Lioncash 5337e58284 VideoConfig: Make StereoMode an enum class
Makes for more strongly-typed identifiers (and doesn't pollute
surrounding namespaces)
2017-11-18 23:19:53 -05:00

1360 lines
50 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Vulkan/ShaderCache.h"
#include <algorithm>
#include <sstream>
#include <type_traits>
#include <xxhash.h>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/LinearDiskCache.h"
#include "Common/MsgHandler.h"
#include "Core/ConfigManager.h"
#include "Core/Host.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ShaderCompiler.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VertexFormat.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/AsyncShaderCompiler.h"
#include "VideoCommon/GeometryShaderGen.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/UberShaderPixel.h"
#include "VideoCommon/UberShaderVertex.h"
#include "VideoCommon/VertexLoaderManager.h"
namespace Vulkan
{
std::unique_ptr<ShaderCache> g_shader_cache;
ShaderCache::ShaderCache()
{
}
ShaderCache::~ShaderCache()
{
DestroyPipelineCache();
DestroyShaderCaches();
DestroySharedShaders();
}
bool ShaderCache::Initialize()
{
if (g_ActiveConfig.bShaderCache)
{
LoadShaderCaches();
if (!LoadPipelineCache())
return false;
}
else
{
if (!CreatePipelineCache())
return false;
}
if (!CompileSharedShaders())
return false;
m_async_shader_compiler = std::make_unique<VideoCommon::AsyncShaderCompiler>();
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.CanPrecompileUberShaders() ?
g_ActiveConfig.GetShaderPrecompilerThreads() :
g_ActiveConfig.GetShaderCompilerThreads());
return true;
}
void ShaderCache::Shutdown()
{
if (m_async_shader_compiler)
{
m_async_shader_compiler->StopWorkerThreads();
m_async_shader_compiler->RetrieveWorkItems();
}
}
static bool IsStripPrimitiveTopology(VkPrimitiveTopology topology)
{
return topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP ||
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY;
}
static VkPipelineRasterizationStateCreateInfo
GetVulkanRasterizationState(const RasterizationState& state)
{
static constexpr std::array<VkCullModeFlags, 4> cull_modes = {
{VK_CULL_MODE_NONE, VK_CULL_MODE_BACK_BIT, VK_CULL_MODE_FRONT_BIT,
VK_CULL_MODE_FRONT_AND_BACK}};
bool depth_clamp = g_ActiveConfig.backend_info.bSupportsDepthClamp;
return {
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineRasterizationStateCreateFlags flags
depth_clamp, // VkBool32 depthClampEnable
VK_FALSE, // VkBool32 rasterizerDiscardEnable
VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode
cull_modes[state.cullmode], // VkCullModeFlags cullMode
VK_FRONT_FACE_CLOCKWISE, // VkFrontFace frontFace
VK_FALSE, // VkBool32 depthBiasEnable
0.0f, // float depthBiasConstantFactor
0.0f, // float depthBiasClamp
0.0f, // float depthBiasSlopeFactor
1.0f // float lineWidth
};
}
static VkPipelineMultisampleStateCreateInfo
GetVulkanMultisampleState(const MultisamplingState& state)
{
return {
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineMultisampleStateCreateFlags flags
static_cast<VkSampleCountFlagBits>(
state.samples.Value()), // VkSampleCountFlagBits rasterizationSamples
state.per_sample_shading, // VkBool32 sampleShadingEnable
1.0f, // float minSampleShading
nullptr, // const VkSampleMask* pSampleMask;
VK_FALSE, // VkBool32 alphaToCoverageEnable
VK_FALSE // VkBool32 alphaToOneEnable
};
}
static VkPipelineDepthStencilStateCreateInfo GetVulkanDepthStencilState(const DepthState& state)
{
// Less/greater are swapped due to inverted depth.
