceptions.
|
|
// Note that "word" means 32-bit, so paired singles or doubles might still be 32-bit aligned!
|
|
u32 em_address_next_page = (em_address + sizeof(T) - 1) & ~(HW_PAGE_SIZE - 1);
|
|
auto addr_next_page = TranslateAddress<flag>(em_address_next_page);
|
|
if (!addr_next_page.Success())
|
|
{
|
|
if (flag == XCheckTLBFlag::Read)
|
|
GenerateDSIException(em_address_next_page, false);
|
|
return 0;
|
|
}
|
|
T var = 0;
|
|
u32 addr_translated = translated_addr.address;
|
|
for (u32 addr = em_address; addr < em_address + sizeof(T); addr++, addr_translated++)
|
|
{
|
|
if (addr == em_address_next_page)
|
|
addr_translated = addr_next_page.address;
|
|
var = (var << 8) | ReadFromHardware<flag, u8, true>(addr_translated);
|
|
}
|
|
return var;
|
|
}
|
|
em_address = translated_addr.address;
|
|
}
|
|
|
|
// TODO: Make sure these are safe for unaligned addresses.
|
|
|
|
if ((em_address & 0xF8000000) == 0x00000000)
|
|
{
|
|
// Handle RAM; the masking intentionally discards bits (essentially creating
|
|
// mirrors of memory).
|
|
// TODO: Only the first REALRAM_SIZE is supposed to be backed by actual memory.
|
|
T value;
|
|
std::memcpy(&value, &Memory::m_pRAM[em_address & Memory::RAM_MASK], sizeof(T));
|
|
return bswap(value);
|
|
}
|
|
|
|
if (Memory::m_pEXRAM && (em_address >> 28) == 0x1 &&
|
|
(em_address & 0x0FFFFFFF) < Memory::EXRAM_SIZE)
|
|
{
|
|
T value;
|
|
std::memcpy(&value, &Memory::m_pEXRAM[em_address & 0x0FFFFFFF], sizeof(T));
|
|
return bswap(value);
|
|
}
|
|
|
|
// Locked L1 technically doesn't have a fixed address, but games all use 0xE0000000.
|
|
if ((em_address >> 28) == 0xE && (em_address < (0xE0000000 + Memory::L1_CACHE_SIZE)))
|
|
{
|
|
T value;
|
|
std::memcpy(&value, &Memory::m_pL1Cache[em_address & 0x0FFFFFFF], sizeof(T));
|
|
return bswap(value);
|
|
}
|
|
// In Fake-VMEM mode, we need to map the memory somewhere into
|
|
// physical memory for BAT translation to work; we currently use
|
|
// [0x7E000000, 0x80000000).
|
|
if (Memory::m_pFakeVMEM && ((em_address & 0xFE000000) == 0x7E000000))
|
|
{
|
|
T value;
|
|
std::memcpy(&value, &Memory::m_pFakeVMEM[em_address & Memory::RAM_MASK], sizeof(T));
|
|
return bswap(value);
|
|
}
|
|
|
|
if (flag == XCheckTLBFlag::Read && (em_address & 0xF8000000) == 0x08000000)
|
|
{
|
|
if (em_address < 0x0c000000)
|
|
return EFB_Read(em_address);
|
|
else
|
|
return (T)Memory::mmio_mapping->Read<typename std::make_unsigned<T>::type>(em_address);
|
|
}
|
|
|
|
PanicAlert("Unable to resolve read address %x PC %x", em_address, PC);
|
|
return 0;
|
|
}
|
|
|
|
template <XCheckTLBFlag flag, typename T, bool never_translate = false>
|
|
static void WriteToHardware(u32 em_address, const T data)
|
|
{
|
|
if (!never_translate && MSR.DR)
|
|
{
|
|
auto translated_addr = TranslateAddress<flag>(em_address);
|
|
if (!translated_addr.Success())
|
|
{
|
|
if (flag == XCheckTLBFlag::Write)
|
|
GenerateDSIException(em_address, true);
|
|
return;
|
|
}
|
|
if ((em_address & (sizeof(T) - 1)) &&
|
|
(em_address & (HW_PAGE_SIZE - 1)) > HW_PAGE_SIZE - sizeof(T))
|
|
{
|
|
// This could be unaligned down to the byte level... hopefully this is rare, so doing it this
|
|
// way isn't too terrible.
|
|
// TODO: floats on non-word-aligned boundaries should technically cause alignment exceptions.
|
|
// Note that "word" means 32-bit, so paired singles or doubles might still be 32-bit aligned!
|
|
u32 em_address_next_page = (em_address + sizeof(T) - 1) & ~(HW_PAGE_SIZE - 1);
|
|
auto addr_next_page = TranslateAddress<flag>(em_address_next_page);
|
|
if (!addr_next_page.Success())
|
|
{
|
|
if (flag == XCheckTLBFlag::Write)
|
|
GenerateDSIException(em_address_next_page, true);
|
|
return;
|
|
}
|
|
T val = bswap(data);
|
|
u32 addr_translated = translated_addr.address;
|
|
for (size_t i = 0; i < sizeof(T); i++, addr_translated++)
|
|
{
|
|
if (em_address + i == em_address_next_page)
|
|
addr_translated = addr_next_page.address;
|
|
WriteToHardware<flag, u8, true>(addr_translated, static_cast<u8>(val >> (i * 8)));
|
|
}
|
|
return;
|
|
}
|
|
em_address = translated_addr.address;
|
|
}
|
|
|
|
// TODO: Make sure these are safe for unaligned addresses.
|
|
|
|
if ((em_address & 0xF8000000) == 0x00000000)
|
|
{
|
|
// Handle RAM; the masking intentionally discards bits (essentially creating
|
|
// mirrors of memory).
|
|
// TODO: Only the first REALRAM_SIZE is supposed to be backed by actual memory.
