mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 08:09:26 +01:00
5337e58284
Makes for more strongly-typed identifiers (and doesn't pollute surrounding namespaces)
1360 lines
50 KiB
C++
1360 lines
50 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoBackends/Vulkan/ShaderCache.h"
|
|
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
#include <type_traits>
|
|
#include <xxhash.h>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/LinearDiskCache.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Host.h"
|
|
|
|
#include "VideoBackends/Vulkan/FramebufferManager.h"
|
|
#include "VideoBackends/Vulkan/ShaderCompiler.h"
|
|
#include "VideoBackends/Vulkan/StreamBuffer.h"
|
|
#include "VideoBackends/Vulkan/Util.h"
|
|
#include "VideoBackends/Vulkan/VertexFormat.h"
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
#include "VideoCommon/AsyncShaderCompiler.h"
|
|
#include "VideoCommon/GeometryShaderGen.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/UberShaderPixel.h"
|
|
#include "VideoCommon/UberShaderVertex.h"
|
|
#include "VideoCommon/VertexLoaderManager.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
std::unique_ptr<ShaderCache> g_shader_cache;
|
|
|
|
ShaderCache::ShaderCache()
|
|
{
|
|
}
|
|
|
|
ShaderCache::~ShaderCache()
|
|
{
|
|
DestroyPipelineCache();
|
|
DestroyShaderCaches();
|
|
DestroySharedShaders();
|
|
}
|
|
|
|
bool ShaderCache::Initialize()
|
|
{
|
|
if (g_ActiveConfig.bShaderCache)
|
|
{
|
|
LoadShaderCaches();
|
|
if (!LoadPipelineCache())
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (!CreatePipelineCache())
|
|
return false;
|
|
}
|
|
|
|
if (!CompileSharedShaders())
|
|
return false;
|
|
|
|
m_async_shader_compiler = std::make_unique<VideoCommon::AsyncShaderCompiler>();
|
|
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.CanPrecompileUberShaders() ?
|
|
g_ActiveConfig.GetShaderPrecompilerThreads() :
|
|
g_ActiveConfig.GetShaderCompilerThreads());
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::Shutdown()
|
|
{
|
|
if (m_async_shader_compiler)
|
|
{
|
|
m_async_shader_compiler->StopWorkerThreads();
|
|
m_async_shader_compiler->RetrieveWorkItems();
|
|
}
|
|
}
|
|
|
|
static bool IsStripPrimitiveTopology(VkPrimitiveTopology topology)
|
|
{
|
|
return topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY;
|
|
}
|
|
|
|
static VkPipelineRasterizationStateCreateInfo
|
|
GetVulkanRasterizationState(const RasterizationState& state)
|
|
{
|
|
static constexpr std::array<VkCullModeFlags, 4> cull_modes = {
|
|
{VK_CULL_MODE_NONE, VK_CULL_MODE_BACK_BIT, VK_CULL_MODE_FRONT_BIT,
|
|
VK_CULL_MODE_FRONT_AND_BACK}};
|
|
|
|
bool depth_clamp = g_ActiveConfig.backend_info.bSupportsDepthClamp;
|
|
|
|
return {
|
|
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineRasterizationStateCreateFlags flags
|
|
depth_clamp, // VkBool32 depthClampEnable
|
|
VK_FALSE, // VkBool32 rasterizerDiscardEnable
|
|
VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode
|
|
cull_modes[state.cullmode], // VkCullModeFlags cullMode
|
|
VK_FRONT_FACE_CLOCKWISE, // VkFrontFace frontFace
|
|
VK_FALSE, // VkBool32 depthBiasEnable
|
|
0.0f, // float depthBiasConstantFactor
|
|
0.0f, // float depthBiasClamp
|
|
0.0f, // float depthBiasSlopeFactor
|
|
1.0f // float lineWidth
|
|
};
|
|
}
|
|
|
|
static VkPipelineMultisampleStateCreateInfo
|
|
GetVulkanMultisampleState(const MultisamplingState& state)
|
|
{
|
|
return {
|
|
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineMultisampleStateCreateFlags flags
|
|
static_cast<VkSampleCountFlagBits>(
|
|
state.samples.Value()), // VkSampleCountFlagBits rasterizationSamples
|
|
state.per_sample_shading, // VkBool32 sampleShadingEnable
|
|
1.0f, // float minSampleShading
|
|
nullptr, // const VkSampleMask* pSampleMask;
|
|
VK_FALSE, // VkBool32 alphaToCoverageEnable
|
|
VK_FALSE // VkBool32 alphaToOneEnable
|
|
};
|
|
}
|
|
|
|
static VkPipelineDepthStencilStateCreateInfo GetVulkanDepthStencilState(const DepthState& state)
|
|
{
|
|
// Less/greater are swapped due to inverted depth.