static constexpr std::array<VkCompareOp, 8> funcs = {
{VK_COMPARE_OP_NEVER, VK_COMPARE_OP_GREATER, VK_COMPARE_OP_EQUAL,
VK_COMPARE_OP_GREATER_OR_EQUAL, VK_COMPARE_OP_LESS, VK_COMPARE_OP_NOT_EQUAL,
VK_COMPARE_OP_LESS_OR_EQUAL, VK_COMPARE_OP_ALWAYS}};
return {
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineDepthStencilStateCreateFlags flags
state.testenable, // VkBool32 depthTestEnable
state.updateenable, // VkBool32 depthWriteEnable
funcs[state.func], // VkCompareOp depthCompareOp
VK_FALSE, // VkBool32 depthBoundsTestEnable
VK_FALSE, // VkBool32 stencilTestEnable
{}, // VkStencilOpState front
{}, // VkStencilOpState back
0.0f, // float minDepthBounds
1.0f // float maxDepthBounds
};
}
static VkPipelineColorBlendAttachmentState GetVulkanAttachmentBlendState(const BlendingState& state)
{
VkPipelineColorBlendAttachmentState vk_state = {};
vk_state.blendEnable = static_cast<VkBool32>(state.blendenable);
vk_state.colorBlendOp = state.subtract ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
vk_state.alphaBlendOp = state.subtractAlpha ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
if (state.usedualsrc && g_vulkan_context->SupportsDualSourceBlend())
{
static constexpr std::array<VkBlendFactor, 8> src_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
vk_state.srcColorBlendFactor = src_factors[state.srcfactor];
vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha];
vk_state.dstColorBlendFactor = dst_factors[state.dstfactor];
vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha];
}
else
{
static constexpr std::array<VkBlendFactor, 8> src_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
vk_state.srcColorBlendFactor = src_factors[state.srcfactor];
vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha];
vk_state.dstColorBlendFactor = dst_factors[state.dstfactor];
vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha];
}
if (state.colorupdate)
{
vk_state.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT;
}
else
{
vk_state.colorWriteMask = 0;
}
if (state.alphaupdate)
vk_state.colorWriteMask |= VK_COLOR_COMPONENT_A_BIT;
return vk_state;
}
static VkPipelineColorBlendStateCreateInfo
GetVulkanColorBlendState(const BlendingState& state,
const VkPipelineColorBlendAttachmentState* attachments,
uint32_t num_attachments)
{
static constexpr std::array<VkLogicOp, 16> vk_logic_ops = {
{VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY,
VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR,
VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE,
VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}};
VkBool32 vk_logic_op_enable = static_cast<VkBool32>(state.logicopenable);
if (vk_logic_op_enable && !g_vulkan_context->SupportsLogicOps())
{
// At the time of writing, Adreno and Mali drivers didn't support logic ops.
// The "emulation" through blending path has been removed, so just disable it completely.
// These drivers don't support dual-source blend either, so issues are to be expected.
vk_logic_op_enable = VK_FALSE;
}
VkLogicOp vk_logic_op = vk_logic_op_enable ? vk_logic_ops[state.logicmode] : VK_LOGIC_OP_CLEAR;
VkPipelineColorBlendStateCreateInfo vk_state = {
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineColorBlendStateCreateFlags flags
vk_logic_op_enable, // VkBool32 logicOpEnable
vk_logic_op, // VkLogicOp logicOp
num_attachments, // uint32_t attachmentCount
attachments, // const VkPipelineColorBlendAttachmentState* pAttachments
{1.0f, 1.0f, 1.0f, 1.0f} // float blendConstants[4]
};
return vk_state;
}
VkPipeline ShaderCache::CreatePipeline(const PipelineInfo& info)
{
// Declare descriptors for empty vertex buffers/attributes
static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = {
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineVertexInputStateCreateFlags flags
0, // uint32_t vertexBindingDescriptionCount
nullptr, // const VkVertexInputBindingDescription* pVertexBindingDescriptions
0, // uint32_t vertexAttributeDescriptionCount
nullptr // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions
};
// Vertex inputs
const VkPipelineVertexInputStateCreateInfo& vertex_input_state =
info.vertex_format ? info.vertex_format->GetVertexInputStateInfo() : empty_vertex_input_state;
// Input assembly
static constexpr std::array<VkPrimitiveTopology, 4> vk_primitive_topologies = {
{VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP}};
VkPipelineInputAssemblyStateCreateInfo input_assembly_state = {
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
vk_primitive_topologies[static_cast<u32>(info.rasterization_state.primitive.Value())],
VK_FALSE};
// See Vulkan spec, section 19:
// If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
// primitiveRestartEnable must be VK_FALSE
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart &&
IsStripPrimitiveTopology(input_assembly_state.topology))
{
input_assembly_state.primitiveRestartEnable = VK_TRUE;
}
// Shaders to stages
VkPipelineShaderStageCreateInfo shader_stages[3];
uint32_t num_shader_stages = 0;
if (info.vs != VK_NULL_HANDLE)
{
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
info.vs,
"main"};
}
if (info.gs != VK_NULL_HANDLE)
{
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_GEOMETRY_BIT,
info.gs,
"main"};
}
if (info.ps != VK_NULL_HANDLE)
{
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
info.ps,
"main"};
}
// Fill in Vulkan descriptor structs from our state structures.
VkPipelineRasterizationStateCreateInfo rasterization_state =
GetVulkanRasterizationState(info.rasterization_state);
VkPipelineMultisampleStateCreateInfo multisample_state =
GetVulkanMultisampleState(info.multisampling_state);
VkPipelineDepthStencilStateCreateInfo depth_stencil_state =
GetVulkanDepthStencilState(info.depth_state);
VkPipelineColorBlendAttachmentState blend_attachment_state =
GetVulkanAttachmentBlendState(info.blend_state);
VkPipelineColorBlendStateCreateInfo blend_state =
GetVulkanColorBlendState(info.blend_state, &blend_attachment_state, 1);
// This viewport isn't used, but needs to be specified anyway.
static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
static const VkRect2D scissor = {{0, 0}, {1, 1}};
static const VkPipelineViewportStateCreateInfo viewport_state = {
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
nullptr,
0, // VkPipelineViewportStateCreateFlags flags;
1, // uint32_t viewportCount
&viewport, // const VkViewport* pViewports
1, // uint32_t scissorCount
&scissor // const VkRect2D* pScissors
};
// Set viewport and scissor dynamic state so we can change it elsewhere.
static const VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR};
static const VkPipelineDynamicStateCreateInfo dynamic_state = {
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr,
0, // VkPipelineDynamicStateCreateFlags flags
static_cast<u32>(ArraySize(dynamic_states)), // uint32_t dynamicStateCount
dynamic_states // const VkDynamicState* pDynamicStates
};
// Combine to full pipeline info structure.
