mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 08:09:26 +01:00
fe5150cc31
Fix Auto-Adjust Window Size option making the window too large
1001 lines
35 KiB
C++
1001 lines
35 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cstddef>
|
|
#include <cstdio>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "Core/Core.h"
|
|
|
|
#include "VideoBackends/Vulkan/BoundingBox.h"
|
|
#include "VideoBackends/Vulkan/CommandBufferManager.h"
|
|
#include "VideoBackends/Vulkan/FramebufferManager.h"
|
|
#include "VideoBackends/Vulkan/ObjectCache.h"
|
|
#include "VideoBackends/Vulkan/PostProcessing.h"
|
|
#include "VideoBackends/Vulkan/RasterFont.h"
|
|
#include "VideoBackends/Vulkan/Renderer.h"
|
|
#include "VideoBackends/Vulkan/StateTracker.h"
|
|
#include "VideoBackends/Vulkan/SwapChain.h"
|
|
#include "VideoBackends/Vulkan/TextureCache.h"
|
|
#include "VideoBackends/Vulkan/Util.h"
|
|
#include "VideoBackends/Vulkan/VKTexture.h"
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
|
|
#include "VideoCommon/BPFunctions.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/DriverDetails.h"
|
|
#include "VideoCommon/OnScreenDisplay.h"
|
|
#include "VideoCommon/PixelEngine.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/TextureCacheBase.h"
|
|
#include "VideoCommon/VideoBackendBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
Renderer::Renderer(std::unique_ptr<SwapChain> swap_chain)
|
|
: ::Renderer(swap_chain ? static_cast<int>(swap_chain->GetWidth()) : 1,
|
|
swap_chain ? static_cast<int>(swap_chain->GetHeight()) : 0),
|
|
m_swap_chain(std::move(swap_chain))
|
|
{
|
|
UpdateActiveConfig();
|
|
for (size_t i = 0; i < m_sampler_states.size(); i++)
|
|
m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex;
|
|
}
|
|
|
|
Renderer::~Renderer()
|
|
{
|
|
UpdateActiveConfig();
|
|
|
|
DestroyShaders();
|
|
DestroySemaphores();
|
|
}
|
|
|
|
Renderer* Renderer::GetInstance()
|
|
{
|
|
return static_cast<Renderer*>(g_renderer.get());
|
|
}
|
|
|
|
bool Renderer::Initialize()
|
|
{
|
|
BindEFBToStateTracker();
|
|
|
|
if (!CreateSemaphores())
|
|
{
|
|
PanicAlert("Failed to create semaphores.");
|
|
return false;
|
|
}
|
|
|
|
if (!CompileShaders())
|
|
{
|
|
PanicAlert("Failed to compile shaders.");
|
|
return false;
|
|
}
|
|
|
|
m_raster_font = std::make_unique<RasterFont>();
|
|
if (!m_raster_font->Initialize())
|
|
{
|
|
PanicAlert("Failed to initialize raster font.");
|
|
return false;
|
|
}
|
|
|
|
m_bounding_box = std::make_unique<BoundingBox>();
|
|
if (!m_bounding_box->Initialize())
|
|
{
|
|
PanicAlert("Failed to initialize bounding box.");
|
|
return false;
|
|
}
|
|
|
|
if (g_vulkan_context->SupportsBoundingBox())
|
|
{
|
|
// Bind bounding box to state tracker
|
|
StateTracker::GetInstance()->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(),
|
|
m_bounding_box->GetGPUBufferOffset(),
|
|
m_bounding_box->GetGPUBufferSize());
|
|
}
|
|
|
|
// Initialize post processing.
|
|
m_post_processor = std::make_unique<VulkanPostProcessing>();
|
|
if (!static_cast<VulkanPostProcessing*>(m_post_processor.get())
|
|
->Initialize(m_raster_font->GetTexture()))
|
|
{
|
|
PanicAlert("failed to initialize post processor.");
|
|
return false;
|
|
}
|
|
|
|
// Various initialization routines will have executed commands on the command buffer.
|
|
// Execute what we have done before beginning the first frame.