|
|
static constexpr std::array<VkCompareOp, 8> funcs = {
|
|
{VK_COMPARE_OP_NEVER, VK_COMPARE_OP_GREATER, VK_COMPARE_OP_EQUAL,
|
|
VK_COMPARE_OP_GREATER_OR_EQUAL, VK_COMPARE_OP_LESS, VK_COMPARE_OP_NOT_EQUAL,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL, VK_COMPARE_OP_ALWAYS}};
|
|
|
|
return {
|
|
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineDepthStencilStateCreateFlags flags
|
|
state.testenable, // VkBool32 depthTestEnable
|
|
state.updateenable, // VkBool32 depthWriteEnable
|
|
funcs[state.func], // VkCompareOp depthCompareOp
|
|
VK_FALSE, // VkBool32 depthBoundsTestEnable
|
|
VK_FALSE, // VkBool32 stencilTestEnable
|
|
{}, // VkStencilOpState front
|
|
{}, // VkStencilOpState back
|
|
0.0f, // float minDepthBounds
|
|
1.0f // float maxDepthBounds
|
|
};
|
|
}
|
|
|
|
static VkPipelineColorBlendAttachmentState GetVulkanAttachmentBlendState(const BlendingState& state)
|
|
{
|
|
VkPipelineColorBlendAttachmentState vk_state = {};
|
|
vk_state.blendEnable = static_cast<VkBool32>(state.blendenable);
|
|
vk_state.colorBlendOp = state.subtract ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
|
|
vk_state.alphaBlendOp = state.subtractAlpha ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
|
|
|
|
if (state.usedualsrc && g_vulkan_context->SupportsDualSourceBlend())
|
|
{
|
|
static constexpr std::array<VkBlendFactor, 8> src_factors = {
|
|
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
|
|
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
|
|
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
|
|
|
|
vk_state.srcColorBlendFactor = src_factors[state.srcfactor];
|
|
vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha];
|
|
vk_state.dstColorBlendFactor = dst_factors[state.dstfactor];
|
|
vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha];
|
|
}
|
|
else
|
|
{
|
|
static constexpr std::array<VkBlendFactor, 8> src_factors = {
|
|
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
|
|
|
|
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
|
|
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
|
|
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
|
|
|
|
vk_state.srcColorBlendFactor = src_factors[state.srcfactor];
|
|
vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha];
|
|
vk_state.dstColorBlendFactor = dst_factors[state.dstfactor];
|
|
vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha];
|
|
}
|
|
|
|
if (state.colorupdate)
|
|
{
|
|
vk_state.colorWriteMask =
|
|
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT;
|
|
}
|
|
else
|
|
{
|
|
vk_state.colorWriteMask = 0;
|
|
}
|
|
|
|
if (state.alphaupdate)
|
|
vk_state.colorWriteMask |= VK_COLOR_COMPONENT_A_BIT;
|
|
|
|
return vk_state;
|
|
}
|
|
|
|
static VkPipelineColorBlendStateCreateInfo
|
|
GetVulkanColorBlendState(const BlendingState& state,
|
|
const VkPipelineColorBlendAttachmentState* attachments,
|
|
uint32_t num_attachments)
|
|
{
|
|
static constexpr std::array<VkLogicOp, 16> vk_logic_ops = {
|
|
{VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY,
|
|
VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR,
|
|
VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE,
|
|
VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}};
|
|
|
|
VkBool32 vk_logic_op_enable = static_cast<VkBool32>(state.logicopenable);
|
|
if (vk_logic_op_enable && !g_vulkan_context->SupportsLogicOps())
|
|
{
|
|
// At the time of writing, Adreno and Mali drivers didn't support logic ops.
|
|
// The "emulation" through blending path has been removed, so just disable it completely.
|
|
// These drivers don't support dual-source blend either, so issues are to be expected.
|
|
vk_logic_op_enable = VK_FALSE;
|
|
}
|
|
|
|
VkLogicOp vk_logic_op = vk_logic_op_enable ? vk_logic_ops[state.logicmode] : VK_LOGIC_OP_CLEAR;
|
|
|
|
VkPipelineColorBlendStateCreateInfo vk_state = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineColorBlendStateCreateFlags flags
|
|
vk_logic_op_enable, // VkBool32 logicOpEnable
|
|
vk_logic_op, // VkLogicOp logicOp
|
|
num_attachments, // uint32_t attachmentCount
|
|
attachments, // const VkPipelineColorBlendAttachmentState* pAttachments
|
|
{1.0f, 1.0f, 1.0f, 1.0f} // float blendConstants[4]
|
|
};
|
|
|
|
return vk_state;
|
|
}
|
|
|
|
VkPipeline ShaderCache::CreatePipeline(const PipelineInfo& info)
|
|
{
|
|
// Declare descriptors for empty vertex buffers/attributes
|
|
static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineVertexInputStateCreateFlags flags
|
|
0, // uint32_t vertexBindingDescriptionCount
|
|
nullptr, // const VkVertexInputBindingDescription* pVertexBindingDescriptions
|
|
0, // uint32_t vertexAttributeDescriptionCount
|
|
nullptr // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions
|
|
};
|
|
|
|
// Vertex inputs
|
|
const VkPipelineVertexInputStateCreateInfo& vertex_input_state =
|
|
info.vertex_format ? info.vertex_format->GetVertexInputStateInfo() : empty_vertex_input_state;
|
|
|
|
// Input assembly
|
|
static constexpr std::array<VkPrimitiveTopology, 4> vk_primitive_topologies = {
|
|
{VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP}};
|
|
VkPipelineInputAssemblyStateCreateInfo input_assembly_state = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
|
|
vk_primitive_topologies[static_cast<u32>(info.rasterization_state.primitive.Value())],
|
|
VK_FALSE};
|
|
|
|
// See Vulkan spec, section 19:
|
|
// If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
|
|
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
|
|
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
|
|
// primitiveRestartEnable must be VK_FALSE
|
|
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart &&
|
|
IsStripPrimitiveTopology(input_assembly_state.topology))
|
|
{
|
|
input_assembly_state.primitiveRestartEnable = VK_TRUE;
|
|
}
|
|
|
|
// Shaders to stages
|
|
VkPipelineShaderStageCreateInfo shader_stages[3];
|
|
uint32_t num_shader_stages = 0;
|
|
if (info.vs != VK_NULL_HANDLE)
|
|
{
|
|
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
info.vs,
|
|
"main"};
|
|
}
|
|
if (info.gs != VK_NULL_HANDLE)
|
|
{
|
|
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_GEOMETRY_BIT,
|
|
info.gs,
|
|
"main"};
|
|
}
|
|
if (info.ps != VK_NULL_HANDLE)
|
|
{
|
|
shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
info.ps,
|
|
"main"};
|
|
}
|
|
|
|
// Fill in Vulkan descriptor structs from our state structures.