VkGraphicsPipelineCreateInfo pipeline_info = {
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
nullptr, // VkStructureType sType
0, // VkPipelineCreateFlags flags
num_shader_stages, // uint32_t stageCount
shader_stages, // const VkPipelineShaderStageCreateInfo* pStages
&vertex_input_state, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState
&input_assembly_state, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState
nullptr, // const VkPipelineTessellationStateCreateInfo* pTessellationState
&viewport_state, // const VkPipelineViewportStateCreateInfo* pViewportState
&rasterization_state, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState
&multisample_state, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState
&depth_stencil_state, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState
&blend_state, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState
&dynamic_state, // const VkPipelineDynamicStateCreateInfo* pDynamicState
info.pipeline_layout, // VkPipelineLayout layout
info.render_pass, // VkRenderPass renderPass
0, // uint32_t subpass
VK_NULL_HANDLE, // VkPipeline basePipelineHandle
-1 // int32_t basePipelineIndex
};
VkPipeline pipeline;
VkResult res = vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), m_pipeline_cache, 1,
&pipeline_info, nullptr, &pipeline);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: ");
return VK_NULL_HANDLE;
}
return pipeline;
}
VkPipeline ShaderCache::GetPipeline(const PipelineInfo& info)
{
return GetPipelineWithCacheResult(info).first;
}
std::pair<VkPipeline, bool> ShaderCache::GetPipelineWithCacheResult(const PipelineInfo& info)
{
auto iter = m_pipeline_objects.find(info);
if (iter != m_pipeline_objects.end())
{
// If it's background compiling, ignore it, and recompile it synchronously.
if (!iter->second.second)
return std::make_pair(iter->second.first, true);
else
m_pipeline_objects.erase(iter);
}
VkPipeline pipeline = CreatePipeline(info);
m_pipeline_objects.emplace(info, std::make_pair(pipeline, false));
_assert_(pipeline != VK_NULL_HANDLE);
return {pipeline, false};
}
std::pair<std::pair<VkPipeline, bool>, bool>
ShaderCache::GetPipelineWithCacheResultAsync(const PipelineInfo& info)
{
auto iter = m_pipeline_objects.find(info);
if (iter != m_pipeline_objects.end())
return std::make_pair(iter->second, true);
// Kick a job off.
m_async_shader_compiler->QueueWorkItem(
m_async_shader_compiler->CreateWorkItem<PipelineCompilerWorkItem>(info));
m_pipeline_objects.emplace(info, std::make_pair(static_cast<VkPipeline>(VK_NULL_HANDLE), true));
return std::make_pair(std::make_pair(static_cast<VkPipeline>(VK_NULL_HANDLE), true), false);
}
VkPipeline ShaderCache::CreateComputePipeline(const ComputePipelineInfo& info)
{
VkComputePipelineCreateInfo pipeline_info = {VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
nullptr,
0,
{VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr, 0, VK_SHADER_STAGE_COMPUTE_BIT, info.cs,
"main", nullptr},
info.pipeline_layout,
VK_NULL_HANDLE,
-1};
VkPipeline pipeline;
VkResult res = vkCreateComputePipelines(g_vulkan_context->GetDevice(), VK_NULL_HANDLE, 1,
&pipeline_info, nullptr, &pipeline);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateComputePipelines failed: ");
return VK_NULL_HANDLE;
}
return pipeline;
}
VkPipeline ShaderCache::GetComputePipeline(const ComputePipelineInfo& info)
{
auto iter = m_compute_pipeline_objects.find(info);
if (iter != m_compute_pipeline_objects.end())
return iter->second;
VkPipeline pipeline = CreateComputePipeline(info);
m_compute_pipeline_objects.emplace(info, pipeline);
return pipeline;
}
void ShaderCache::ClearPipelineCache()
{
// TODO: Stop any async compiling happening.
for (const auto& it : m_pipeline_objects)
{
if (it.second.first != VK_NULL_HANDLE)
vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second.first, nullptr);
}
m_pipeline_objects.clear();
for (const auto& it : m_compute_pipeline_objects)
{
if (it.second != VK_NULL_HANDLE)
vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr);
}
m_compute_pipeline_objects.clear();
}
class PipelineCacheReadCallback : public LinearDiskCacheReader<u32, u8>
{
public:
PipelineCacheReadCallback(std::vector<u8>* data) : m_data(data) {}
void Read(const u32& key, const u8* value, u32 value_size) override
{
m_data->resize(value_size);
if (value_size > 0)
memcpy(m_data->data(), value, value_size);
}
private:
std::vector<u8>* m_data;
};
class PipelineCacheReadIgnoreCallback : public LinearDiskCacheReader<u32, u8>
{
public:
void Read(const u32& key, const u8* value, u32 value_size) override {}
};
bool ShaderCache::CreatePipelineCache()
{
// Vulkan pipeline caches can be shared between games for shader compile time reduction.