|
|
const T swapped_data = bswap(data);
|
|
std::memcpy(&Memory::m_pRAM[em_address & Memory::RAM_MASK], &swapped_data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
if (Memory::m_pEXRAM && (em_address >> 28) == 0x1 &&
|
|
(em_address & 0x0FFFFFFF) < Memory::EXRAM_SIZE)
|
|
{
|
|
const T swapped_data = bswap(data);
|
|
std::memcpy(&Memory::m_pEXRAM[em_address & 0x0FFFFFFF], &swapped_data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
// Locked L1 technically doesn't have a fixed address, but games all use 0xE0000000.
|
|
if ((em_address >> 28 == 0xE) && (em_address < (0xE0000000 + Memory::L1_CACHE_SIZE)))
|
|
{
|
|
const T swapped_data = bswap(data);
|
|
std::memcpy(&Memory::m_pL1Cache[em_address & 0x0FFFFFFF], &swapped_data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
// In Fake-VMEM mode, we need to map the memory somewhere into
|
|
// physical memory for BAT translation to work; we currently use
|
|
// [0x7E000000, 0x80000000).
|
|
if (Memory::m_pFakeVMEM && ((em_address & 0xFE000000) == 0x7E000000))
|
|
{
|
|
const T swapped_data = bswap(data);
|
|
std::memcpy(&Memory::m_pFakeVMEM[em_address & Memory::RAM_MASK], &swapped_data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
// Check for a gather pipe write.
|
|
// Note that we must mask the address to correctly emulate certain games;
|
|
// Pac-Man World 3 in particular is affected by this.
|
|
if (flag == XCheckTLBFlag::Write && (em_address & 0xFFFFF000) == 0x0C008000)
|
|
{
|
|
switch (sizeof(T))
|
|
{
|
|
case 1:
|
|
GPFifo::Write8((u8)data);
|
|
return;
|
|
case 2:
|
|
GPFifo::Write16((u16)data);
|
|
return;
|
|
case 4:
|
|
GPFifo::Write32((u32)data);
|
|
return;
|
|
case 8:
|
|
GPFifo::Write64((u64)data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (flag == XCheckTLBFlag::Write && (em_address & 0xF8000000) == 0x08000000)
|
|
{
|
|
if (em_address < 0x0c000000)
|
|
{
|
|
EFB_Write((u32)data, em_address);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
Memory::mmio_mapping->Write(em_address, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
PanicAlert("Unable to resolve write address %x PC %x", em_address, PC);
|
|
return;
|
|
}
|
|
// =====================
|
|
|
|
// =================================
|
|
/* These functions are primarily called by the Interpreter functions and are routed to the correct
|
|
location through ReadFromHardware and WriteToHardware */
|
|
// ----------------
|
|
|
|
static void GenerateISIException(u32 effective_address);
|
|
|
|
u32 Read_Opcode(u32 address)
|
|
{
|
|
TryReadInstResult result = TryReadInstruction(address);
|
|
if (!result.valid)
|
|
{
|
|
GenerateISIException(address);
|
|
return 0;
|
|
}
|
|
return result.hex;
|
|
}
|
|
|
|
TryReadInstResult TryReadInstruction(u32 address)
|
|
{
|
|
bool from_bat = true;
|
|
if (MSR.IR)
|
|
{
|
|
auto tlb_addr = TranslateAddress<XCheckTLBFlag::Opcode>(address);
|
|
if (!tlb_addr.Success())
|
|
{
|
|
return TryReadInstResult{false, false, 0, 0};
|
|
}
|
|
else
|
|
{
|
|
address = tlb_addr.address;
|
|
from_bat = tlb_addr.result == TranslateAddressResult::BAT_TRANSLATED;
|
|
}
|
|
}
|
|
|
|
u32 hex;
|
|
// TODO: Refactor this. This icache implementation is totally wrong if used with the fake vmem.
|
|
if (Memory::m_pFakeVMEM && ((address & 0xFE000000) == 0x7E000000))
|
|
{
|
|
hex = Common::swap32(&Memory::m_pFakeVMEM[address & Memory::FAKEVMEM_MASK]);
|
|
}
|
|
else
|
|
{
|
|
hex = PowerPC::ppcState.iCache.ReadInstruction(address);
|
|
}
|
|
return TryReadInstResult{true, from_bat, hex, address};
|
|
}
|
|
|
|
u32 HostRead_Instruction(const u32 address)
|
|
{
|
|
UGeckoInstruction inst = HostRead_U32(address);
|
|
return inst.hex;
|
|
}
|
|
|
|
static void Memcheck(u32 address, u32 var, bool write, size_t size)
|
|
{
|
|
if (PowerPC::memchecks.HasAny())
|
|
{
|
|
TMemCheck* mc = PowerPC::memchecks.GetMemCheck(address, size);
|
|
if (mc)
|
|
{
|
|
if (CPU::IsStepping())
|
|
{
|
|
// Disable when stepping so that resume works.
|
|
return;
|
|
}
|
|
mc->num_hits++;
|
|
bool pause = mc->Action(&PowerPC::debug_interface, var, address, write, size, PC);
|
|
if (pause)
|
|
{
|
|
CPU::Break();
|
|
// Fake a DSI so that all the code that tests for it in order to skip
|
|
// the rest of the instruction will apply. (This means that
|
|
// watchpoints will stop the emulator before the offending load/store,
|
|
// not after like GDB does, but that's better anyway. Just need to
|
|
// make sure resuming after that works.)
|
|
// It doesn't matter if ReadFromHardware triggers its own DSI because
|
|
// we'll take it after resuming.