|
|
VkPipelineRasterizationStateCreateInfo rasterization_state =
|
|
GetVulkanRasterizationState(info.rasterization_state);
|
|
VkPipelineMultisampleStateCreateInfo multisample_state =
|
|
GetVulkanMultisampleState(info.multisampling_state);
|
|
VkPipelineDepthStencilStateCreateInfo depth_stencil_state =
|
|
GetVulkanDepthStencilState(info.depth_state);
|
|
VkPipelineColorBlendAttachmentState blend_attachment_state =
|
|
GetVulkanAttachmentBlendState(info.blend_state);
|
|
VkPipelineColorBlendStateCreateInfo blend_state =
|
|
GetVulkanColorBlendState(info.blend_state, &blend_attachment_state, 1);
|
|
|
|
// This viewport isn't used, but needs to be specified anyway.
|
|
static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
|
|
static const VkRect2D scissor = {{0, 0}, {1, 1}};
|
|
static const VkPipelineViewportStateCreateInfo viewport_state = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
|
|
nullptr,
|
|
0, // VkPipelineViewportStateCreateFlags flags;
|
|
1, // uint32_t viewportCount
|
|
&viewport, // const VkViewport* pViewports
|
|
1, // uint32_t scissorCount
|
|
&scissor // const VkRect2D* pScissors
|
|
};
|
|
|
|
// Set viewport and scissor dynamic state so we can change it elsewhere.
|
|
static const VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR};
|
|
static const VkPipelineDynamicStateCreateInfo dynamic_state = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr,
|
|
0, // VkPipelineDynamicStateCreateFlags flags
|
|
static_cast<u32>(ArraySize(dynamic_states)), // uint32_t dynamicStateCount
|
|
dynamic_states // const VkDynamicState* pDynamicStates
|
|
};
|
|
|
|
// Combine to full pipeline info structure.
|
|
VkGraphicsPipelineCreateInfo pipeline_info = {
|
|
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
|
nullptr, // VkStructureType sType
|
|
0, // VkPipelineCreateFlags flags
|
|
num_shader_stages, // uint32_t stageCount
|
|
shader_stages, // const VkPipelineShaderStageCreateInfo* pStages
|
|
&vertex_input_state, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState
|
|
&input_assembly_state, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState
|
|
nullptr, // const VkPipelineTessellationStateCreateInfo* pTessellationState
|
|
&viewport_state, // const VkPipelineViewportStateCreateInfo* pViewportState
|
|
&rasterization_state, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState
|
|
&multisample_state, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState
|
|
&depth_stencil_state, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState
|
|
&blend_state, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState
|
|
&dynamic_state, // const VkPipelineDynamicStateCreateInfo* pDynamicState
|
|
info.pipeline_layout, // VkPipelineLayout layout
|
|
info.render_pass, // VkRenderPass renderPass
|
|
0, // uint32_t subpass
|
|
VK_NULL_HANDLE, // VkPipeline basePipelineHandle
|
|
-1 // int32_t basePipelineIndex
|
|
};
|
|
|
|
VkPipeline pipeline;
|
|
VkResult res = vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), m_pipeline_cache, 1,
|
|
&pipeline_info, nullptr, &pipeline);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: ");
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
return pipeline;
|
|
}
|
|
|
|
VkPipeline ShaderCache::GetPipeline(const PipelineInfo& info)
|
|
{
|
|
return GetPipelineWithCacheResult(info).first;
|
|
}
|
|
|
|
std::pair<VkPipeline, bool> ShaderCache::GetPipelineWithCacheResult(const PipelineInfo& info)
|
|
{
|
|
auto iter = m_pipeline_objects.find(info);
|
|
if (iter != m_pipeline_objects.end())
|
|
{
|
|
// If it's background compiling, ignore it, and recompile it synchronously.
|
|
if (!iter->second.second)
|
|
return std::make_pair(iter->second.first, true);
|
|
else
|
|
m_pipeline_objects.erase(iter);
|
|
}
|
|
|
|
VkPipeline pipeline = CreatePipeline(info);
|
|
m_pipeline_objects.emplace(info, std::make_pair(pipeline, false));
|
|
_assert_(pipeline != VK_NULL_HANDLE);
|
|
return {pipeline, false};
|
|
}
|
|
|
|
std::pair<std::pair<VkPipeline, bool>, bool>
|
|
ShaderCache::GetPipelineWithCacheResultAsync(const PipelineInfo& info)
|
|
{
|
|
auto iter = m_pipeline_objects.find(info);
|
|
if (iter != m_pipeline_objects.end())
|
|
return std::make_pair(iter->second, true);
|
|
|
|
// Kick a job off.
|
|
m_async_shader_compiler->QueueWorkItem(
|
|
m_async_shader_compiler->CreateWorkItem<PipelineCompilerWorkItem>(info));
|
|
m_pipeline_objects.emplace(info, std::make_pair(static_cast<VkPipeline>(VK_NULL_HANDLE), true));
|
|
return std::make_pair(std::make_pair(static_cast<VkPipeline>(VK_NULL_HANDLE), true), false);
|
|
}
|
|
|
|
VkPipeline ShaderCache::CreateComputePipeline(const ComputePipelineInfo& info)
|
|
{
|
|
VkComputePipelineCreateInfo pipeline_info = {VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
{VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr, 0, VK_SHADER_STAGE_COMPUTE_BIT, info.cs,
|
|
"main", nullptr},
|
|
info.pipeline_layout,
|
|
VK_NULL_HANDLE,
|
|
-1};
|
|
|
|
VkPipeline pipeline;
|
|
VkResult res = vkCreateComputePipelines(g_vulkan_context->GetDevice(), VK_NULL_HANDLE, 1,
|
|
&pipeline_info, nullptr, &pipeline);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateComputePipelines failed: ");
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
return pipeline;
|
|
}
|
|
|
|
VkPipeline ShaderCache::GetComputePipeline(const ComputePipelineInfo& info)
|
|
{
|
|
auto iter = m_compute_pipeline_objects.find(info);
|
|
if (iter != m_compute_pipeline_objects.end())
|
|
return iter->second;
|
|
|
|
VkPipeline pipeline = CreateComputePipeline(info);
|
|
m_compute_pipeline_objects.emplace(info, pipeline);
|
|
return pipeline;
|
|
}
|
|
|
|
void ShaderCache::ClearPipelineCache()
|
|
{
|
|
// TODO: Stop any async compiling happening.