|
|
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
|
|
g_command_buffer_mgr->SubmitCommandBuffer(false);
|
|
BeginFrame();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Renderer::CreateSemaphores()
|
|
{
|
|
// Create two semaphores, one that is triggered when the swapchain buffer is ready, another after
|
|
// submit and before present
|
|
VkSemaphoreCreateInfo semaphore_info = {
|
|
VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0 // VkSemaphoreCreateFlags flags
|
|
};
|
|
|
|
VkResult res;
|
|
if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
|
|
&m_image_available_semaphore)) != VK_SUCCESS ||
|
|
(res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
|
|
&m_rendering_finished_semaphore)) != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Renderer::DestroySemaphores()
|
|
{
|
|
if (m_image_available_semaphore)
|
|
{
|
|
vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr);
|
|
m_image_available_semaphore = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_rendering_finished_semaphore)
|
|
{
|
|
vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr);
|
|
m_rendering_finished_semaphore = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<AbstractTexture> Renderer::CreateTexture(const TextureConfig& config)
|
|
{
|
|
return VKTexture::Create(config);
|
|
}
|
|
|
|
std::unique_ptr<AbstractStagingTexture> Renderer::CreateStagingTexture(StagingTextureType type,
|
|
const TextureConfig& config)
|
|
{
|
|
return VKStagingTexture::Create(type, config);
|
|
}
|
|
|
|
void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
|
|
{
|
|
u32 backbuffer_width = m_swap_chain->GetWidth();
|
|
u32 backbuffer_height = m_swap_chain->GetHeight();
|
|
|
|
m_raster_font->PrintMultiLineText(m_swap_chain->GetRenderPass(), text,
|
|
left * 2.0f / static_cast<float>(backbuffer_width) - 1,
|
|
1 - top * 2.0f / static_cast<float>(backbuffer_height),
|
|
backbuffer_width, backbuffer_height, color);
|
|
}
|
|
|
|
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
|
|
{
|
|
if (type == EFBAccessType::PeekColor)
|
|
{
|
|
u32 color = FramebufferManager::GetInstance()->PeekEFBColor(x, y);
|
|
|
|
// a little-endian value is expected to be returned
|
|
color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000));
|
|
|
|
// check what to do with the alpha channel (GX_PokeAlphaRead)
|
|
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
|
|
|
|
if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
|
|
{
|
|
color = RGBA8ToRGBA6ToRGBA8(color);
|
|
}
|
|
else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
|
|
{
|
|
color = RGBA8ToRGB565ToRGBA8(color);
|
|
}
|
|
if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
|
|
{
|
|
color |= 0xFF000000;
|
|
}
|
|
|
|
if (alpha_read_mode.ReadMode == 2)
|
|
{
|
|
return color; // GX_READ_NONE
|
|
}
|
|
else if (alpha_read_mode.ReadMode == 1)
|
|
{
|
|
return color | 0xFF000000; // GX_READ_FF
|
|
}
|
|
else /*if(alpha_read_mode.ReadMode == 0)*/
|
|
{
|
|
return color & 0x00FFFFFF; // GX_READ_00
|
|
}
|
|
}
|
|
else // if (type == EFBAccessType::PeekZ)
|
|
{
|
|
// Depth buffer is inverted for improved precision near far plane
|
|
float depth = 1.0f - FramebufferManager::GetInstance()->PeekEFBDepth(x, y);
|
|
u32 ret = 0;
|
|
|
|
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
|
|
{
|
|
// if Z is in 16 bit format you must return a 16 bit integer
|
|
ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 65536.0f), 0, 0xFFFF);
|
|
}
|
|
else
|
|
{
|
|
ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
|
|
{
|
|
if (type == EFBAccessType::PokeColor)
|
|
{
|
|
for (size_t i = 0; i < num_points; i++)
|
|
{
|
|
// Convert to expected format (BGRA->RGBA)
|
|
// TODO: Check alpha, depending on mode?
|
|
const EfbPokeData& point = points[i];
|
|
u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) |
|
|
((point.data << 16) & 0xFF0000));
|
|
FramebufferManager::GetInstance()->PokeEFBColor(point.x, point.y, color);
|
|
}
|
|
}
|
|
else // if (type == EFBAccessType::PokeZ)
|
|
{
|
|
for (size_t i = 0; i < num_points; i++)
|
|
{
|
|
// Convert to floating-point depth.
|
|
const EfbPokeData& point = points[i];
|
|
float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f);
|
|
FramebufferManager::GetInstance()->PokeEFBDepth(point.x, point.y, depth);
|
|
}
|
|
}
|
|
}
|
|
|
|
u16 Renderer::BBoxRead(int index)
|
|
{
|
|
s32 value = m_bounding_box->Get(static_cast<size_t>(index));
|
|
|
|
// Here we get the min/max value of the truncated position of the upscaled framebuffer.
|
|
// So we have to correct them to the unscaled EFB sizes.