|
|
PowerPC::ppcState.Exceptions |= EXCEPTION_DSI | EXCEPTION_FAKE_MEMCHECK_HIT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
u8 Read_U8(const u32 address)
|
|
{
|
|
u8 var = ReadFromHardware<XCheckTLBFlag::Read, u8>(address);
|
|
Memcheck(address, var, false, 1);
|
|
return var;
|
|
}
|
|
|
|
u16 Read_U16(const u32 address)
|
|
{
|
|
u16 var = ReadFromHardware<XCheckTLBFlag::Read, u16>(address);
|
|
Memcheck(address, var, false, 2);
|
|
return var;
|
|
}
|
|
|
|
u32 Read_U32(const u32 address)
|
|
{
|
|
u32 var = ReadFromHardware<XCheckTLBFlag::Read, u32>(address);
|
|
Memcheck(address, var, false, 4);
|
|
return var;
|
|
}
|
|
|
|
u64 Read_U64(const u32 address)
|
|
{
|
|
u64 var = ReadFromHardware<XCheckTLBFlag::Read, u64>(address);
|
|
Memcheck(address, (u32)var, false, 8);
|
|
return var;
|
|
}
|
|
|
|
double Read_F64(const u32 address)
|
|
{
|
|
const u64 integral = Read_U64(address);
|
|
|
|
return Common::BitCast<double>(integral);
|
|
}
|
|
|
|
float Read_F32(const u32 address)
|
|
{
|
|
const u32 integral = Read_U32(address);
|
|
|
|
return Common::BitCast<float>(integral);
|
|
}
|
|
|
|
u32 Read_U8_ZX(const u32 address)
|
|
{
|
|
return Read_U8(address);
|
|
}
|
|
|
|
u32 Read_U16_ZX(const u32 address)
|
|
{
|
|
return Read_U16(address);
|
|
}
|
|
|
|
void Write_U8(const u8 var, const u32 address)
|
|
{
|
|
Memcheck(address, var, true, 1);
|
|
WriteToHardware<XCheckTLBFlag::Write, u8>(address, var);
|
|
}
|
|
|
|
void Write_U16(const u16 var, const u32 address)
|
|
{
|
|
Memcheck(address, var, true, 2);
|
|
WriteToHardware<XCheckTLBFlag::Write, u16>(address, var);
|
|
}
|
|
void Write_U16_Swap(const u16 var, const u32 address)
|
|
{
|
|
Memcheck(address, var, true, 2);
|
|
Write_U16(Common::swap16(var), address);
|
|
}
|
|
|
|
void Write_U32(const u32 var, const u32 address)
|
|
{
|
|
Memcheck(address, var, true, 4);
|
|
WriteToHardware<XCheckTLBFlag::Write, u32>(address, var);
|
|
}
|
|
void Write_U32_Swap(const u32 var, const u32 address)
|
|
{
|
|
Memcheck(address, var, true, 4);
|
|
Write_U32(Common::swap32(var), address);
|
|
}
|
|
|
|
void Write_U64(const u64 var, const u32 address)
|
|
{
|
|
Memcheck(address, (u32)var, true, 8);
|
|
WriteToHardware<XCheckTLBFlag::Write, u64>(address, var);
|
|
}
|
|
void Write_U64_Swap(const u64 var, const u32 address)
|
|
{
|
|
Memcheck(address, (u32)var, true, 8);
|
|
Write_U64(Common::swap64(var), address);
|
|
}
|
|
|
|
void Write_F64(const double var, const u32 address)
|
|
{
|
|
const u64 integral = Common::BitCast<u64>(var);
|
|
|
|
Write_U64(integral, address);
|
|
}
|
|
|
|
u8 HostRead_U8(const u32 address)
|
|
{
|
|
return ReadFromHardware<XCheckTLBFlag::NoException, u8>(address);
|
|
}
|
|
|
|
u16 HostRead_U16(const u32 address)
|
|
{
|
|
return ReadFromHardware<XCheckTLBFlag::NoException, u16>(address);
|
|
}
|
|
|
|
u32 HostRead_U32(const u32 address)
|
|
{
|
|
return ReadFromHardware<XCheckTLBFlag::NoException, u32>(address);
|
|
}
|
|
|
|
u64 HostRead_U64(const u32 address)
|
|
{
|
|
return ReadFromHardware<XCheckTLBFlag::NoException, u64>(address);
|
|
}
|
|
|
|
float HostRead_F32(const u32 address)
|
|
{
|
|
const u32 integral = HostRead_U32(address);
|
|
|
|
return Common::BitCast<float>(integral);
|
|
}
|
|
|
|
double HostRead_F64(const u32 address)
|
|
{
|
|
const u64 integral = HostRead_U64(address);
|
|
|
|
return Common::BitCast<double>(integral);
|
|
}
|
|
|
|
void HostWrite_U8(const u8 var, const u32 address)
|
|
{
|
|
WriteToHardware<XCheckTLBFlag::NoException, u8>(address, var);
|
|
}
|
|
|
|
void HostWrite_U16(const u16 var, const u32 address)
|
|
{
|
|
WriteToHardware<XCheckTLBFlag::NoException, u16>(address, var);
|
|
}
|
|
|
|
void HostWrite_U32(const u32 var, const u32 address)
|
|
{
|
|
WriteToHardware<XCheckTLBFlag::NoException, u32>(address, var);
|
|
}
|
|
|
|
void HostWrite_U64(const u64 var, const u32 address)
|
|
{
|
|
WriteToHardware<XCheckTLBFlag::NoException, u64>(address, var);
|
|
}
|
|
|
|
void HostWrite_F32(const float var, const u32 address)
|
|
{
|
|
const u32 integral = Common::BitCast<u32>(var);
|
|
|
|
HostWrite_U32(integral, address);
|
|
}
|
|
|
|
void HostWrite_F64(const double var, const u32 address)
|
|
{
|
|
const u64 integral = Common::BitCast<u64>(var);
|
|
|
|
HostWrite_U64(integral, address);
|
|
}
|
|
|
|
std::string HostGetString(u32 address, size_t size)
|
|
{
|
|
std::string s;
|
|
do
|
|
{
|
|
if (!HostIsRAMAddress(address))
|
|
break;
|
|
u8 res = HostRead_U8(address);
|
|
if (!res)
|
|
break;
|
|
s += static_cast<char>(res);
|
|
++address;
|
|
} while (size == 0 || s.length() < size);
|
|
return s;
|
|
}
|
|
|
|
bool IsOptimizableRAMAddress(const u32 address)
|
|
{
|
|
if (PowerPC::memchecks.HasAny())
|
|
return false;
|
|
|
|
if (!MSR.DR)
|
|
return false;
|
|
|
|
// TODO: This API needs to take an access size
|
|
//
|
|
// We store whether an access can be optimized to an unchecked access
|
|
// in dbat_table.