// This assumes that drivers don't create all pipelines in the cache on load time, only
// when a lookup occurs that matches a pipeline (or pipeline data) in the cache.
m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true);
VkPipelineCacheCreateInfo info = {
VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineCacheCreateFlags flags
0, // size_t initialDataSize
nullptr // const void* pInitialData
};
VkResult res =
vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
if (res == VK_SUCCESS)
return true;
LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed: ");
return false;
}
bool ShaderCache::LoadPipelineCache()
{
// We have to keep the pipeline cache file name around since when we save it
// we delete the old one, by which time the game's unique ID is already cleared.
m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true);
std::vector<u8> disk_data;
LinearDiskCache<u32, u8> disk_cache;
PipelineCacheReadCallback read_callback(&disk_data);
if (disk_cache.OpenAndRead(m_pipeline_cache_filename, read_callback) != 1)
disk_data.clear();
if (!disk_data.empty() && !ValidatePipelineCache(disk_data.data(), disk_data.size()))
{
// Don't use this data. In fact, we should delete it to prevent it from being used next time.
File::Delete(m_pipeline_cache_filename);
return CreatePipelineCache();
}
VkPipelineCacheCreateInfo info = {
VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineCacheCreateFlags flags
disk_data.size(), // size_t initialDataSize
disk_data.data() // const void* pInitialData
};
VkResult res =
vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
if (res == VK_SUCCESS)
return true;
// Failed to create pipeline cache, try with it empty.
LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed, trying empty cache: ");
return CreatePipelineCache();
}
// Based on Vulkan 1.0 specification,
// Table 9.1. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
// NOTE: This data is assumed to be in little-endian format.
#pragma pack(push, 4)
struct VK_PIPELINE_CACHE_HEADER
{
u32 header_length;
u32 header_version;
u32 vendor_id;
u32 device_id;
u8 uuid[VK_UUID_SIZE];
};
#pragma pack(pop)
// TODO: Remove the #if here when GCC 5 is a minimum build requirement.
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
static_assert(std::has_trivial_copy_constructor<VK_PIPELINE_CACHE_HEADER>::value,
"VK_PIPELINE_CACHE_HEADER must be trivially copyable");
#else
static_assert(std::is_trivially_copyable<VK_PIPELINE_CACHE_HEADER>::value,
"VK_PIPELINE_CACHE_HEADER must be trivially copyable");
#endif
bool ShaderCache::ValidatePipelineCache(const u8* data, size_t data_length)
{
if (data_length < sizeof(VK_PIPELINE_CACHE_HEADER))
{
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header");
return false;
}
VK_PIPELINE_CACHE_HEADER header;
std::memcpy(&header, data, sizeof(header));
if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER))
{
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header length");
return false;
}
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
{
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header version");
return false;
}
if (header.vendor_id != g_vulkan_context->GetDeviceProperties().vendorID)
{
ERROR_LOG(VIDEO,
"Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)",
header.vendor_id, g_vulkan_context->GetDeviceProperties().vendorID);
return false;
}
if (header.device_id != g_vulkan_context->GetDeviceProperties().deviceID)
{
ERROR_LOG(VIDEO,
"Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)",
header.device_id, g_vulkan_context->GetDeviceProperties().deviceID);
return false;
}
if (std::memcmp(header.uuid, g_vulkan_context->GetDeviceProperties().pipelineCacheUUID,
VK_UUID_SIZE) != 0)
{
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect UUID");
return false;
}
return true;
}
void ShaderCache::DestroyPipelineCache()
{
ClearPipelineCache();
vkDestroyPipelineCache(g_vulkan_context->GetDevice(), m_pipeline_cache, nullptr);
m_pipeline_cache = VK_NULL_HANDLE;
}
void ShaderCache::SavePipelineCache()
{
size_t data_size;
VkResult res =
vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
return;
}
std::vector<u8> data(data_size);
res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size,
data.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
return;
}
// Delete the old cache and re-create.
File::Delete(m_pipeline_cache_filename);
// We write a single key of 1, with the entire pipeline cache data.
// Not ideal, but our disk cache class does not support just writing a single blob
// of data without specifying a key.
LinearDiskCache<u32, u8> disk_cache;
PipelineCacheReadIgnoreCallback callback;
disk_cache.OpenAndRead(m_pipeline_cache_filename, callback);
disk_cache.Append(1, data.data(), static_cast<u32>(data.size()));
disk_cache.Close();
}
// Cache inserter that is called back when reading from the file
template <typename Uid>
struct ShaderCacheReader : public LinearDiskCacheReader<Uid, u32>
{
ShaderCacheReader(std::map<Uid, std::pair<VkShaderModule, bool>>& shader_map)
: m_shader_map(shader_map)
{
}
void Read(const Uid& key, const u32* value, u32 value_size) override
{
// We don't insert null modules into the shader map since creation could succeed later on.
// e.g. we're generating bad code, but fix this in a later version, and for some reason
// the cache is not invalidated.