|
|
if (index < 2)
|
|
{
|
|
// left/right
|
|
value = value * EFB_WIDTH / m_target_width;
|
|
}
|
|
else
|
|
{
|
|
// up/down
|
|
value = value * EFB_HEIGHT / m_target_height;
|
|
}
|
|
|
|
// fix max values to describe the outer border
|
|
if (index & 1)
|
|
value++;
|
|
|
|
return static_cast<u16>(value);
|
|
}
|
|
|
|
void Renderer::BBoxWrite(int index, u16 value)
|
|
{
|
|
s32 scaled_value = static_cast<s32>(value);
|
|
|
|
// fix max values to describe the outer border
|
|
if (index & 1)
|
|
scaled_value--;
|
|
|
|
// scale to internal resolution
|
|
if (index < 2)
|
|
{
|
|
// left/right
|
|
scaled_value = scaled_value * m_target_width / EFB_WIDTH;
|
|
}
|
|
else
|
|
{
|
|
// up/down
|
|
scaled_value = scaled_value * m_target_height / EFB_HEIGHT;
|
|
}
|
|
|
|
m_bounding_box->Set(static_cast<size_t>(index), scaled_value);
|
|
}
|
|
|
|
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
|
|
{
|
|
TargetRectangle result;
|
|
result.left = EFBToScaledX(rc.left);
|
|
result.top = EFBToScaledY(rc.top);
|
|
result.right = EFBToScaledX(rc.right);
|
|
result.bottom = EFBToScaledY(rc.bottom);
|
|
return result;
|
|
}
|
|
|
|
void Renderer::BeginFrame()
|
|
{
|
|
// Activate a new command list, and restore state ready for the next draw
|
|
g_command_buffer_mgr->ActivateCommandBuffer();
|
|
|
|
// Ensure that the state tracker rebinds everything, and allocates a new set
|
|
// of descriptors out of the next pool.
|
|
StateTracker::GetInstance()->InvalidateDescriptorSets();
|
|
StateTracker::GetInstance()->InvalidateConstants();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
}
|
|
|
|
void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable,
|
|
bool z_enable, u32 color, u32 z)
|
|
{
|
|
// Native -> EFB coordinates
|
|
TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc);
|
|
|
|
// Size we pass this size to vkBeginRenderPass, it has to be clamped to the framebuffer
|
|
// dimensions. The other backends just silently ignore this case.
|
|
target_rc.ClampUL(0, 0, m_target_width, m_target_height);
|
|
|
|
VkRect2D target_vk_rc = {
|
|
{target_rc.left, target_rc.top},
|
|
{static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
|
|
|
|
// Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha
|
|
// channel to 0xFF. This hopefully allows us to use the fast path in most cases.
|
|
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 ||
|
|
bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 ||
|
|
bpmem.zcontrol.pixel_format == PEControl::Z24)
|
|
{
|
|
// Force alpha writes, and clear the alpha channel. This is different to the other backends,
|
|
// where the existing values of the alpha channel are preserved.
|
|
alpha_enable = true;
|
|
color &= 0x00FFFFFF;
|
|
}
|
|
|
|
// Convert RGBA8 -> floating-point values.
|
|
VkClearValue clear_color_value = {};
|
|
VkClearValue clear_depth_value = {};
|
|
clear_color_value.color.float32[0] = static_cast<float>((color >> 16) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[1] = static_cast<float>((color >> 8) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[2] = static_cast<float>((color >> 0) & 0xFF) / 255.0f;
|
|
clear_color_value.color.float32[3] = static_cast<float>((color >> 24) & 0xFF) / 255.0f;
|
|
clear_depth_value.depthStencil.depth = (1.0f - (static_cast<float>(z & 0xFFFFFF) / 16777216.0f));
|
|
|
|
// If we're not in a render pass (start of the frame), we can use a clear render pass
|
|
// to discard the data, rather than loading and then clearing.
|
|
bool use_clear_attachments = (color_enable && alpha_enable) || z_enable;
|
|
bool use_clear_render_pass =
|
|
!StateTracker::GetInstance()->InRenderPass() && color_enable && alpha_enable && z_enable;
|
|
|
|
// The NVIDIA Vulkan driver causes the GPU to lock up, or throw exceptions if MSAA is enabled,
|
|
// a non-full clear rect is specified, and a clear loadop or vkCmdClearAttachments is used.
|
|
if (g_ActiveConfig.iMultisamples > 1 &&
|
|
DriverDetails::HasBug(DriverDetails::BUG_BROKEN_MSAA_CLEAR))
|
|
{
|
|
use_clear_render_pass = false;
|
|
use_clear_attachments = false;
|
|
}
|
|
|
|
// This path cannot be used if the driver implementation doesn't guarantee pixels with no drawn
|
|
// geometry in "this" renderpass won't be cleared
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLEAR_LOADOP_RENDERPASS))
|
|
use_clear_render_pass = false;
|
|
|
|
// Fastest path: Use a render pass to clear the buffers.
|
|
if (use_clear_render_pass)
|
|
{
|
|
VkClearValue clear_values[2] = {clear_color_value, clear_depth_value};
|
|
StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values);
|
|
return;
|
|
}
|
|
|
|
// Fast path: Use vkCmdClearAttachments to clear the buffers within a render path
|
|
// We can't use this when preserving alpha but clearing color.