|
|
u32 bat_result = dbat_table[address >> BAT_INDEX_SHIFT];
|
|
return (bat_result & BAT_PHYSICAL_BIT) != 0;
|
|
}
|
|
|
|
template <XCheckTLBFlag flag>
|
|
static bool IsRAMAddress(u32 address, bool translate)
|
|
{
|
|
if (translate)
|
|
{
|
|
auto translate_address = TranslateAddress<flag>(address);
|
|
if (!translate_address.Success())
|
|
return false;
|
|
address = translate_address.address;
|
|
}
|
|
|
|
u32 segment = address >> 28;
|
|
if (segment == 0x0 && (address & 0x0FFFFFFF) < Memory::REALRAM_SIZE)
|
|
return true;
|
|
else if (Memory::m_pEXRAM && segment == 0x1 && (address & 0x0FFFFFFF) < Memory::EXRAM_SIZE)
|
|
return true;
|
|
else if (Memory::m_pFakeVMEM && ((address & 0xFE000000) == 0x7E000000))
|
|
return true;
|
|
else if (segment == 0xE && (address < (0xE0000000 + Memory::L1_CACHE_SIZE)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HostIsRAMAddress(u32 address)
|
|
{
|
|
return IsRAMAddress<XCheckTLBFlag::NoException>(address, MSR.DR);
|
|
}
|
|
|
|
bool HostIsInstructionRAMAddress(u32 address)
|
|
{
|
|
// Instructions are always 32bit aligned.
|
|
return !(address & 3) && IsRAMAddress<XCheckTLBFlag::OpcodeNoException>(address, MSR.IR);
|
|
}
|
|
|
|
void DMA_LCToMemory(const u32 mem_address, const u32 cache_address, const u32 num_blocks)
|
|
{
|
|
// TODO: It's not completely clear this is the right spot for this code;
|
|
// what would happen if, for example, the DVD drive tried to write to the EFB?
|
|
// TODO: This is terribly slow.
|
|
// TODO: Refactor.
|
|
// Avatar: The Last Airbender (GC) uses this for videos.
|
|
if ((mem_address & 0x0F000000) == 0x08000000)
|
|
{
|
|
for (u32 i = 0; i < 32 * num_blocks; i += 4)
|
|
{
|
|
const u32 data = Common::swap32(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF));
|
|
EFB_Write(data, mem_address + i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No known game uses this; here for completeness.
|
|
// TODO: Refactor.
|
|
if ((mem_address & 0x0F000000) == 0x0C000000)
|
|
{
|
|
for (u32 i = 0; i < 32 * num_blocks; i += 4)
|
|
{
|
|
const u32 data = Common::swap32(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF));
|
|
Memory::mmio_mapping->Write(mem_address + i, data);
|
|
}
|
|
return;
|
|
}
|
|
|
|
const u8* src = Memory::m_pL1Cache + (cache_address & 0x3FFFF);
|
|
u8* dst = Memory::GetPointer(mem_address);
|
|
if (dst == nullptr)
|
|
return;
|
|
|
|
memcpy(dst, src, 32 * num_blocks);
|
|
}
|
|
|
|
void DMA_MemoryToLC(const u32 cache_address, const u32 mem_address, const u32 num_blocks)
|
|
{
|
|
const u8* src = Memory::GetPointer(mem_address);
|
|
u8* dst = Memory::m_pL1Cache + (cache_address & 0x3FFFF);
|
|
|
|
// No known game uses this; here for completeness.
|
|
// TODO: Refactor.
|
|
if ((mem_address & 0x0F000000) == 0x08000000)
|
|
{
|
|
for (u32 i = 0; i < 32 * num_blocks; i += 4)
|
|
{
|
|
const u32 data = Common::swap32(EFB_Read(mem_address + i));
|
|
std::memcpy(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF), &data, sizeof(u32));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No known game uses this.
|
|
// TODO: Refactor.
|
|
if ((mem_address & 0x0F000000) == 0x0C000000)
|
|
{
|
|
for (u32 i = 0; i < 32 * num_blocks; i += 4)
|
|
{
|
|
const u32 data = Common::swap32(Memory::mmio_mapping->Read<u32>(mem_address + i));
|
|
std::memcpy(Memory::m_pL1Cache + ((cache_address + i) & 0x3FFFF), &data, sizeof(u32));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (src == nullptr)
|
|
return;
|
|
|
|
memcpy(dst, src, 32 * num_blocks);
|
|
}
|
|
|
|
void ClearCacheLine(u32 address)
|
|
{
|
|
DEBUG_ASSERT((address & 0x1F) == 0);
|
|
if (MSR.DR)
|
|
{
|
|
auto translated_address = TranslateAddress<XCheckTLBFlag::Write>(address);
|
|
if (translated_address.result == TranslateAddressResult::DIRECT_STORE_SEGMENT)
|
|
{
|
|
// dcbz to direct store segments is ignored. This is a little
|
|
// unintuitive, but this is consistent with both console and the PEM.
|
|
// Advance Game Port crashes if we don't emulate this correctly.
|
|
return;
|
|
}
|
|
if (translated_address.result == TranslateAddressResult::PAGE_FAULT)
|
|
{
|
|
// If translation fails, generate a DSI.