VkShaderModule module = Util::CreateShaderModule(value, value_size);
if (module == VK_NULL_HANDLE)
return;
m_shader_map.emplace(key, std::make_pair(module, false));
}
std::map<Uid, std::pair<VkShaderModule, bool>>& m_shader_map;
};
void ShaderCache::LoadShaderCaches()
{
ShaderCacheReader<VertexShaderUid> vs_reader(m_vs_cache.shader_map);
m_vs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "VS", true, true),
vs_reader);
ShaderCacheReader<PixelShaderUid> ps_reader(m_ps_cache.shader_map);
m_ps_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "PS", true, true),
ps_reader);
if (g_vulkan_context->SupportsGeometryShaders())
{
ShaderCacheReader<GeometryShaderUid> gs_reader(m_gs_cache.shader_map);
m_gs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "GS", true, true),
gs_reader);
}
ShaderCacheReader<UberShader::VertexShaderUid> uber_vs_reader(m_uber_vs_cache.shader_map);
m_uber_vs_cache.disk_cache.OpenAndRead(
GetDiskShaderCacheFileName(APIType::Vulkan, "UberVS", false, true), uber_vs_reader);
ShaderCacheReader<UberShader::PixelShaderUid> uber_ps_reader(m_uber_ps_cache.shader_map);
m_uber_ps_cache.disk_cache.OpenAndRead(
GetDiskShaderCacheFileName(APIType::Vulkan, "UberPS", false, true), uber_ps_reader);
SETSTAT(stats.numPixelShadersCreated, static_cast<int>(m_ps_cache.shader_map.size()));
SETSTAT(stats.numPixelShadersAlive, static_cast<int>(m_ps_cache.shader_map.size()));
SETSTAT(stats.numVertexShadersCreated, static_cast<int>(m_vs_cache.shader_map.size()));
SETSTAT(stats.numVertexShadersAlive, static_cast<int>(m_vs_cache.shader_map.size()));
}
template <typename T>
static void DestroyShaderCache(T& cache)
{
cache.disk_cache.Sync();
cache.disk_cache.Close();
for (const auto& it : cache.shader_map)
{
if (it.second.first != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.first, nullptr);
}
cache.shader_map.clear();
}
void ShaderCache::DestroyShaderCaches()
{
DestroyShaderCache(m_vs_cache);
DestroyShaderCache(m_ps_cache);
if (g_vulkan_context->SupportsGeometryShaders())
DestroyShaderCache(m_gs_cache);
DestroyShaderCache(m_uber_vs_cache);
DestroyShaderCache(m_uber_ps_cache);
SETSTAT(stats.numPixelShadersCreated, 0);
SETSTAT(stats.numPixelShadersAlive, 0);
SETSTAT(stats.numVertexShadersCreated, 0);
SETSTAT(stats.numVertexShadersAlive, 0);
}
VkShaderModule ShaderCache::GetVertexShaderForUid(const VertexShaderUid& uid)
{
auto it = m_vs_cache.shader_map.find(uid);
if (it != m_vs_cache.shader_map.end())
{
// If it's pending, compile it synchronously.
if (!it->second.second)
return it->second.first;
else
m_vs_cache.shader_map.erase(it);
}
// Not in the cache, so compile the shader.
ShaderCompiler::SPIRVCodeVector spv;
VkShaderModule module = VK_NULL_HANDLE;
ShaderCode source_code =
GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(),
source_code.GetBuffer().length()))
{
module = Util::CreateShaderModule(spv.data(), spv.size());
// Append to shader cache if it created successfully.
if (module != VK_NULL_HANDLE)
{
m_vs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
}
}
// We still insert null entries to prevent further compilation attempts.
m_vs_cache.shader_map.emplace(uid, std::make_pair(module, false));
return module;
}
VkShaderModule ShaderCache::GetGeometryShaderForUid(const GeometryShaderUid& uid)
{
_assert_(g_vulkan_context->SupportsGeometryShaders());
auto it = m_gs_cache.shader_map.find(uid);
if (it != m_gs_cache.shader_map.end())
{
// If it's pending, compile it synchronously.
if (!it->second.second)
return it->second.first;
else
m_gs_cache.shader_map.erase(it);
}
// Not in the cache, so compile the shader.
ShaderCompiler::SPIRVCodeVector spv;
VkShaderModule module = VK_NULL_HANDLE;
ShaderCode source_code =
GenerateGeometryShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
if (ShaderCompiler::CompileGeometryShader(&spv, source_code.GetBuffer().c_str(),
source_code.GetBuffer().length()))
{
module = Util::CreateShaderModule(spv.data(), spv.size());
// Append to shader cache if it created successfully.
if (module != VK_NULL_HANDLE)
m_gs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
}
// We still insert null entries to prevent further compilation attempts.
m_gs_cache.shader_map.emplace(uid, std::make_pair(module, false));
return module;
}
VkShaderModule ShaderCache::GetPixelShaderForUid(const PixelShaderUid& uid)
{
auto it = m_ps_cache.shader_map.find(uid);
if (it != m_ps_cache.shader_map.end())
{
// If it's pending, compile it synchronously.
if (!it->second.second)
return it->second.first;
else
m_ps_cache.shader_map.erase(it);
}
// Not in the cache, so compile the shader.