|
|
for (const auto& it : m_pipeline_objects)
|
|
{
|
|
if (it.second.first != VK_NULL_HANDLE)
|
|
vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second.first, nullptr);
|
|
}
|
|
m_pipeline_objects.clear();
|
|
|
|
for (const auto& it : m_compute_pipeline_objects)
|
|
{
|
|
if (it.second != VK_NULL_HANDLE)
|
|
vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr);
|
|
}
|
|
m_compute_pipeline_objects.clear();
|
|
}
|
|
|
|
class PipelineCacheReadCallback : public LinearDiskCacheReader<u32, u8>
|
|
{
|
|
public:
|
|
PipelineCacheReadCallback(std::vector<u8>* data) : m_data(data) {}
|
|
void Read(const u32& key, const u8* value, u32 value_size) override
|
|
{
|
|
m_data->resize(value_size);
|
|
if (value_size > 0)
|
|
memcpy(m_data->data(), value, value_size);
|
|
}
|
|
|
|
private:
|
|
std::vector<u8>* m_data;
|
|
};
|
|
|
|
class PipelineCacheReadIgnoreCallback : public LinearDiskCacheReader<u32, u8>
|
|
{
|
|
public:
|
|
void Read(const u32& key, const u8* value, u32 value_size) override {}
|
|
};
|
|
|
|
bool ShaderCache::CreatePipelineCache()
|
|
{
|
|
// Vulkan pipeline caches can be shared between games for shader compile time reduction.
|
|
// This assumes that drivers don't create all pipelines in the cache on load time, only
|
|
// when a lookup occurs that matches a pipeline (or pipeline data) in the cache.
|
|
m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true);
|
|
|
|
VkPipelineCacheCreateInfo info = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineCacheCreateFlags flags
|
|
0, // size_t initialDataSize
|
|
nullptr // const void* pInitialData
|
|
};
|
|
|
|
VkResult res =
|
|
vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
|
|
if (res == VK_SUCCESS)
|
|
return true;
|
|
|
|
LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed: ");
|
|
return false;
|
|
}
|
|
|
|
bool ShaderCache::LoadPipelineCache()
|
|
{
|
|
// We have to keep the pipeline cache file name around since when we save it
|
|
// we delete the old one, by which time the game's unique ID is already cleared.
|
|
m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true);
|
|
|
|
std::vector<u8> disk_data;
|
|
LinearDiskCache<u32, u8> disk_cache;
|
|
PipelineCacheReadCallback read_callback(&disk_data);
|
|
if (disk_cache.OpenAndRead(m_pipeline_cache_filename, read_callback) != 1)
|
|
disk_data.clear();
|
|
|
|
if (!disk_data.empty() && !ValidatePipelineCache(disk_data.data(), disk_data.size()))
|
|
{
|
|
// Don't use this data. In fact, we should delete it to prevent it from being used next time.
|
|
File::Delete(m_pipeline_cache_filename);
|
|
return CreatePipelineCache();
|
|
}
|
|
|
|
VkPipelineCacheCreateInfo info = {
|
|
VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkPipelineCacheCreateFlags flags
|
|
disk_data.size(), // size_t initialDataSize
|
|
disk_data.data() // const void* pInitialData
|
|
};
|
|
|
|
VkResult res =
|
|
vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
|
|
if (res == VK_SUCCESS)
|
|
return true;
|
|
|
|
// Failed to create pipeline cache, try with it empty.
|
|
LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed, trying empty cache: ");
|
|
return CreatePipelineCache();
|
|
}
|
|
|
|
// Based on Vulkan 1.0 specification,
|
|
// Table 9.1. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
|
|
// NOTE: This data is assumed to be in little-endian format.
|
|
#pragma pack(push, 4)
|
|
struct VK_PIPELINE_CACHE_HEADER
|
|
{
|
|
u32 header_length;
|
|
u32 header_version;
|
|
u32 vendor_id;
|
|
u32 device_id;
|
|
u8 uuid[VK_UUID_SIZE];
|
|
};
|
|
#pragma pack(pop)
|
|
// TODO: Remove the #if here when GCC 5 is a minimum build requirement.