|
|
GenerateDSIException(address, true);
|
|
return;
|
|
}
|
|
address = translated_address.address;
|
|
}
|
|
|
|
// TODO: This isn't precisely correct for non-RAM regions, but the difference
|
|
// is unlikely to matter.
|
|
for (u32 i = 0; i < 32; i += 8)
|
|
WriteToHardware<XCheckTLBFlag::Write, u64, true>(address + i, 0);
|
|
}
|
|
|
|
u32 IsOptimizableMMIOAccess(u32 address, u32 access_size)
|
|
{
|
|
if (PowerPC::memchecks.HasAny())
|
|
return 0;
|
|
|
|
if (!MSR.DR)
|
|
return 0;
|
|
|
|
// Translate address
|
|
// If we also optimize for TLB mappings, we'd have to clear the
|
|
// JitCache on each TLB invalidation.
|
|
if (!TranslateBatAddess(dbat_table, &address))
|
|
return 0;
|
|
|
|
// Check whether the address is an aligned address of an MMIO register.
|
|
const bool aligned = (address & ((access_size >> 3) - 1)) == 0;
|
|
if (!aligned || !MMIO::IsMMIOAddress(address))
|
|
return 0;
|
|
|
|
return address;
|
|
}
|
|
|
|
bool IsOptimizableGatherPipeWrite(u32 address)
|
|
{
|
|
if (PowerPC::memchecks.HasAny())
|
|
return false;
|
|
|
|
if (!MSR.DR)
|
|
return false;
|
|
|
|
// Translate address, only check BAT mapping.
|
|
// If we also optimize for TLB mappings, we'd have to clear the
|
|
// JitCache on each TLB invalidation.
|
|
if (!TranslateBatAddess(dbat_table, &address))
|
|
return false;
|
|
|
|
// Check whether the translated address equals the address in WPAR.
|
|
return address == 0x0C008000;
|
|
}
|
|
|
|
TranslateResult JitCache_TranslateAddress(u32 address)
|
|
{
|
|
if (!MSR.IR)
|
|
return TranslateResult{true, true, address};
|
|
|
|
// TODO: We shouldn't use FLAG_OPCODE if the caller is the debugger.
|
|
auto tlb_addr = TranslateAddress<XCheckTLBFlag::Opcode>(address);
|
|
if (!tlb_addr.Success())
|
|
{
|
|
return TranslateResult{false, false, 0};
|
|
}
|
|
|
|
bool from_bat = tlb_addr.result == TranslateAddressResult::BAT_TRANSLATED;
|
|
return TranslateResult{true, from_bat, tlb_addr.address};
|
|
}
|
|
|
|
// *********************************************************************************
|
|
// Warning: Test Area
|
|
//
|
|
// This code is for TESTING and it works in interpreter mode ONLY. Some games (like
|
|
// COD iirc) work thanks to this basic TLB emulation.
|
|
// It is just a small hack and we have never spend enough time to finalize it.
|
|
// Cheers PearPC!
|
|
//
|
|
// *********************************************************************************
|
|
|
|
/*
|
|
* PearPC
|
|
* ppc_mmu.cc
|
|
*
|
|
* Copyright (C) 2003, 2004 Sebastian Biallas (sb@biallas.net)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#define PPC_EXC_DSISR_PAGE (1 << 30)
|
|
#define PPC_EXC_DSISR_PROT (1 << 27)
|
|
#define PPC_EXC_DSISR_STORE (1 << 25)
|
|
|
|
#define SDR1_HTABORG(v) (((v) >> 16) & 0xffff)
|
|
#define SDR1_HTABMASK(v) ((v)&0x1ff)
|
|
#define SDR1_PAGETABLE_BASE(v) ((v)&0xffff)
|
|
#define SR_T (1 << 31)
|
|
#define SR_Ks (1 << 30)
|
|
#define SR_Kp (1 << 29)
|
|
#define SR_N (1 << 28)
|
|
#define SR_VSID(v) ((v)&0xffffff)
|
|
#define SR_BUID(v) (((v) >> 20) & 0x1ff)
|
|
#define SR_CNTRL_SPEC(v) ((v)&0xfffff)
|
|
|
|
#define EA_SR(v) (((v) >> 28) & 0xf)
|
|
#define EA_PageIndex(v) (((v) >> 12) & 0xffff)
|
|
#define EA_Offset(v) ((v)&0xfff)
|
|
#define EA_API(v) (((v) >> 22) & 0x3f)
|
|
|
|
#define PA_RPN(v) (((v) >> 12) & 0xfffff)
|
|
#define PA_Offset(v) ((v)&0xfff)
|
|
|
|
#define PTE1_V (1 << 31)
|
|
#define PTE1_VSID(v) (((v) >> 7) & 0xffffff)
|
|
#define PTE1_H (1 << 6)
|
|
#define PTE1_API(v) ((v)&0x3f)
|
|
|
|
#define PTE2_RPN(v) ((v)&0xfffff000)
|
|
#define PTE2_R (1 << 8)
|
|
#define PTE2_C (1 << 7)
|
|
#define PTE2_WIMG(v) (((v) >> 3) & 0xf)
|
|
#define PTE2_PP(v) ((v)&3)
|
|
|
|
// Hey! these duplicate a structure in Gekko.h
|
|
union UPTE1
|
|
{
|
|
struct
|
|
{
|
|
u32 API : 6;
|
|
u32 H : 1;
|
|
u32 VSID : 24;
|
|
u32 V : 1;
|
|
};
|
|
u32 Hex;
|
|
};
|
|
|
|
union UPTE2
|
|
{
|
|
struct
|
|
{
|
|
u32 PP : 2;
|
|
u32 : 1;
|
|
u32 WIMG : 4;
|
|
u32 C : 1;
|
|
u32 R : 1;
|
|
u32 : 3;
|
|
u32 RPN : 20;
|
|
};
|
|
u32 Hex;
|
|
};
|
|
|
|
static void GenerateDSIException(u32 effective_address, bool write)
|
|
{
|
|
// DSI exceptions are only supported in MMU mode.
