Jeffrey Bosboom 620955d397 XInput2: Listen to master devices only
A comment removed by this commit gives two reasons for listening to
slave devices, both of which no longer apply:

- "Only slaves emit raw motion events": perhaps this was true when the
comment was written, but now master devices provide raw motion events
along with the other raw events.

- "Selecting slave keyboards avoids dealing with key focus": we get raw
key events regardless of the focus.

Listening to both master and slave devices results in duplicate raw
events.  For button and key events, that's a tiny waste of time setting
the update flag a second time, but for raw mouse events the raw motion
will be processed twice.  That makes this commit a user-facing change.
2023-05-19 14:20:10 -07:00

458 lines
15 KiB
C++

// Copyright 2013 Max Eliaser
// SPDX-License-Identifier: GPL-2.0-or-later
#include "InputCommon/ControllerInterface/Xlib/XInput2.h"
#include <X11/XKBlib.h>
#include <X11/extensions/XInput2.h>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fmt/format.h>
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "Core/Host.h"
// This is an input plugin using the XInput 2.0 extension to the X11 protocol,
// loosely based on the old XLib plugin. (Has nothing to do with the XInput
// API on Windows.)
// This plugin creates one KeyboardMouse object for each master pointer/
// keyboard pair. Each KeyboardMouse object exports four types of controls:
// * Mouse button controls: hardcoded at 32 of them, but could be made to
// support infinitely many mouse buttons in theory; XInput2 has no limit.
// * Mouse cursor controls: one for each cardinal direction. Calculated by
// comparing the absolute position of the mouse pointer on screen to the
// center of the emulator window.
// * Mouse axis controls: one for each cardinal direction. Calculated using
// a running average of relative mouse motion on each axis.
// * Key controls: these correspond to a limited subset of the keyboard
// keys.
// Mouse axis control tuning. Unlike absolute mouse position, relative mouse
// motion data needs to be tweaked and smoothed out a bit to be usable.
// Mouse axis control output is simply divided by this number. In practice,
// that just means you can use a smaller "dead zone" if you bind axis controls
// to a joystick. No real need to make this customizable.
#define MOUSE_AXIS_SENSITIVITY 8.0f
// The mouse axis controls use a weighted running average. Each frame, the new
// value is the average of the old value and the amount of relative mouse
// motion during that frame. The old value is weighted by a ratio of
// MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing
// MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them
// more responsive. This might be useful as a user-customizable option.
#define MOUSE_AXIS_SMOOTHING 1.5f
// The scroll axis value should decay a lot faster than the mouse axes since
// it should ideally register each click of the scroll wheel. Decreasing this
// value makes it more likely that a scroll wheel input is registered, but less
// likely to differentiate between different inputs, while increasing it will
// more cleanly separate each scroll wheel click, but risks dropping some inputs
#define SCROLL_AXIS_DECAY 1.1f
namespace
{
// We need XInput 2.1 to get raw events on the root window even while another
// client has a grab. If we request 2.2 or later, the server will not generate
// emulated button presses from touch events, so we want exactly 2.1.
constexpr int XINPUT_MAJOR = 2, XINPUT_MINOR = 1;
} // namespace
namespace ciface::XInput2
{
// This function will add zero or more KeyboardMouse objects to devices.
void PopulateDevices(void* const hwnd)
{
Display* dpy = XOpenDisplay(nullptr);
// xi_opcode is important; it will be used to identify XInput events by
// the polling loop in UpdateInput.
int xi_opcode, event, error;
// verify that the XInput extension is available
if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error))
{
WARN_LOG_FMT(CONTROLLERINTERFACE, "XInput extension not available (XQueryExtension)");
return;
}
int major = XINPUT_MAJOR, minor = XINPUT_MINOR;
if (XIQueryVersion(dpy, &major, &minor) != Success || major < XINPUT_MAJOR ||
(major == XINPUT_MAJOR && minor < XINPUT_MINOR))
{
WARN_LOG_FMT(CONTROLLERINTERFACE, "XInput extension not available (XIQueryVersion)");
return;
}
// register all master devices with Dolphin
XIDeviceInfo* all_masters;
XIDeviceInfo* current_master;
double scroll_increment = 1.0f;
int num_masters;
all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters);
for (int i = 0; i < num_masters; i++)
{
current_master = &all_masters[i];
if (current_master->use == XIMasterPointer)
{
// We need to query the master for the scroll wheel's increment, since the increment used