ShaderCompiler::SPIRVCodeVector spv;
VkShaderModule module = VK_NULL_HANDLE;
ShaderCode source_code =
GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(),
source_code.GetBuffer().length()))
{
module = Util::CreateShaderModule(spv.data(), spv.size());
// Append to shader cache if it created successfully.
if (module != VK_NULL_HANDLE)
{
m_ps_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
}
}
// We still insert null entries to prevent further compilation attempts.
m_ps_cache.shader_map.emplace(uid, std::make_pair(module, false));
return module;
}
VkShaderModule ShaderCache::GetVertexUberShaderForUid(const UberShader::VertexShaderUid& uid)
{
auto it = m_uber_vs_cache.shader_map.find(uid);
if (it != m_uber_vs_cache.shader_map.end())
{
// If it's pending, compile it synchronously.
if (!it->second.second)
return it->second.first;
else
m_uber_vs_cache.shader_map.erase(it);
}
// Not in the cache, so compile the shader.
ShaderCompiler::SPIRVCodeVector spv;
VkShaderModule module = VK_NULL_HANDLE;
ShaderCode source_code = UberShader::GenVertexShader(
APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(),
source_code.GetBuffer().length()))
{
module = Util::CreateShaderModule(spv.data(), spv.size());
// Append to shader cache if it created successfully.
if (module != VK_NULL_HANDLE)
{
m_uber_vs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
}
}
// We still insert null entries to prevent further compilation attempts.
m_uber_vs_cache.shader_map.emplace(uid, std::make_pair(module, false));
return module;
}
VkShaderModule ShaderCache::GetPixelUberShaderForUid(const UberShader::PixelShaderUid& uid)
{
auto it = m_uber_ps_cache.shader_map.find(uid);
if (it != m_uber_ps_cache.shader_map.end())
{
// If it's pending, compile it synchronously.
if (!it->second.second)
return it->second.first;
else
m_uber_ps_cache.shader_map.erase(it);
}
// Not in the cache, so compile the shader.
ShaderCompiler::SPIRVCodeVector spv;
VkShaderModule module = VK_NULL_HANDLE;
ShaderCode source_code =
UberShader::GenPixelShader(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(),
source_code.GetBuffer().length()))
{
module = Util::CreateShaderModule(spv.data(), spv.size());
// Append to shader cache if it created successfully.
if (module != VK_NULL_HANDLE)
{
m_uber_ps_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
}
}
// We still insert null entries to prevent further compilation attempts.
m_uber_ps_cache.shader_map.emplace(uid, std::make_pair(module, false));
return module;
}
void ShaderCache::RecompileSharedShaders()
{
DestroySharedShaders();
if (!CompileSharedShaders())
PanicAlert("Failed to recompile shared shaders.");
}
void ShaderCache::ReloadShaderAndPipelineCaches()
{
m_async_shader_compiler->WaitUntilCompletion();
m_async_shader_compiler->RetrieveWorkItems();
SavePipelineCache();
DestroyShaderCaches();
DestroyPipelineCache();
if (g_ActiveConfig.bShaderCache)
{
LoadShaderCaches();
LoadPipelineCache();
}
else
{
CreatePipelineCache();
}
if (g_ActiveConfig.CanPrecompileUberShaders())
PrecompileUberShaders();
}
std::string ShaderCache::GetUtilityShaderHeader() const
{
std::stringstream ss;
if (g_ActiveConfig.iMultisamples > 1)
{
ss << "#define MSAA_ENABLED 1" << std::endl;
ss << "#define MSAA_SAMPLES " << g_ActiveConfig.iMultisamples << std::endl;
if (g_ActiveConfig.bSSAA)
ss << "#define SSAA_ENABLED 1" << std::endl;
}
u32 efb_layers = (g_ActiveConfig.stereo_mode != StereoMode::Off) ? 2 : 1;
ss << "#define EFB_LAYERS " << efb_layers << std::endl;
return ss.str();
}
std::size_t PipelineInfoHash::operator()(const PipelineInfo& key) const
{
return static_cast<std::size_t>(XXH64(&key, sizeof(key), 0));
}
bool operator==(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
}
bool operator!=(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
return !operator==(lhs, rhs);
}
bool operator<(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0;
}
bool operator>(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0;
}
std::size_t ComputePipelineInfoHash::operator()(const ComputePipelineInfo& key) const
{