|
|
if (!SConfig::GetInstance().bMMU)
|
|
{
|
|
PanicAlert("Invalid %s 0x%08x, PC = 0x%08x ", write ? "write to" : "read from",
|
|
effective_address, PC);
|
|
return;
|
|
}
|
|
|
|
if (effective_address)
|
|
PowerPC::ppcState.spr[SPR_DSISR] = PPC_EXC_DSISR_PAGE | PPC_EXC_DSISR_STORE;
|
|
else
|
|
PowerPC::ppcState.spr[SPR_DSISR] = PPC_EXC_DSISR_PAGE;
|
|
|
|
PowerPC::ppcState.spr[SPR_DAR] = effective_address;
|
|
|
|
PowerPC::ppcState.Exceptions |= EXCEPTION_DSI;
|
|
}
|
|
|
|
static void GenerateISIException(u32 effective_address)
|
|
{
|
|
// Address of instruction could not be translated
|
|
NPC = effective_address;
|
|
|
|
PowerPC::ppcState.Exceptions |= EXCEPTION_ISI;
|
|
WARN_LOG(POWERPC, "ISI exception at 0x%08x", PC);
|
|
}
|
|
|
|
void SDRUpdated()
|
|
{
|
|
u32 htabmask = SDR1_HTABMASK(PowerPC::ppcState.spr[SPR_SDR]);
|
|
if (!Common::IsValidLowMask(htabmask))
|
|
{
|
|
return;
|
|
}
|
|
u32 htaborg = SDR1_HTABORG(PowerPC::ppcState.spr[SPR_SDR]);
|
|
if (htaborg & htabmask)
|
|
{
|
|
return;
|
|
}
|
|
PowerPC::ppcState.pagetable_base = htaborg << 16;
|
|
PowerPC::ppcState.pagetable_hashmask = ((htabmask << 10) | 0x3ff);
|
|
}
|
|
|
|
enum class TLBLookupResult
|
|
{
|
|
Found,
|
|
NotFound,
|
|
UpdateC
|
|
};
|
|
|
|
static TLBLookupResult LookupTLBPageAddress(const XCheckTLBFlag flag, const u32 vpa, u32* paddr)
|
|
{
|
|
const u32 tag = vpa >> HW_PAGE_INDEX_SHIFT;
|
|
TLBEntry& tlbe = ppcState.tlb[IsOpcodeFlag(flag)][tag & HW_PAGE_INDEX_MASK];
|
|
|
|
if (tlbe.tag[0] == tag)
|
|
{
|
|
// Check if C bit requires updating
|
|
if (flag == XCheckTLBFlag::Write)
|
|
{
|
|
UPTE2 PTE2;
|
|
PTE2.Hex = tlbe.pte[0];
|
|
if (PTE2.C == 0)
|
|
{
|
|
PTE2.C = 1;
|
|
tlbe.pte[0] = PTE2.Hex;
|
|
return TLBLookupResult::UpdateC;
|
|
}
|
|
}
|
|
|
|
if (!IsNoExceptionFlag(flag))
|
|
tlbe.recent = 0;
|
|
|
|
*paddr = tlbe.paddr[0] | (vpa & 0xfff);
|
|
|
|
return TLBLookupResult::Found;
|
|
}
|
|
if (tlbe.tag[1] == tag)
|
|
{
|
|
// Check if C bit requires updating
|
|
if (flag == XCheckTLBFlag::Write)
|
|
{
|
|
UPTE2 PTE2;
|
|
PTE2.Hex = tlbe.pte[1];
|
|
if (PTE2.C == 0)
|
|
{
|
|
PTE2.C = 1;
|
|
tlbe.pte[1] = PTE2.Hex;
|
|
return TLBLookupResult::UpdateC;
|
|
}
|
|
}
|
|
|
|
if (!IsNoExceptionFlag(flag))
|
|
tlbe.recent = 1;
|
|
|
|
*paddr = tlbe.paddr[1] | (vpa & 0xfff);
|
|
|
|
return TLBLookupResult::Found;
|
|
}
|
|
return TLBLookupResult::NotFound;
|
|
}
|
|
|
|
static void UpdateTLBEntry(const XCheckTLBFlag flag, UPTE2 PTE2, const u32 address)
|
|
{
|
|
if (IsNoExceptionFlag(flag))
|
|
return;
|
|
|
|
const int tag = address >> HW_PAGE_INDEX_SHIFT;
|
|
TLBEntry& tlbe = ppcState.tlb[IsOpcodeFlag(flag)][tag & HW_PAGE_INDEX_MASK];
|
|
const int index = tlbe.recent == 0 && tlbe.tag[0] != TLBEntry::INVALID_TAG;
|
|
tlbe.recent = index;
|
|
tlbe.paddr[index] = PTE2.RPN << HW_PAGE_INDEX_SHIFT;
|
|
tlbe.pte[index] = PTE2.Hex;
|
|
tlbe.tag[index] = tag;
|
|
}
|
|
|
|
void InvalidateTLBEntry(u32 address)
|
|
{
|
|
const u32 entry_index = (address >> HW_PAGE_INDEX_SHIFT) & HW_PAGE_INDEX_MASK;
|
|
|
|
TLBEntry& tlbe = ppcState.tlb[0][entry_index];
|
|
tlbe.tag[0] = TLBEntry::INVALID_TAG;
|
|
tlbe.tag[1] = TLBEntry::INVALID_TAG;
|
|
|
|
TLBEntry& tlbe_i = ppcState.tlb[1][entry_index];
|
|
tlbe_i.tag[0] = TLBEntry::INVALID_TAG;
|
|
tlbe_i.tag[1] = TLBEntry::INVALID_TAG;
|
|
}
|
|
|
|
// Page Address Translation
|
|
static TranslateAddressResult TranslatePageAddress(const u32 address, const XCheckTLBFlag flag)
|
|
{
|
|
// TLB cache
|
|
// This catches 99%+ of lookups in practice, so the actual page table entry code below doesn't
|
|
// benefit
|
|
// much from optimization.