// varies depending on what input driver is being used. For example, xf86-libinput uses 120.0.
for (int j = 0; j < current_master->num_classes; j++)
{
if (current_master->classes[j]->type == XIScrollClass)
{
XIScrollClassInfo* scroll_event =
reinterpret_cast<XIScrollClassInfo*>(current_master->classes[j]);
scroll_increment = scroll_event->increment;
break;
}
}
// Since current_master is a master pointer, its attachment must
// be a master keyboard.
g_controller_interface.AddDevice(
std::make_shared<KeyboardMouse>((Window)hwnd, xi_opcode, current_master->deviceid,
current_master->attachment, scroll_increment));
}
}
XCloseDisplay(dpy);
XIFreeDeviceInfo(all_masters);
}
KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard,
double scroll_increment_)
: m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard),
scroll_increment(scroll_increment_)
{
// The cool thing about each KeyboardMouse object having its own Display
// is that each one gets its own separate copy of the X11 event stream,
// which it can individually filter to get just the events it's interested
// in. So be aware that each KeyboardMouse object actually has its own X11
// "context."
m_display = XOpenDisplay(nullptr);
int major = XINPUT_MAJOR, minor = XINPUT_MINOR;
XIQueryVersion(m_display, &major, &minor);
// should always be 1
int unused;
XIDeviceInfo* const pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused);
name = std::string(pointer_device->name);
XIFreeDeviceInfo(pointer_device);
// Tell core X functions which keyboard is "the" keyboard for this
// X connection.
XISetClientPointer(m_display, None, pointer_deviceid);
{
unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {};
XISetMask(mask_buf, XI_RawButtonPress);
XISetMask(mask_buf, XI_RawButtonRelease);
XISetMask(mask_buf, XI_RawMotion);
XIEventMask mask;
mask.mask = mask_buf;
mask.mask_len = sizeof(mask_buf);
mask.deviceid = pointer_deviceid;
XISelectEvents(m_display, DefaultRootWindow(m_display), &mask, 1);
}
{
unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {};
XISetMask(mask_buf, XI_RawKeyPress);
XISetMask(mask_buf, XI_RawKeyRelease);
XIEventMask mask;
mask.mask = mask_buf;
mask.mask_len = sizeof(mask_buf);
mask.deviceid = keyboard_deviceid;
XISelectEvents(m_display, DefaultRootWindow(m_display), &mask, 1);
}
// Keyboard Keys
int min_keycode, max_keycode;
XDisplayKeycodes(m_display, &min_keycode, &max_keycode);
for (int i = min_keycode; i <= max_keycode; ++i)
{
Key* const temp_key = new Key(m_display, i, m_state.keyboard.data());
if (temp_key->m_keyname.length())
AddInput(temp_key);
else
delete temp_key;
}
// Add combined left/right modifiers with consistent naming across platforms.
AddCombinedInput("Alt", {"Alt_L", "Alt_R"});
AddCombinedInput("Shift", {"Shift_L", "Shift_R"});
AddCombinedInput("Ctrl", {"Control_L", "Control_R"});
// Mouse Buttons
for (int i = 0; i < 32; i++)
AddInput(new Button(i, &m_state.buttons));
// Mouse Cursor, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x));
// Mouse Axis, X-/+, Y-/+ and Z-/+
AddInput(new Axis(0, false, &m_state.axis.x));
AddInput(new Axis(0, true, &m_state.axis.x));
AddInput(new Axis(1, false, &m_state.axis.y));
AddInput(new Axis(1, true, &m_state.axis.y));
AddInput(new Axis(2, false, &m_state.axis.z));
AddInput(new Axis(2, true, &m_state.axis.z));
// Relative Mouse, X-/+, Y-/+ and Z-/+
AddInput(new RelativeMouse(0, false, &m_state.relative_mouse.x));
AddInput(new RelativeMouse(0, true, &m_state.relative_mouse.x));
AddInput(new RelativeMouse(1, false, &m_state.relative_mouse.y));
AddInput(new RelativeMouse(1, true, &m_state.relative_mouse.y));
AddInput(new RelativeMouse(2, false, &m_state.relative_mouse.z));
AddInput(new RelativeMouse(2, true, &m_state.relative_mouse.z));
}
KeyboardMouse::~KeyboardMouse()
{
XCloseDisplay(m_display);
}
// Update the mouse cursor controls
void KeyboardMouse::UpdateCursor(bool should_center_mouse)
{
double root_x, root_y, win_x, win_y;
Window root, child;
XWindowAttributes win_attribs;
XGetWindowAttributes(m_display, m_window, &win_attribs);
const auto win_width = std::max(win_attribs.width, 1);
const auto win_height = std::max(win_attribs.height, 1);
{
XIButtonState button_state;
XIModifierState mods;
XIGroupState group;
// Get the absolute position of the mouse pointer and the button state.
XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x,
&win_y, &button_state, &mods, &group);
// X buttons are 1-indexed, so to get 32 button bits we need a larger type
// for the shift.
u64 buttons_zero_indexed = 0;
std::memcpy(&buttons_zero_indexed, button_state.mask,
std::min<size_t>(button_state.mask_len, sizeof(m_state.buttons)));
m_state.buttons = buttons_zero_indexed >> 1;
free(button_state.mask);
}
if (should_center_mouse)
{
win_x = win_width / 2;
win_y = win_height / 2;
XIWarpPointer(m_display, pointer_deviceid, None, m_window, 0.0, 0.0, 0, 0, win_x, win_y);