|
|
if (use_clear_attachments)
|
|
{
|
|
VkClearAttachment clear_attachments[2];
|
|
uint32_t num_clear_attachments = 0;
|
|
if (color_enable && alpha_enable)
|
|
{
|
|
clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
clear_attachments[num_clear_attachments].colorAttachment = 0;
|
|
clear_attachments[num_clear_attachments].clearValue = clear_color_value;
|
|
num_clear_attachments++;
|
|
color_enable = false;
|
|
alpha_enable = false;
|
|
}
|
|
if (z_enable)
|
|
{
|
|
clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
clear_attachments[num_clear_attachments].colorAttachment = 0;
|
|
clear_attachments[num_clear_attachments].clearValue = clear_depth_value;
|
|
num_clear_attachments++;
|
|
z_enable = false;
|
|
}
|
|
if (num_clear_attachments > 0)
|
|
{
|
|
VkClearRect vk_rect = {target_vk_rc, 0, FramebufferManager::GetInstance()->GetEFBLayers()};
|
|
if (!StateTracker::GetInstance()->IsWithinRenderArea(
|
|
target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width,
|
|
target_vk_rc.extent.height))
|
|
{
|
|
StateTracker::GetInstance()->EndClearRenderPass();
|
|
}
|
|
StateTracker::GetInstance()->BeginRenderPass();
|
|
|
|
vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments,
|
|
clear_attachments, 1, &vk_rect);
|
|
}
|
|
}
|
|
|
|
// Anything left over for the slow path?
|
|
if (!color_enable && !alpha_enable && !z_enable)
|
|
return;
|
|
|
|
// Clearing must occur within a render pass.
|
|
if (!StateTracker::GetInstance()->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y,
|
|
target_vk_rc.extent.width,
|
|
target_vk_rc.extent.height))
|
|
{
|
|
StateTracker::GetInstance()->EndClearRenderPass();
|
|
}
|
|
StateTracker::GetInstance()->BeginRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
|
|
// Mask away the appropriate colors and use a shader
|
|
BlendingState blend_state = RenderState::GetNoBlendingBlendState();
|
|
blend_state.colorupdate = color_enable;
|
|
blend_state.alphaupdate = alpha_enable;
|
|
|
|
DepthState depth_state = RenderState::GetNoDepthTestingDepthStencilState();
|
|
depth_state.testenable = z_enable;
|
|
depth_state.updateenable = z_enable;
|
|
depth_state.func = ZMode::ALWAYS;
|
|
|
|
// No need to start a new render pass, but we do need to restore viewport state
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
|
|
g_shader_cache->GetPassthroughVertexShader(),
|
|
g_shader_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader);
|
|
|
|
draw.SetMultisamplingState(FramebufferManager::GetInstance()->GetEFBMultisamplingState());
|
|
draw.SetDepthState(depth_state);
|
|
draw.SetBlendState(blend_state);
|
|
|
|
draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(),
|
|
clear_color_value.color.float32[0], clear_color_value.color.float32[1],
|
|
clear_color_value.color.float32[2], clear_color_value.color.float32[3],
|
|
clear_depth_value.depthStencil.depth);
|
|
}
|
|
|
|
void Renderer::ReinterpretPixelData(unsigned int convtype)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
FramebufferManager::GetInstance()->ReinterpretPixelData(convtype);
|
|
|
|
// EFB framebuffer has now changed, so update accordingly.
|
|
BindEFBToStateTracker();
|
|
}
|
|
|
|
void Renderer::SwapImpl(AbstractTexture* texture, const EFBRectangle& xfb_region, u64 ticks,
|
|
float Gamma)
|
|
{
|
|
// Pending/batched EFB pokes should be included in the final image.
|
|
FramebufferManager::GetInstance()->FlushEFBPokes();
|
|
|
|
auto* xfb_texture = static_cast<VKTexture*>(texture);
|
|
|
|
// End the current render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->OnEndFrame();
|
|
|
|
// There are a few variables which can alter the final window draw rectangle, and some of them
|
|
// are determined by guest state. Currently, the only way to catch these is to update every frame.
|
|
UpdateDrawRectangle();
|
|
|
|
// Ensure the worker thread is not still submitting a previous command buffer.
|
|
// In other words, the last frame has been submitted (otherwise the next call would
|
|
// be a race, as the image may not have been consumed yet).
|
|
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
|
|
|
|
// Draw to the screen if we have a swap chain.
|
|
if (m_swap_chain)
|
|
{
|
|
DrawScreen(xfb_texture, xfb_region);
|
|
|
|
// Submit the current command buffer, signaling rendering finished semaphore when it's done
|
|
// Because this final command buffer is rendering to the swap chain, we need to wait for
|
|
// the available semaphore to be signaled before executing the buffer. This final submission
|
|
// can happen off-thread in the background while we're preparing the next frame.
|
|
g_command_buffer_mgr->SubmitCommandBuffer(
|
|
true, m_image_available_semaphore, m_rendering_finished_semaphore,
|
|
m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex());
|
|
}
|
|
else
|
|
{
|
|
// No swap chain, just execute command buffer.