|
|
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
|
|
static_assert(std::has_trivial_copy_constructor<VK_PIPELINE_CACHE_HEADER>::value,
|
|
"VK_PIPELINE_CACHE_HEADER must be trivially copyable");
|
|
#else
|
|
static_assert(std::is_trivially_copyable<VK_PIPELINE_CACHE_HEADER>::value,
|
|
"VK_PIPELINE_CACHE_HEADER must be trivially copyable");
|
|
#endif
|
|
|
|
bool ShaderCache::ValidatePipelineCache(const u8* data, size_t data_length)
|
|
{
|
|
if (data_length < sizeof(VK_PIPELINE_CACHE_HEADER))
|
|
{
|
|
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header");
|
|
return false;
|
|
}
|
|
|
|
VK_PIPELINE_CACHE_HEADER header;
|
|
std::memcpy(&header, data, sizeof(header));
|
|
if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER))
|
|
{
|
|
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header length");
|
|
return false;
|
|
}
|
|
|
|
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
|
|
{
|
|
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header version");
|
|
return false;
|
|
}
|
|
|
|
if (header.vendor_id != g_vulkan_context->GetDeviceProperties().vendorID)
|
|
{
|
|
ERROR_LOG(VIDEO,
|
|
"Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)",
|
|
header.vendor_id, g_vulkan_context->GetDeviceProperties().vendorID);
|
|
return false;
|
|
}
|
|
|
|
if (header.device_id != g_vulkan_context->GetDeviceProperties().deviceID)
|
|
{
|
|
ERROR_LOG(VIDEO,
|
|
"Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)",
|
|
header.device_id, g_vulkan_context->GetDeviceProperties().deviceID);
|
|
return false;
|
|
}
|
|
|
|
if (std::memcmp(header.uuid, g_vulkan_context->GetDeviceProperties().pipelineCacheUUID,
|
|
VK_UUID_SIZE) != 0)
|
|
{
|
|
ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect UUID");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::DestroyPipelineCache()
|
|
{
|
|
ClearPipelineCache();
|
|
vkDestroyPipelineCache(g_vulkan_context->GetDevice(), m_pipeline_cache, nullptr);
|
|
m_pipeline_cache = VK_NULL_HANDLE;
|
|
}
|
|
|
|
void ShaderCache::SavePipelineCache()
|
|
{
|
|
size_t data_size;
|
|
VkResult res =
|
|
vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
|
|
return;
|
|
}
|
|
|
|
std::vector<u8> data(data_size);
|
|
res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size,
|
|
data.data());
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
|
|
return;
|
|
}
|
|
|
|
// Delete the old cache and re-create.
|
|
File::Delete(m_pipeline_cache_filename);
|
|
|
|
// We write a single key of 1, with the entire pipeline cache data.
|
|
// Not ideal, but our disk cache class does not support just writing a single blob
|
|
// of data without specifying a key.
|
|
LinearDiskCache<u32, u8> disk_cache;
|
|
PipelineCacheReadIgnoreCallback callback;
|
|
disk_cache.OpenAndRead(m_pipeline_cache_filename, callback);
|
|
disk_cache.Append(1, data.data(), static_cast<u32>(data.size()));
|
|
disk_cache.Close();
|
|
}
|
|
|
|
// Cache inserter that is called back when reading from the file
|
|
template <typename Uid>
|
|
struct ShaderCacheReader : public LinearDiskCacheReader<Uid, u32>
|
|
{
|
|
ShaderCacheReader(std::map<Uid, std::pair<VkShaderModule, bool>>& shader_map)
|
|
: m_shader_map(shader_map)
|
|
{
|
|
}
|
|
void Read(const Uid& key, const u32* value, u32 value_size) override
|
|
{
|
|
// We don't insert null modules into the shader map since creation could succeed later on.
|
|
// e.g. we're generating bad code, but fix this in a later version, and for some reason
|
|
// the cache is not invalidated.
|
|
VkShaderModule module = Util::CreateShaderModule(value, value_size);
|
|
if (module == VK_NULL_HANDLE)
|
|
return;
|
|
|
|
m_shader_map.emplace(key, std::make_pair(module, false));
|
|
}
|
|
|
|
std::map<Uid, std::pair<VkShaderModule, bool>>& m_shader_map;
|
|
};
|
|
|
|
void ShaderCache::LoadShaderCaches()
|
|
{
|
|
ShaderCacheReader<VertexShaderUid> vs_reader(m_vs_cache.shader_map);
|
|
m_vs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "VS", true, true),
|
|
vs_reader);
|
|
|
|
ShaderCacheReader<PixelShaderUid> ps_reader(m_ps_cache.shader_map);
|
|
m_ps_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "PS", true, true),
|
|
ps_reader);
|
|
|
|
if (g_vulkan_context->SupportsGeometryShaders())
|
|
{
|
|
ShaderCacheReader<GeometryShaderUid> gs_reader(m_gs_cache.shader_map);
|
|
m_gs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "GS", true, true),
|
|
gs_reader);
|
|
}
|
|
|
|
ShaderCacheReader<UberShader::VertexShaderUid> uber_vs_reader(m_uber_vs_cache.shader_map);
|
|
m_uber_vs_cache.disk_cache.OpenAndRead(
|
|
GetDiskShaderCacheFileName(APIType::Vulkan, "UberVS", false, true), uber_vs_reader);
|
|
ShaderCacheReader<UberShader::PixelShaderUid> uber_ps_reader(m_uber_ps_cache.shader_map);
|
|
m_uber_ps_cache.disk_cache.OpenAndRead(
|
|
GetDiskShaderCacheFileName(APIType::Vulkan, "UberPS", false, true), uber_ps_reader);
|
|
|
|
SETSTAT(stats.numPixelShadersCreated, static_cast<int>(m_ps_cache.shader_map.size()));
|
|
SETSTAT(stats.numPixelShadersAlive, static_cast<int>(m_ps_cache.shader_map.size()));
|
|
SETSTAT(stats.numVertexShadersCreated, static_cast<int>(m_vs_cache.shader_map.size()));
|
|
SETSTAT(stats.numVertexShadersAlive, static_cast<int>(m_vs_cache.shader_map.size()));
|
|
}
|
|
|
|
template <typename T>
|
|
static void DestroyShaderCache(T& cache)
|
|
{
|
|
cache.disk_cache.Sync();
|
|
cache.disk_cache.Close();
|
|
for (const auto& it : cache.shader_map)
|
|
{
|
|
if (it.second.first != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.first, nullptr);
|
|
}
|
|
cache.shader_map.clear();
|
|
}
|
|
|
|
void ShaderCache::DestroyShaderCaches()
|
|
{
|
|
DestroyShaderCache(m_vs_cache);
|
|
DestroyShaderCache(m_ps_cache);
|
|
|
|
if (g_vulkan_context->SupportsGeometryShaders())
|
|
DestroyShaderCache(m_gs_cache);
|
|
|
|
DestroyShaderCache(m_uber_vs_cache);
|
|
DestroyShaderCache(m_uber_ps_cache);
|
|
|
|
SETSTAT(stats.numPixelShadersCreated, 0);
|
|
SETSTAT(stats.numPixelShadersAlive, 0);
|
|
SETSTAT(stats.numVertexShadersCreated, 0);
|
|
SETSTAT(stats.numVertexShadersAlive, 0);
|
|
}
|
|
|
|
VkShaderModule ShaderCache::GetVertexShaderForUid(const VertexShaderUid& uid)
|
|
{
|
|
auto it = m_vs_cache.shader_map.find(uid);
|
|
if (it != m_vs_cache.shader_map.end())
|
|
{
|
|
// If it's pending, compile it synchronously.