g_controller_interface.SetMouseCenteringRequested(false);
}
const auto window_scale = g_controller_interface.GetWindowInputScale();
// the mouse position as a range from -1 to 1
m_state.cursor.x = (win_x / win_width * 2 - 1) * window_scale.x;
m_state.cursor.y = (win_y / win_height * 2 - 1) * window_scale.y;
}
void KeyboardMouse::UpdateInput()
{
XFlush(m_display);
// for the axis controls
float delta_x = 0.0f, delta_y = 0.0f, delta_z = 0.0f;
double delta_delta;
bool update_mouse = false, update_keyboard = false;
// Iterate through the event queue, processing raw pointer motion events and
// noting whether the button or key state has changed.
XEvent event;
while (XPending(m_display))
{
XNextEvent(m_display, &event);
if (event.xcookie.type != GenericEvent)
continue;
if (event.xcookie.extension != xi_opcode)
continue;
if (!XGetEventData(m_display, &event.xcookie))
continue;
switch (event.xcookie.evtype)
{
case XI_RawButtonPress:
case XI_RawButtonRelease:
update_mouse = true;
break;
case XI_RawKeyPress:
case XI_RawKeyRelease:
update_keyboard = true;
break;
case XI_RawMotion:
{
update_mouse = true;
XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data;
float values[4] = {};
size_t value_idx = 0;
// We only care about the first 4 axes, which should always be available at minimum
for (int i = 0; i < 4; ++i)
{
if (XIMaskIsSet(raw_event->valuators.mask, i))
{
values[i] = raw_event->raw_values[value_idx++];
}
}
delta_delta = values[0];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_x += delta_delta;
delta_delta = values[1];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_y += delta_delta;
// Scroll wheel input gets scaled to be similar to the mouse axes
delta_delta = values[3] * 8.0 / scroll_increment;
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_z += delta_delta;
break;
}
}
XFreeEventData(m_display, &event.xcookie);
}
m_state.relative_mouse.x = delta_x;
m_state.relative_mouse.y = delta_y;
m_state.relative_mouse.z = delta_z;
// apply axis smoothing
m_state.axis.x *= MOUSE_AXIS_SMOOTHING;
m_state.axis.x += delta_x;
m_state.axis.x /= MOUSE_AXIS_SMOOTHING + 1.0f;
m_state.axis.y *= MOUSE_AXIS_SMOOTHING;
m_state.axis.y += delta_y;
m_state.axis.y /= MOUSE_AXIS_SMOOTHING + 1.0f;
m_state.axis.z += delta_z;
m_state.axis.z /= SCROLL_AXIS_DECAY;
const bool should_center_mouse =
g_controller_interface.IsMouseCenteringRequested() && Host_RendererHasFocus();
if (update_mouse || should_center_mouse)
UpdateCursor(should_center_mouse);
if (update_keyboard)
XQueryKeymap(m_display, m_state.keyboard.data());
}
std::string KeyboardMouse::GetName() const
{
// This is the name string we got from the X server for this master
// pointer/keyboard pair.
return name;
}
std::string KeyboardMouse::GetSource() const
{
return "XInput2";
}
KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard)
: m_display(display), m_keyboard(keyboard), m_keycode(keycode)
{
int i = 0;
KeySym keysym = 0;
do
{
keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0);
i++;
} while (keysym == NoSymbol && i < 8);
// Convert to upper case for the keyname
if (keysym >= 97 && keysym <= 122)
keysym -= 32;
// 0x0110ffff is the top of the unicode character range according
// to keysymdef.h although it is probably more than we need.
if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr)
m_keyname = std::string();
else
m_keyname = std::string(XKeysymToString(keysym));
}
ControlState KeyboardMouse::Key::GetState() const
{
return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0;
}
KeyboardMouse::Button::Button(unsigned int index, u32* buttons) : m_buttons(buttons), m_index(index)
{
name = fmt::format("Click {}", m_index + 1);
}
ControlState KeyboardMouse::Button::GetState() const
{
return ((*m_buttons & (1 << m_index)) != 0);
}
KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor)
: m_cursor(cursor), m_index(index), m_positive(positive)
{
name = fmt::format("Cursor {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
ControlState KeyboardMouse::Cursor::GetState() const
{
return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f));
}
KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis)
: m_axis(axis), m_index(index), m_positive(positive)
{
name = fmt::format("Axis {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
KeyboardMouse::RelativeMouse::RelativeMouse(u8 index, bool positive, const float* axis)
: m_axis(axis), m_index(index), m_positive(positive)
{
name =
fmt::format("RelativeMouse {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
ControlState KeyboardMouse::Axis::GetState() const
{
return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
ControlState KeyboardMouse::RelativeMouse::GetState() const
{
return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
} // namespace ciface::XInput2