return static_cast<std::size_t>(XXH64(&key, sizeof(key), 0));
}
bool operator==(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
}
bool operator!=(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
{
return !operator==(lhs, rhs);
}
bool operator<(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0;
}
bool operator>(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
{
return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0;
}
bool ShaderCache::CompileSharedShaders()
{
static const char PASSTHROUGH_VERTEX_SHADER_SOURCE[] = R"(
layout(location = 0) in vec4 ipos;
layout(location = 5) in vec4 icol0;
layout(location = 8) in vec3 itex0;
layout(location = 0) out vec3 uv0;
layout(location = 1) out vec4 col0;
void main()
{
gl_Position = ipos;
uv0 = itex0;
col0 = icol0;
}
)";
static const char PASSTHROUGH_GEOMETRY_SHADER_SOURCE[] = R"(
layout(triangles) in;
layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;
layout(location = 0) in vec3 in_uv0[];
layout(location = 1) in vec4 in_col0[];
layout(location = 0) out vec3 out_uv0;
layout(location = 1) out vec4 out_col0;
void main()
{
for (int j = 0; j < EFB_LAYERS; j++)
{
for (int i = 0; i < 3; i++)
{
gl_Layer = j;
gl_Position = gl_in[i].gl_Position;
out_uv0 = vec3(in_uv0[i].xy, float(j));
out_col0 = in_col0[i];
EmitVertex();
}
EndPrimitive();
}
}
)";
static const char SCREEN_QUAD_VERTEX_SHADER_SOURCE[] = R"(
layout(location = 0) out vec3 uv0;
void main()
{
/*
* id &1 &2 clamp(*2-1)
* 0 0,0 0,0 -1,-1 TL
* 1 1,0 1,0 1,-1 TR
* 2 0,2 0,1 -1,1 BL
* 3 1,2 1,1 1,1 BR
*/
vec2 rawpos = vec2(float(gl_VertexID & 1), clamp(float(gl_VertexID & 2), 0.0f, 1.0f));
gl_Position = vec4(rawpos * 2.0f - 1.0f, 0.0f, 1.0f);
uv0 = vec3(rawpos, 0.0f);
}
)";
static const char SCREEN_QUAD_GEOMETRY_SHADER_SOURCE[] = R"(
layout(triangles) in;
layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;
layout(location = 0) in vec3 in_uv0[];
layout(location = 0) out vec3 out_uv0;
void main()
{
for (int j = 0; j < EFB_LAYERS; j++)
{
for (int i = 0; i < 3; i++)
{
gl_Layer = j;
gl_Position = gl_in[i].gl_Position;
out_uv0 = vec3(in_uv0[i].xy, float(j));
EmitVertex();
}
EndPrimitive();
}
}
)";
std::string header = GetUtilityShaderHeader();
m_screen_quad_vertex_shader =
Util::CompileAndCreateVertexShader(header + SCREEN_QUAD_VERTEX_SHADER_SOURCE);
m_passthrough_vertex_shader =
Util::CompileAndCreateVertexShader(header + PASSTHROUGH_VERTEX_SHADER_SOURCE);
if (m_screen_quad_vertex_shader == VK_NULL_HANDLE ||
m_passthrough_vertex_shader == VK_NULL_HANDLE)
{
return false;
}
if (g_ActiveConfig.stereo_mode != StereoMode::Off && g_vulkan_context->SupportsGeometryShaders())
{
m_screen_quad_geometry_shader =
Util::CompileAndCreateGeometryShader(header + SCREEN_QUAD_GEOMETRY_SHADER_SOURCE);
m_passthrough_geometry_shader =
Util::CompileAndCreateGeometryShader(header + PASSTHROUGH_GEOMETRY_SHADER_SOURCE);
if (m_screen_quad_geometry_shader == VK_NULL_HANDLE ||
m_passthrough_geometry_shader == VK_NULL_HANDLE)
{
return false;
}
}
return true;
}
void ShaderCache::DestroySharedShaders()
{
auto DestroyShader = [this](VkShaderModule& shader) {
if (shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
shader = VK_NULL_HANDLE;
}
};
DestroyShader(m_screen_quad_vertex_shader);
DestroyShader(m_passthrough_vertex_shader);
DestroyShader(m_screen_quad_geometry_shader);
DestroyShader(m_passthrough_geometry_shader);
}
void ShaderCache::CreateDummyPipeline(const UberShader::VertexShaderUid& vuid,
const GeometryShaderUid& guid,
const UberShader::PixelShaderUid& puid)
{
PortableVertexDeclaration vertex_decl;
std::memset(&vertex_decl, 0, sizeof(vertex_decl));
PipelineInfo pinfo;
pinfo.vertex_format =
static_cast<const VertexFormat*>(VertexLoaderManager::GetUberVertexFormat(vertex_decl));
pinfo.pipeline_layout = g_object_cache->GetPipelineLayout(
g_ActiveConfig.bBBoxEnable && g_ActiveConfig.BBoxUseFragmentShaderImplementation() ?
PIPELINE_LAYOUT_BBOX :
PIPELINE_LAYOUT_STANDARD);
pinfo.vs = GetVertexUberShaderForUid(vuid);
pinfo.gs = (!guid.GetUidData()->IsPassthrough() && g_vulkan_context->SupportsGeometryShaders()) ?