|
|
g_command_buffer_mgr->SubmitCommandBuffer(true);
|
|
}
|
|
|
|
// NOTE: It is important that no rendering calls are made to the EFB between submitting the
|
|
// (now-previous) frame and after the below config checks are completed. If the target size
|
|
// changes, as the resize methods to not defer the destruction of the framebuffer, the current
|
|
// command buffer will contain references to a now non-existent framebuffer.
|
|
|
|
// Prep for the next frame (get command buffer ready) before doing anything else.
|
|
BeginFrame();
|
|
|
|
// Restore the EFB color texture to color attachment ready for rendering the next frame.
|
|
FramebufferManager::GetInstance()->GetEFBColorTexture()->TransitionToLayout(
|
|
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Determine what (if anything) has changed in the config.
|
|
CheckForConfigChanges();
|
|
|
|
// Handle host window resizes.
|
|
CheckForSurfaceChange();
|
|
|
|
// Clean up stale textures.
|
|
TextureCache::GetInstance()->Cleanup(frameCount);
|
|
|
|
// Pull in now-ready async shaders.
|
|
g_shader_cache->RetrieveAsyncShaders();
|
|
}
|
|
|
|
void Renderer::DrawScreen(VKTexture* xfb_texture, const EFBRectangle& xfb_region)
|
|
{
|
|
VkResult res;
|
|
if (!g_command_buffer_mgr->CheckLastPresentFail())
|
|
{
|
|
// Grab the next image from the swap chain in preparation for drawing the window.
|
|
res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
|
|
}
|
|
else
|
|
{
|
|
// If the last present failed, we need to recreate the swap chain.
|
|
res = VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR)
|
|
{
|
|
// There's an issue here. We can't resize the swap chain while the GPU is still busy with it,
|
|
// but calling WaitForGPUIdle would create a deadlock as PrepareToSubmitCommandBuffer has been
|
|
// called by SwapImpl. WaitForGPUIdle waits on the semaphore, which PrepareToSubmitCommandBuffer
|
|
// has already done, so it blocks indefinitely. To work around this, we submit the current
|
|
// command buffer, resize the swap chain (which calls WaitForGPUIdle), and then finally call
|
|
// PrepareToSubmitCommandBuffer to return to the state that the caller expects.
|
|
g_command_buffer_mgr->SubmitCommandBuffer(false);
|
|
m_swap_chain->ResizeSwapChain();
|
|
BeginFrame();
|
|
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
|
|
res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
|
|
}
|
|
if (res != VK_SUCCESS)
|
|
PanicAlert("Failed to grab image from swap chain");
|
|
|
|
// Transition from undefined (or present src, but it can be substituted) to
|
|
// color attachment ready for writing. These transitions must occur outside
|
|
// a render pass, unless the render pass declares a self-dependency.
|
|
Texture2D* backbuffer = m_swap_chain->GetCurrentTexture();
|
|
backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED);
|
|
backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Begin render pass for rendering to the swap chain.
|
|
VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
|
|
VkRenderPassBeginInfo info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
|
nullptr,
|
|
m_swap_chain->GetRenderPass(),
|
|
m_swap_chain->GetCurrentFramebuffer(),
|
|
{{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}},
|
|
1,
|
|
&clear_value};
|
|
vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info,
|
|
VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
// Draw
|
|
BlitScreen(m_swap_chain->GetRenderPass(), GetTargetRectangle(), xfb_region,
|
|
xfb_texture->GetRawTexIdentifier());
|
|
|
|
// Draw OSD
|
|
Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0,
|
|
backbuffer->GetWidth(), backbuffer->GetHeight());
|
|
DrawDebugText();
|
|
OSD::DoCallbacks(OSD::CallbackType::OnFrame);
|
|
OSD::DrawMessages();
|
|
|
|
// End drawing to backbuffer
|
|
vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer());
|
|
|
|
// Transition the backbuffer to PRESENT_SRC to ensure all commands drawing
|
|
// to it have finished before present.
|
|
backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR);
|
|
}
|
|
|
|
void Renderer::BlitScreen(VkRenderPass render_pass, const TargetRectangle& dst_rect,
|
|
const TargetRectangle& src_rect, const Texture2D* src_tex)
|
|
{
|
|
VulkanPostProcessing* post_processor = static_cast<VulkanPostProcessing*>(m_post_processor.get());
|
|
if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
|
|
g_ActiveConfig.stereo_mode == StereoMode::TAB)
|
|
{
|
|
TargetRectangle left_rect;
|
|
TargetRectangle right_rect;
|
|
std::tie(left_rect, right_rect) = ConvertStereoRectangle(dst_rect);
|
|
|
|
post_processor->BlitFromTexture(left_rect, src_rect, src_tex, 0, render_pass);
|
|
post_processor->BlitFromTexture(right_rect, src_rect, src_tex, 1, render_pass);
|
|
}
|
|
else if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer)
|
|
{
|
|
post_processor->BlitFromTexture(dst_rect, src_rect, src_tex, -1, render_pass);
|
|
}
|
|
else
|
|
{
|
|
post_processor->BlitFromTexture(dst_rect, src_rect, src_tex, 0, render_pass);
|
|
}
|
|
}
|
|
|
|
void Renderer::CheckForSurfaceChange()
|
|
{
|
|
if (!m_surface_needs_change.IsSet())
|
|
return;
|
|
|
|
// Wait for the GPU to catch up since we're going to destroy the swap chain.