|
|
u32 translatedAddress = 0;
|
|
TLBLookupResult res = LookupTLBPageAddress(flag, address, &translatedAddress);
|
|
if (res == TLBLookupResult::Found)
|
|
return TranslateAddressResult{TranslateAddressResult::PAGE_TABLE_TRANSLATED, translatedAddress};
|
|
|
|
u32 sr = PowerPC::ppcState.sr[EA_SR(address)];
|
|
|
|
if (sr & 0x80000000)
|
|
return TranslateAddressResult{TranslateAddressResult::DIRECT_STORE_SEGMENT, 0};
|
|
|
|
// TODO: Handle KS/KP segment register flags.
|
|
|
|
// No-execute segment register flag.
|
|
if ((flag == XCheckTLBFlag::Opcode || flag == XCheckTLBFlag::OpcodeNoException) &&
|
|
(sr & 0x10000000))
|
|
{
|
|
return TranslateAddressResult{TranslateAddressResult::PAGE_FAULT, 0};
|
|
}
|
|
|
|
u32 offset = EA_Offset(address); // 12 bit
|
|
u32 page_index = EA_PageIndex(address); // 16 bit
|
|
u32 VSID = SR_VSID(sr); // 24 bit
|
|
u32 api = EA_API(address); // 6 bit (part of page_index)
|
|
|
|
// hash function no 1 "xor" .360
|
|
u32 hash = (VSID ^ page_index);
|
|
u32 pte1 = Common::swap32((VSID << 7) | api | PTE1_V);
|
|
|
|
for (int hash_func = 0; hash_func < 2; hash_func++)
|
|
{
|
|
// hash function no 2 "not" .360
|
|
if (hash_func == 1)
|
|
{
|
|
hash = ~hash;
|
|
pte1 |= PTE1_H << 24;
|
|
}
|
|
|
|
u32 pteg_addr =
|
|
((hash & PowerPC::ppcState.pagetable_hashmask) << 6) | PowerPC::ppcState.pagetable_base;
|
|
|
|
for (int i = 0; i < 8; i++, pteg_addr += 8)
|
|
{
|
|
u32 pteg = Common::swap32(Memory::Read_U32(pteg_addr));
|
|
|
|
if (pte1 == pteg)
|
|
{
|
|
UPTE2 PTE2;
|
|
PTE2.Hex = Memory::Read_U32(pteg_addr + 4);
|
|
|
|
// set the access bits
|
|
switch (flag)
|
|
{
|
|
case XCheckTLBFlag::NoException:
|
|
case XCheckTLBFlag::OpcodeNoException:
|
|
break;
|
|
case XCheckTLBFlag::Read:
|
|
PTE2.R = 1;
|
|
break;
|
|
case XCheckTLBFlag::Write:
|
|
PTE2.R = 1;
|
|
PTE2.C = 1;
|
|
break;
|
|
case XCheckTLBFlag::Opcode:
|
|
PTE2.R = 1;
|
|
break;
|
|
}
|
|
|
|
if (!IsNoExceptionFlag(flag))
|
|
{
|
|
Memory::Write_U32(PTE2.Hex, pteg_addr + 4);
|
|
}
|
|
|
|
// We already updated the TLB entry if this was caused by a C bit.
|
|
if (res != TLBLookupResult::UpdateC)
|
|
UpdateTLBEntry(flag, PTE2, address);
|
|
|
|
return TranslateAddressResult{TranslateAddressResult::PAGE_TABLE_TRANSLATED,
|
|
(PTE2.RPN << 12) | offset};
|
|
}
|
|
}
|
|
}
|
|
return TranslateAddressResult{TranslateAddressResult::PAGE_FAULT, 0};
|
|
}
|
|
|
|
static void UpdateBATs(BatTable& bat_table, u32 base_spr)
|
|
{
|
|
// TODO: Separate BATs for MSR.PR==0 and MSR.PR==1
|
|
// TODO: Handle PP/WIMG settings.
|
|
// TODO: Check how hardware reacts to overlapping BATs (including
|
|
// BATs which should cause a DSI).
|
|
// TODO: Check how hardware reacts to invalid BATs (bad mask etc).
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
const u32 spr = base_spr + i * 2;
|
|
const UReg_BAT_Up batu{ppcState.spr[spr]};
|
|
const UReg_BAT_Lo batl{ppcState.spr[spr + 1]};
|
|
if (batu.VS == 0 && batu.VP == 0)
|
|
continue;
|
|
|
|
if ((batu.BEPI & batu.BL) != 0)
|
|
{
|
|
// With a valid BAT, the simplest way to match is
|
|
// (input & ~BL_mask) == BEPI. For now, assume it's
|
|
// implemented this way for invalid BATs as well.
|
|
WARN_LOG(POWERPC, "Bad BAT setup: BEPI overlaps BL");
|
|
continue;
|
|
}
|
|
if ((batl.BRPN & batu.BL) != 0)
|
|
{
|
|
// With a valid BAT, the simplest way to translate is
|
|
// (input & BL_mask) | BRPN_address. For now, assume it's
|
|
// implemented this way for invalid BATs as well.
|
|
WARN_LOG(POWERPC, "Bad BAT setup: BPRN overlaps BL");
|
|
}
|
|
if (!Common::IsValidLowMask((u32)batu.BL))
|
|
{
|
|
// With a valid BAT, the simplest way of masking is
|
|
// (input & ~BL_mask) for matching and (input & BL_mask) for
|
|
// translation. For now, assume it's implemented this way for
|
|
// invalid BATs as well.
|
|
WARN_LOG(POWERPC, "Bad BAT setup: invalid mask in BL");
|
|
}
|
|
for (u32 j = 0; j <= batu.BL; ++j)
|
|
{
|
|
// Enumerate all bit-patterns which fit within the given mask.