|
|
if (!it->second.second)
|
|
return it->second.first;
|
|
else
|
|
m_vs_cache.shader_map.erase(it);
|
|
}
|
|
|
|
// Not in the cache, so compile the shader.
|
|
ShaderCompiler::SPIRVCodeVector spv;
|
|
VkShaderModule module = VK_NULL_HANDLE;
|
|
ShaderCode source_code =
|
|
GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
|
|
if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(),
|
|
source_code.GetBuffer().length()))
|
|
{
|
|
module = Util::CreateShaderModule(spv.data(), spv.size());
|
|
|
|
// Append to shader cache if it created successfully.
|
|
if (module != VK_NULL_HANDLE)
|
|
{
|
|
m_vs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
|
|
INCSTAT(stats.numVertexShadersCreated);
|
|
INCSTAT(stats.numVertexShadersAlive);
|
|
}
|
|
}
|
|
|
|
// We still insert null entries to prevent further compilation attempts.
|
|
m_vs_cache.shader_map.emplace(uid, std::make_pair(module, false));
|
|
return module;
|
|
}
|
|
|
|
VkShaderModule ShaderCache::GetGeometryShaderForUid(const GeometryShaderUid& uid)
|
|
{
|
|
_assert_(g_vulkan_context->SupportsGeometryShaders());
|
|
auto it = m_gs_cache.shader_map.find(uid);
|
|
if (it != m_gs_cache.shader_map.end())
|
|
{
|
|
// If it's pending, compile it synchronously.
|
|
if (!it->second.second)
|
|
return it->second.first;
|
|
else
|
|
m_gs_cache.shader_map.erase(it);
|
|
}
|
|
|
|
// Not in the cache, so compile the shader.
|
|
ShaderCompiler::SPIRVCodeVector spv;
|
|
VkShaderModule module = VK_NULL_HANDLE;
|
|
ShaderCode source_code =
|
|
GenerateGeometryShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
|
|
if (ShaderCompiler::CompileGeometryShader(&spv, source_code.GetBuffer().c_str(),
|
|
source_code.GetBuffer().length()))
|
|
{
|
|
module = Util::CreateShaderModule(spv.data(), spv.size());
|
|
|
|
// Append to shader cache if it created successfully.
|
|
if (module != VK_NULL_HANDLE)
|
|
m_gs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
|
|
}
|
|
|
|
// We still insert null entries to prevent further compilation attempts.
|
|
m_gs_cache.shader_map.emplace(uid, std::make_pair(module, false));
|
|
return module;
|
|
}
|
|
|
|
VkShaderModule ShaderCache::GetPixelShaderForUid(const PixelShaderUid& uid)
|
|
{
|
|
auto it = m_ps_cache.shader_map.find(uid);
|
|
if (it != m_ps_cache.shader_map.end())
|
|
{
|
|
// If it's pending, compile it synchronously.
|
|
if (!it->second.second)
|
|
return it->second.first;
|
|
else
|
|
m_ps_cache.shader_map.erase(it);
|
|
}
|
|
|
|
// Not in the cache, so compile the shader.
|
|
ShaderCompiler::SPIRVCodeVector spv;
|
|
VkShaderModule module = VK_NULL_HANDLE;
|
|
ShaderCode source_code =
|
|
GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
|
|
if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(),
|
|
source_code.GetBuffer().length()))
|
|
{
|
|
module = Util::CreateShaderModule(spv.data(), spv.size());
|
|
|
|
// Append to shader cache if it created successfully.
|
|
if (module != VK_NULL_HANDLE)
|
|
{
|
|
m_ps_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
|
|
INCSTAT(stats.numPixelShadersCreated);
|
|
INCSTAT(stats.numPixelShadersAlive);
|
|
}
|
|
}
|
|
|
|
// We still insert null entries to prevent further compilation attempts.
|
|
m_ps_cache.shader_map.emplace(uid, std::make_pair(module, false));
|
|
return module;
|
|
}
|
|
|
|
VkShaderModule ShaderCache::GetVertexUberShaderForUid(const UberShader::VertexShaderUid& uid)
|
|
{
|
|
auto it = m_uber_vs_cache.shader_map.find(uid);
|
|
if (it != m_uber_vs_cache.shader_map.end())
|
|
{
|
|
// If it's pending, compile it synchronously.
|
|
if (!it->second.second)
|
|
return it->second.first;
|
|
else
|
|
m_uber_vs_cache.shader_map.erase(it);
|
|
}
|
|
|
|
// Not in the cache, so compile the shader.
|
|
ShaderCompiler::SPIRVCodeVector spv;
|
|
VkShaderModule module = VK_NULL_HANDLE;
|
|
ShaderCode source_code = UberShader::GenVertexShader(
|
|
APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
|
|
if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(),
|
|
source_code.GetBuffer().length()))
|
|
{
|
|
module = Util::CreateShaderModule(spv.data(), spv.size());
|
|
|
|
// Append to shader cache if it created successfully.