|
|
g_command_buffer_mgr->WaitForGPUIdle();
|
|
|
|
// Clear the present failed flag, since we don't want to resize after recreating.
|
|
g_command_buffer_mgr->CheckLastPresentFail();
|
|
|
|
// Fast path, if the surface handle is the same, the window has just been resized.
|
|
if (m_swap_chain && m_new_surface_handle == m_swap_chain->GetNativeHandle())
|
|
{
|
|
INFO_LOG(VIDEO, "Detected window resize.");
|
|
m_swap_chain->RecreateSwapChain();
|
|
|
|
// Notify the main thread we are done.
|
|
m_surface_needs_change.Clear();
|
|
m_new_surface_handle = nullptr;
|
|
m_surface_changed.Set();
|
|
}
|
|
else
|
|
{
|
|
// Did we previously have a swap chain?
|
|
if (m_swap_chain)
|
|
{
|
|
if (!m_new_surface_handle)
|
|
{
|
|
// If there is no surface now, destroy the swap chain.
|
|
m_swap_chain.reset();
|
|
}
|
|
else
|
|
{
|
|
// Recreate the surface. If this fails we're in trouble.
|
|
if (!m_swap_chain->RecreateSurface(m_new_surface_handle))
|
|
PanicAlert("Failed to recreate Vulkan surface. Cannot continue.");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Previously had no swap chain. So create one.
|
|
VkSurfaceKHR surface = SwapChain::CreateVulkanSurface(g_vulkan_context->GetVulkanInstance(),
|
|
m_new_surface_handle);
|
|
if (surface != VK_NULL_HANDLE)
|
|
{
|
|
m_swap_chain = SwapChain::Create(m_new_surface_handle, surface, g_ActiveConfig.IsVSync());
|
|
if (!m_swap_chain)
|
|
PanicAlert("Failed to create swap chain.");
|
|
}
|
|
else
|
|
{
|
|
PanicAlert("Failed to create surface.");
|
|
}
|
|
}
|
|
|
|
// Notify calling thread.
|
|
m_surface_needs_change.Clear();
|
|
m_surface_handle = m_new_surface_handle;
|
|
m_new_surface_handle = nullptr;
|
|
m_surface_changed.Set();
|
|
}
|
|
|
|
// Handle case where the dimensions are now different.
|
|
OnSwapChainResized();
|
|
}
|
|
|
|
void Renderer::CheckForConfigChanges()
|
|
{
|
|
// Save the video config so we can compare against to determine which settings have changed.
|
|
const u32 old_multisamples = g_ActiveConfig.iMultisamples;
|
|
const int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
|
|
const bool old_force_filtering = g_ActiveConfig.bForceFiltering;
|
|
|
|
// Copy g_Config to g_ActiveConfig.
|
|
// NOTE: This can potentially race with the UI thread, however if it does, the changes will be
|
|
// delayed until the next time CheckForConfigChanges is called.
|
|
UpdateActiveConfig();
|
|
|
|
// Determine which (if any) settings have changed.
|
|
const bool multisamples_changed = old_multisamples != g_ActiveConfig.iMultisamples;
|
|
const bool anisotropy_changed = old_anisotropy != g_ActiveConfig.iMaxAnisotropy;
|
|
const bool force_texture_filtering_changed =
|
|
old_force_filtering != g_ActiveConfig.bForceFiltering;
|
|
|
|
// Update texture cache settings with any changed options.
|
|
TextureCache::GetInstance()->OnConfigChanged(g_ActiveConfig);
|
|
|
|
// Handle settings that can cause the EFB framebuffer to change.
|
|
if (CalculateTargetSize() || multisamples_changed)
|
|
RecreateEFBFramebuffer();
|
|
|
|
// MSAA samples changed, we need to recreate the EFB render pass.
|
|
// If the stereoscopy mode changed, we need to recreate the buffers as well.
|
|
// SSAA changed on/off, we have to recompile shaders.
|
|
// Changing stereoscopy from off<->on also requires shaders to be recompiled.
|
|
if (CheckForHostConfigChanges())
|
|
{
|
|
RecreateEFBFramebuffer();
|
|
RecompileShaders();
|
|
FramebufferManager::GetInstance()->RecompileShaders();
|
|
g_shader_cache->ReloadShaderAndPipelineCaches();
|
|
g_shader_cache->RecompileSharedShaders();
|
|
StateTracker::GetInstance()->InvalidateShaderPointers();
|
|
StateTracker::GetInstance()->ReloadPipelineUIDCache();
|
|
}
|
|
|
|
// For vsync, we need to change the present mode, which means recreating the swap chain.