GetGeometryShaderForUid(guid) :
VK_NULL_HANDLE;
pinfo.ps = GetPixelUberShaderForUid(puid);
pinfo.render_pass = FramebufferManager::GetInstance()->GetEFBLoadRenderPass();
pinfo.rasterization_state.hex = RenderState::GetNoCullRasterizationState().hex;
pinfo.depth_state.hex = RenderState::GetNoDepthTestingDepthStencilState().hex;
pinfo.blend_state.hex = RenderState::GetNoBlendingBlendState().hex;
pinfo.multisampling_state.hex = FramebufferManager::GetInstance()->GetEFBMultisamplingState().hex;
pinfo.rasterization_state.primitive =
static_cast<PrimitiveType>(guid.GetUidData()->primitive_type);
GetPipelineWithCacheResultAsync(pinfo);
}
void ShaderCache::PrecompileUberShaders()
{
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
// UIDs must have compatible texgens, a mismatching combination will never be queried.
if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens)
return;
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens)
return;
CreateDummyPipeline(vuid, guid, puid);
});
});
});
WaitForBackgroundCompilesToComplete();
// Switch to the runtime/background thread config.
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
}
void ShaderCache::WaitForBackgroundCompilesToComplete()
{
m_async_shader_compiler->WaitUntilCompletion([](size_t completed, size_t total) {
Host_UpdateProgressDialog(GetStringT("Compiling shaders...").c_str(),
static_cast<int>(completed), static_cast<int>(total));
});
m_async_shader_compiler->RetrieveWorkItems();
Host_UpdateProgressDialog("", -1, -1);
}
void ShaderCache::RetrieveAsyncShaders()
{
m_async_shader_compiler->RetrieveWorkItems();
}
std::pair<VkShaderModule, bool> ShaderCache::GetVertexShaderForUidAsync(const VertexShaderUid& uid)
{
auto it = m_vs_cache.shader_map.find(uid);
if (it != m_vs_cache.shader_map.end())
return it->second;
// Kick a compile job off.
m_async_shader_compiler->QueueWorkItem(
m_async_shader_compiler->CreateWorkItem<VertexShaderCompilerWorkItem>(uid));
m_vs_cache.shader_map.emplace(uid,
std::make_pair(static_cast<VkShaderModule>(VK_NULL_HANDLE), true));
return std::make_pair<VkShaderModule, bool>(VK_NULL_HANDLE, true);
}
std::pair<VkShaderModule, bool> ShaderCache::GetPixelShaderForUidAsync(const PixelShaderUid& uid)
{
auto it = m_ps_cache.shader_map.find(uid);
if (it != m_ps_cache.shader_map.end())
return it->second;
// Kick a compile job off.
m_async_shader_compiler->QueueWorkItem(
m_async_shader_compiler->CreateWorkItem<PixelShaderCompilerWorkItem>(uid));
m_ps_cache.shader_map.emplace(uid,
std::make_pair(static_cast<VkShaderModule>(VK_NULL_HANDLE), true));
return std::make_pair<VkShaderModule, bool>(VK_NULL_HANDLE, true);
}
bool ShaderCache::VertexShaderCompilerWorkItem::Compile()
{
ShaderCode code =
GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData());
if (!ShaderCompiler::CompileVertexShader(&m_spirv, code.GetBuffer().c_str(),
code.GetBuffer().length()))
return true;
m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size());
return true;
}
void ShaderCache::VertexShaderCompilerWorkItem::Retrieve()
{
auto it = g_shader_cache->m_vs_cache.shader_map.find(m_uid);
if (it == g_shader_cache->m_vs_cache.shader_map.end())
{
g_shader_cache->m_vs_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false));
g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(),
static_cast<u32>(m_spirv.size()));
return;
}
// The main thread may have also compiled this shader.
if (!it->second.second)
{
if (m_module != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr);
return;
}
// No longer pending.
it->second.first = m_module;
it->second.second = false;
g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(),
static_cast<u32>(m_spirv.size()));
}
bool ShaderCache::PixelShaderCompilerWorkItem::Compile()
{
ShaderCode code =
GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData());
if (!ShaderCompiler::CompileFragmentShader(&m_spirv, code.GetBuffer().c_str(),
code.GetBuffer().length()))
return true;
m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size());
return true;
}
void ShaderCache::PixelShaderCompilerWorkItem::Retrieve()
{
auto it = g_shader_cache->m_ps_cache.shader_map.find(m_uid);
if (it == g_shader_cache->m_ps_cache.shader_map.end())
{
g_shader_cache->m_ps_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false));
g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(),
static_cast<u32>(m_spirv.size()));
return;
}
// The main thread may have also compiled this shader.
if (!it->second.second)
{
if (m_module != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr);
return;
}
// No longer pending.
it->second.first = m_module;
it->second.second = false;
g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(),
static_cast<u32>(m_spirv.size()));
}
bool ShaderCache::PipelineCompilerWorkItem::Compile()
{
m_pipeline = g_shader_cache->CreatePipeline(m_info);
return true;
}
void ShaderCache::PipelineCompilerWorkItem::Retrieve()
{
auto it = g_shader_cache->m_pipeline_objects.find(m_info);
if (it == g_shader_cache->m_pipeline_objects.end())
{
g_shader_cache->m_pipeline_objects.emplace(m_info, std::make_pair(m_pipeline, false));
return;
}
// The main thread may have also compiled this shader.
if (!it->second.second)
{
if (m_pipeline != VK_NULL_HANDLE)
vkDestroyPipeline(g_vulkan_context->GetDevice(), m_pipeline, nullptr);
return;
}
// No longer pending.
it->second.first = m_pipeline;
it->second.second = false;
}
}