|
|
if (module != VK_NULL_HANDLE)
|
|
{
|
|
m_uber_vs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
|
|
INCSTAT(stats.numVertexShadersCreated);
|
|
INCSTAT(stats.numVertexShadersAlive);
|
|
}
|
|
}
|
|
|
|
// We still insert null entries to prevent further compilation attempts.
|
|
m_uber_vs_cache.shader_map.emplace(uid, std::make_pair(module, false));
|
|
return module;
|
|
}
|
|
|
|
VkShaderModule ShaderCache::GetPixelUberShaderForUid(const UberShader::PixelShaderUid& uid)
|
|
{
|
|
auto it = m_uber_ps_cache.shader_map.find(uid);
|
|
if (it != m_uber_ps_cache.shader_map.end())
|
|
{
|
|
// If it's pending, compile it synchronously.
|
|
if (!it->second.second)
|
|
return it->second.first;
|
|
else
|
|
m_uber_ps_cache.shader_map.erase(it);
|
|
}
|
|
|
|
// Not in the cache, so compile the shader.
|
|
ShaderCompiler::SPIRVCodeVector spv;
|
|
VkShaderModule module = VK_NULL_HANDLE;
|
|
ShaderCode source_code =
|
|
UberShader::GenPixelShader(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData());
|
|
if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(),
|
|
source_code.GetBuffer().length()))
|
|
{
|
|
module = Util::CreateShaderModule(spv.data(), spv.size());
|
|
|
|
// Append to shader cache if it created successfully.
|
|
if (module != VK_NULL_HANDLE)
|
|
{
|
|
m_uber_ps_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
|
|
INCSTAT(stats.numPixelShadersCreated);
|
|
INCSTAT(stats.numPixelShadersAlive);
|
|
}
|
|
}
|
|
|
|
// We still insert null entries to prevent further compilation attempts.
|
|
m_uber_ps_cache.shader_map.emplace(uid, std::make_pair(module, false));
|
|
return module;
|
|
}
|
|
|
|
void ShaderCache::RecompileSharedShaders()
|
|
{
|
|
DestroySharedShaders();
|
|
if (!CompileSharedShaders())
|
|
PanicAlert("Failed to recompile shared shaders.");
|
|
}
|
|
|
|
void ShaderCache::ReloadShaderAndPipelineCaches()
|
|
{
|
|
m_async_shader_compiler->WaitUntilCompletion();
|
|
m_async_shader_compiler->RetrieveWorkItems();
|
|
|
|
SavePipelineCache();
|
|
DestroyShaderCaches();
|
|
DestroyPipelineCache();
|
|
|
|
if (g_ActiveConfig.bShaderCache)
|
|
{
|
|
LoadShaderCaches();
|
|
LoadPipelineCache();
|
|
}
|
|
else
|
|
{
|
|
CreatePipelineCache();
|
|
}
|
|
|
|
if (g_ActiveConfig.CanPrecompileUberShaders())
|
|
PrecompileUberShaders();
|
|
}
|
|
|
|
std::string ShaderCache::GetUtilityShaderHeader() const
|
|
{
|
|
std::stringstream ss;
|
|
if (g_ActiveConfig.iMultisamples > 1)
|
|
{
|
|
ss << "#define MSAA_ENABLED 1" << std::endl;
|
|
ss << "#define MSAA_SAMPLES " << g_ActiveConfig.iMultisamples << std::endl;
|
|
if (g_ActiveConfig.bSSAA)
|
|
ss << "#define SSAA_ENABLED 1" << std::endl;
|
|
}
|
|
|
|
u32 efb_layers = (g_ActiveConfig.stereo_mode != StereoMode::Off) ? 2 : 1;
|
|
ss << "#define EFB_LAYERS " << efb_layers << std::endl;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
std::size_t PipelineInfoHash::operator()(const PipelineInfo& key) const
|
|
{
|
|
return static_cast<std::size_t>(XXH64(&key, sizeof(key), 0));
|
|
}
|
|
|
|
bool operator==(const PipelineInfo& lhs, const PipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
|
|
}
|
|
|
|
bool operator!=(const PipelineInfo& lhs, const PipelineInfo& rhs)
|
|
{
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
bool operator<(const PipelineInfo& lhs, const PipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0;
|
|
}
|
|
|
|
bool operator>(const PipelineInfo& lhs, const PipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0;
|
|
}
|
|
|
|
std::size_t ComputePipelineInfoHash::operator()(const ComputePipelineInfo& key) const
|
|
{
|
|
return static_cast<std::size_t>(XXH64(&key, sizeof(key), 0));
|
|
}
|
|
|
|
bool operator==(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
|
|
}
|
|
|
|
bool operator!=(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
|
|
{
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
bool operator<(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0;
|
|
}
|
|
|
|
bool operator>(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs)
|
|
{
|
|
return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0;
|
|
}
|
|
|
|
bool ShaderCache::CompileSharedShaders()
|
|
{
|
|
static const char PASSTHROUGH_VERTEX_SHADER_SOURCE[] = R"(
|
|
layout(location = 0) in vec4 ipos;
|
|
layout(location = 5) in vec4 icol0;