|
|
if (m_swap_chain && g_ActiveConfig.IsVSync() != m_swap_chain->IsVSyncEnabled())
|
|
{
|
|
g_command_buffer_mgr->WaitForGPUIdle();
|
|
m_swap_chain->SetVSync(g_ActiveConfig.IsVSync());
|
|
}
|
|
|
|
// For quad-buffered stereo we need to change the layer count, so recreate the swap chain.
|
|
if (m_swap_chain &&
|
|
(g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer) != m_swap_chain->IsStereoEnabled())
|
|
{
|
|
g_command_buffer_mgr->WaitForGPUIdle();
|
|
m_swap_chain->RecreateSwapChain();
|
|
}
|
|
|
|
// Wipe sampler cache if force texture filtering or anisotropy changes.
|
|
if (anisotropy_changed || force_texture_filtering_changed)
|
|
ResetSamplerStates();
|
|
|
|
// Check for a changed post-processing shader and recompile if needed.
|
|
static_cast<VulkanPostProcessing*>(m_post_processor.get())->UpdateConfig();
|
|
}
|
|
|
|
void Renderer::OnSwapChainResized()
|
|
{
|
|
m_backbuffer_width = m_swap_chain->GetWidth();
|
|
m_backbuffer_height = m_swap_chain->GetHeight();
|
|
UpdateDrawRectangle();
|
|
if (CalculateTargetSize())
|
|
RecreateEFBFramebuffer();
|
|
}
|
|
|
|
void Renderer::BindEFBToStateTracker()
|
|
{
|
|
// Update framebuffer in state tracker
|
|
VkRect2D framebuffer_size = {{0, 0},
|
|
{FramebufferManager::GetInstance()->GetEFBWidth(),
|
|
FramebufferManager::GetInstance()->GetEFBHeight()}};
|
|
StateTracker::GetInstance()->SetRenderPass(
|
|
FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
|
|
FramebufferManager::GetInstance()->GetEFBClearRenderPass());
|
|
StateTracker::GetInstance()->SetFramebuffer(
|
|
FramebufferManager::GetInstance()->GetEFBFramebuffer(), framebuffer_size);
|
|
StateTracker::GetInstance()->SetMultisamplingstate(
|
|
FramebufferManager::GetInstance()->GetEFBMultisamplingState());
|
|
}
|
|
|
|
void Renderer::RecreateEFBFramebuffer()
|
|
{
|
|
// Ensure the GPU is finished with the current EFB textures.
|
|
g_command_buffer_mgr->WaitForGPUIdle();
|
|
FramebufferManager::GetInstance()->RecreateEFBFramebuffer();
|
|
BindEFBToStateTracker();
|
|
|
|
// Viewport and scissor rect have to be reset since they will be scaled differently.
|
|
SetViewport();
|
|
BPFunctions::SetScissor();
|
|
}
|
|
|
|
void Renderer::ApplyState()
|
|
{
|
|
}
|
|
|
|
void Renderer::ResetAPIState()
|
|
{
|
|
// End the EFB render pass if active
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
}
|
|
|
|
void Renderer::RestoreAPIState()
|
|
{
|
|
// Instruct the state tracker to re-bind everything before the next draw
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
}
|
|
|
|
void Renderer::SetRasterizationState(const RasterizationState& state)
|
|
{
|
|
StateTracker::GetInstance()->SetRasterizationState(state);
|
|
}
|
|
|
|
void Renderer::SetDepthState(const DepthState& state)
|
|
{
|
|
StateTracker::GetInstance()->SetDepthState(state);
|
|
}
|
|
|
|
void Renderer::SetBlendingState(const BlendingState& state)
|
|
{
|
|
StateTracker::GetInstance()->SetBlendState(state);
|
|
}
|
|
|
|
void Renderer::SetTexture(u32 index, const AbstractTexture* texture)
|
|
{
|
|
// Texture should always be in SHADER_READ_ONLY layout prior to use.
|
|
// This is so we don't need to transition during render passes.
|
|
auto* tex = texture ? static_cast<const VKTexture*>(texture)->GetRawTexIdentifier() : nullptr;
|
|
_dbg_assert_(VIDEO, !tex || tex->GetLayout() == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
StateTracker::GetInstance()->SetTexture(index, tex ? tex->GetView() : VK_NULL_HANDLE);
|
|
}
|
|
|
|
void Renderer::SetSamplerState(u32 index, const SamplerState& state)
|
|
{
|
|
// Skip lookup if the state hasn't changed.
|
|
if (m_sampler_states[index].hex == state.hex)
|
|
return;
|
|
|
|
// Look up new state and replace in state tracker.