|
|
if ((j & batu.BL) == j)
|
|
{
|
|
// This bit is a little weird: if BRPN & j != 0, we end up with
|
|
// a strange mapping. Need to check on hardware.
|
|
u32 physical_address = (batl.BRPN | j) << BAT_INDEX_SHIFT;
|
|
u32 virtual_address = (batu.BEPI | j) << BAT_INDEX_SHIFT;
|
|
|
|
// The bottom bit is whether the translation is valid; the second
|
|
// bit from the bottom is whether we can use the fastmem arena.
|
|
u32 valid_bit = BAT_MAPPED_BIT;
|
|
if (Memory::m_pFakeVMEM && (physical_address & 0xFE000000) == 0x7E000000)
|
|
valid_bit |= BAT_PHYSICAL_BIT;
|
|
else if (physical_address < Memory::REALRAM_SIZE)
|
|
valid_bit |= BAT_PHYSICAL_BIT;
|
|
else if (Memory::m_pEXRAM && physical_address >> 28 == 0x1 &&
|
|
(physical_address & 0x0FFFFFFF) < Memory::EXRAM_SIZE)
|
|
valid_bit |= BAT_PHYSICAL_BIT;
|
|
else if (physical_address >> 28 == 0xE &&
|
|
physical_address < 0xE0000000 + Memory::L1_CACHE_SIZE)
|
|
valid_bit |= BAT_PHYSICAL_BIT;
|
|
|
|
// Fastmem doesn't support memchecks, so disable it for all overlapping virtual pages.
|
|
if (PowerPC::memchecks.OverlapsMemcheck(virtual_address, BAT_PAGE_SIZE))
|
|
valid_bit &= ~BAT_PHYSICAL_BIT;
|
|
|
|
// (BEPI | j) == (BEPI & ~BL) | (j & BL).
|
|
bat_table[virtual_address >> BAT_INDEX_SHIFT] = physical_address | valid_bit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void UpdateFakeMMUBat(BatTable& bat_table, u32 start_addr)
|
|
{
|
|
for (u32 i = 0; i < (0x10000000 >> BAT_INDEX_SHIFT); ++i)
|
|
{
|
|
// Map from 0x4XXXXXXX or 0x7XXXXXXX to the range
|
|
// [0x7E000000,0x80000000).
|
|
u32 e_address = i + (start_addr >> BAT_INDEX_SHIFT);
|
|
u32 p_address = 0x7E000000 | (i << BAT_INDEX_SHIFT & Memory::FAKEVMEM_MASK);
|
|
u32 flags = BAT_MAPPED_BIT | BAT_PHYSICAL_BIT;
|
|
|
|
if (PowerPC::memchecks.OverlapsMemcheck(e_address << BAT_INDEX_SHIFT, BAT_PAGE_SIZE))
|
|
flags &= ~BAT_PHYSICAL_BIT;
|
|
|
|
bat_table[e_address] = p_address | flags;
|
|
}
|
|
}
|
|
|
|
void DBATUpdated()
|
|
{
|
|
dbat_table = {};
|
|
UpdateBATs(dbat_table, SPR_DBAT0U);
|
|
bool extended_bats = SConfig::GetInstance().bWii && HID4.SBE;
|
|
if (extended_bats)
|
|
UpdateBATs(dbat_table, SPR_DBAT4U);
|
|
if (Memory::m_pFakeVMEM)
|
|
{
|
|
// In Fake-MMU mode, insert some extra entries into the BAT tables.
|
|
UpdateFakeMMUBat(dbat_table, 0x40000000);
|
|
UpdateFakeMMUBat(dbat_table, 0x70000000);
|
|
}
|
|
|
|
#ifndef _ARCH_32
|
|
Memory::UpdateLogicalMemory(dbat_table);
|
|
#endif
|
|
|
|
// IsOptimizable*Address and dcbz depends on the BAT mapping, so we need a flush here.
|
|
JitInterface::ClearSafe();
|
|
}
|
|
|
|
void IBATUpdated()
|
|
{
|
|
ibat_table = {};
|
|
UpdateBATs(ibat_table, SPR_IBAT0U);
|
|
bool extended_bats = SConfig::GetInstance().bWii && HID4.SBE;
|
|
if (extended_bats)
|
|
UpdateBATs(ibat_table, SPR_IBAT4U);
|
|
if (Memory::m_pFakeVMEM)
|
|
{
|
|
// In Fake-MMU mode, insert some extra entries into the BAT tables.
|
|
UpdateFakeMMUBat(ibat_table, 0x40000000);
|
|
UpdateFakeMMUBat(ibat_table, 0x70000000);
|
|
}
|
|
JitInterface::ClearSafe();
|
|
}
|
|
|
|
// Translate effective address using BAT or PAT. Returns 0 if the address cannot be translated.
|
|
// Through the hardware looks up BAT and TLB in parallel, BAT is used first if available.
|
|
// So we first check if there is a matching BAT entry, else we look for the TLB in
|
|
// TranslatePageAddress().
|
|
template <const XCheckTLBFlag flag>
|
|
static TranslateAddressResult TranslateAddress(u32 address)
|
|
{
|
|
if (TranslateBatAddess(IsOpcodeFlag(flag) ? ibat_table : dbat_table, &address))
|
|
return TranslateAddressResult{TranslateAddressResult::BAT_TRANSLATED, address};
|
|
|
|
return TranslatePageAddress(address, flag);
|
|
}
|
|
|
|
std::optional<u32> GetTranslatedAddress(u32 address)
|
|
{
|
|
auto result = TranslateAddress<XCheckTLBFlag::NoException>(address);
|
|
if (!result.Success())
|
|
{
|
|
return std::nullopt;
|
|
}
|
|
return std::optional<u32>(result.address);
|
|
}
|
|
|
|
} // namespace PowerPC
|