|
|
VkSampler sampler = g_object_cache->GetSampler(state);
|
|
if (sampler == VK_NULL_HANDLE)
|
|
{
|
|
ERROR_LOG(VIDEO, "Failed to create sampler");
|
|
sampler = g_object_cache->GetPointSampler();
|
|
}
|
|
|
|
StateTracker::GetInstance()->SetSampler(index, sampler);
|
|
m_sampler_states[index].hex = state.hex;
|
|
}
|
|
|
|
void Renderer::UnbindTexture(const AbstractTexture* texture)
|
|
{
|
|
StateTracker::GetInstance()->UnbindTexture(
|
|
static_cast<const VKTexture*>(texture)->GetRawTexIdentifier()->GetView());
|
|
}
|
|
|
|
void Renderer::ResetSamplerStates()
|
|
{
|
|
// Ensure none of the sampler objects are in use.
|
|
// This assumes that none of the samplers are in use on the command list currently being recorded.
|
|
g_command_buffer_mgr->WaitForGPUIdle();
|
|
|
|
// Invalidate all sampler states, next draw will re-initialize them.
|
|
for (size_t i = 0; i < m_sampler_states.size(); i++)
|
|
{
|
|
m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex;
|
|
StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler());
|
|
}
|
|
|
|
// Invalidate all sampler objects (some will be unused now).
|
|
g_object_cache->ClearSamplerCache();
|
|
}
|
|
|
|
void Renderer::SetInterlacingMode()
|
|
{
|
|
}
|
|
|
|
void Renderer::SetScissorRect(const EFBRectangle& rc)
|
|
{
|
|
TargetRectangle target_rc = ConvertEFBRectangle(rc);
|
|
|
|
VkRect2D scissor = {
|
|
{target_rc.left, target_rc.top},
|
|
{static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
|
|
|
|
StateTracker::GetInstance()->SetScissor(scissor);
|
|
}
|
|
|
|
void Renderer::SetViewport()
|
|
{
|
|
int scissor_x_offset = bpmem.scissorOffset.x * 2;
|
|
int scissor_y_offset = bpmem.scissorOffset.y * 2;
|
|
|
|
float x = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_offset);
|
|
float y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_offset);
|
|
float width = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd);
|
|
float height = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht);
|
|
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
|
|
float max_depth = xfmem.viewport.farZ / 16777216.0f;
|
|
if (width < 0.0f)
|
|
{
|
|
x += width;
|
|
width = -width;
|
|
}
|
|
if (height < 0.0f)
|
|
{
|
|
y += height;
|
|
height = -height;
|
|
}
|
|
|
|
// If an oversized or inverted depth range is used, we need to calculate the depth range in the
|
|
// vertex shader.
|
|
// TODO: Inverted depth ranges are bugged in all drivers, which should be added to DriverDetails.
|
|
if (UseVertexDepthRange())
|
|
{
|
|
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
|
|
min_depth = 0.0f;
|
|
max_depth = GX_MAX_DEPTH;
|
|
}
|
|
|
|
// We use an inverted depth range here to apply the Reverse Z trick.
|
|
// This trick makes sure we match the precision provided by the 1:0
|
|
// clipping depth range on the hardware.
|
|
VkViewport viewport = {x, y, width, height, 1.0f - max_depth, 1.0f - min_depth};
|
|
StateTracker::GetInstance()->SetViewport(viewport);
|
|
}
|
|
|
|
void Renderer::ChangeSurface(void* new_surface_handle)
|
|
{
|
|
// Called by the main thread when the window is resized.
|
|
m_new_surface_handle = new_surface_handle;
|
|
m_surface_needs_change.Set();
|
|
m_surface_changed.Set();
|
|
}
|
|
|
|
void Renderer::RecompileShaders()
|
|
{
|
|
DestroyShaders();
|
|
if (!CompileShaders())
|
|
PanicAlert("Failed to recompile shaders.");
|
|
}
|
|
|
|
bool Renderer::CompileShaders()
|
|
{
|
|
static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"(
|
|
layout(location = 0) in float3 uv0;
|
|
layout(location = 1) in float4 col0;
|
|
layout(location = 0) out float4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
ocol0 = col0;
|
|
}
|
|
|
|
)";
|
|
|
|
std::string source = g_shader_cache->GetUtilityShaderHeader() + CLEAR_FRAGMENT_SHADER_SOURCE;
|
|
m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
return m_clear_fragment_shader != VK_NULL_HANDLE;
|
|
}
|
|
|
|
void Renderer::DestroyShaders()
|
|
{
|
|
auto DestroyShader = [this](VkShaderModule& shader) {
|
|
if (shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
|
|
shader = VK_NULL_HANDLE;
|
|
}
|
|
};
|
|
|
|
DestroyShader(m_clear_fragment_shader);
|
|
}
|
|
|
|
} // namespace Vulkan
|