|
|
layout(location = 8) in vec3 itex0;
|
|
|
|
layout(location = 0) out vec3 uv0;
|
|
layout(location = 1) out vec4 col0;
|
|
|
|
void main()
|
|
{
|
|
gl_Position = ipos;
|
|
uv0 = itex0;
|
|
col0 = icol0;
|
|
}
|
|
)";
|
|
|
|
static const char PASSTHROUGH_GEOMETRY_SHADER_SOURCE[] = R"(
|
|
layout(triangles) in;
|
|
layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;
|
|
|
|
layout(location = 0) in vec3 in_uv0[];
|
|
layout(location = 1) in vec4 in_col0[];
|
|
|
|
layout(location = 0) out vec3 out_uv0;
|
|
layout(location = 1) out vec4 out_col0;
|
|
|
|
void main()
|
|
{
|
|
for (int j = 0; j < EFB_LAYERS; j++)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
gl_Layer = j;
|
|
gl_Position = gl_in[i].gl_Position;
|
|
out_uv0 = vec3(in_uv0[i].xy, float(j));
|
|
out_col0 = in_col0[i];
|
|
EmitVertex();
|
|
}
|
|
EndPrimitive();
|
|
}
|
|
}
|
|
)";
|
|
|
|
static const char SCREEN_QUAD_VERTEX_SHADER_SOURCE[] = R"(
|
|
layout(location = 0) out vec3 uv0;
|
|
|
|
void main()
|
|
{
|
|
/*
|
|
* id &1 &2 clamp(*2-1)
|
|
* 0 0,0 0,0 -1,-1 TL
|
|
* 1 1,0 1,0 1,-1 TR
|
|
* 2 0,2 0,1 -1,1 BL
|
|
* 3 1,2 1,1 1,1 BR
|
|
*/
|
|
vec2 rawpos = vec2(float(gl_VertexID & 1), clamp(float(gl_VertexID & 2), 0.0f, 1.0f));
|
|
gl_Position = vec4(rawpos * 2.0f - 1.0f, 0.0f, 1.0f);
|
|
uv0 = vec3(rawpos, 0.0f);
|
|
}
|
|
)";
|
|
|
|
static const char SCREEN_QUAD_GEOMETRY_SHADER_SOURCE[] = R"(
|
|
layout(triangles) in;
|
|
layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;
|
|
|
|
layout(location = 0) in vec3 in_uv0[];
|
|
|
|
layout(location = 0) out vec3 out_uv0;
|
|
|
|
void main()
|
|
{
|
|
for (int j = 0; j < EFB_LAYERS; j++)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
gl_Layer = j;
|
|
gl_Position = gl_in[i].gl_Position;
|
|
out_uv0 = vec3(in_uv0[i].xy, float(j));
|
|
EmitVertex();
|
|
}
|
|
EndPrimitive();
|
|
}
|
|
}
|
|
)";
|
|
|
|
std::string header = GetUtilityShaderHeader();
|
|
|
|
m_screen_quad_vertex_shader =
|
|
Util::CompileAndCreateVertexShader(header + SCREEN_QUAD_VERTEX_SHADER_SOURCE);
|
|
m_passthrough_vertex_shader =
|
|
Util::CompileAndCreateVertexShader(header + PASSTHROUGH_VERTEX_SHADER_SOURCE);
|
|
if (m_screen_quad_vertex_shader == VK_NULL_HANDLE ||
|
|
m_passthrough_vertex_shader == VK_NULL_HANDLE)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (g_ActiveConfig.stereo_mode != StereoMode::Off && g_vulkan_context->SupportsGeometryShaders())
|
|
{
|
|
m_screen_quad_geometry_shader =
|
|
Util::CompileAndCreateGeometryShader(header + SCREEN_QUAD_GEOMETRY_SHADER_SOURCE);
|
|
m_passthrough_geometry_shader =
|
|
Util::CompileAndCreateGeometryShader(header + PASSTHROUGH_GEOMETRY_SHADER_SOURCE);
|
|
if (m_screen_quad_geometry_shader == VK_NULL_HANDLE ||
|
|
m_passthrough_geometry_shader == VK_NULL_HANDLE)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::DestroySharedShaders()
|
|
{
|
|
auto DestroyShader = [this](VkShaderModule& shader) {
|
|
if (shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
|
|
shader = VK_NULL_HANDLE;
|
|
}
|
|
};
|
|
|
|
DestroyShader(m_screen_quad_vertex_shader);
|
|
DestroyShader(m_passthrough_vertex_shader);
|
|
DestroyShader(m_screen_quad_geometry_shader);
|
|
DestroyShader(m_passthrough_geometry_shader);
|
|
}
|
|
|
|
void ShaderCache::CreateDummyPipeline(const UberShader::VertexShaderUid& vuid,
|
|
const GeometryShaderUid& guid,
|
|
const UberShader::PixelShaderUid& puid)
|
|
{
|
|
PortableVertexDeclaration vertex_decl;
|
|
std::memset(&vertex_decl, 0, sizeof(vertex_decl));
|
|
|
|
PipelineInfo pinfo;
|
|
pinfo.vertex_format =
|
|
static_cast<const VertexFormat*>(VertexLoaderManager::GetUberVertexFormat(vertex_decl));
|
|
pinfo.pipeline_layout = g_object_cache->GetPipelineLayout(
|
|
g_ActiveConfig.bBBoxEnable && g_ActiveConfig.BBoxUseFragmentShaderImplementation() ?
|
|
PIPELINE_LAYOUT_BBOX :
|
|
PIPELINE_LAYOUT_STANDARD);
|
|
pinfo.vs = GetVertexUberShaderForUid(vuid);
|
|
pinfo.gs = (!guid.GetUidData()->IsPassthrough() && g_vulkan_context->SupportsGeometryShaders()) ?
|
|
GetGeometryShaderForUid(guid) :
|
|
VK_NULL_HANDLE;
|
|
pinfo.ps = GetPixelUberShaderForUid(puid);
|
|
pinfo.render_pass = FramebufferManager::GetInstance()->GetEFBLoadRenderPass();
|
|
pinfo.rasterization_state.hex = RenderState::GetNoCullRasterizationState().hex;
|
|
pinfo.depth_state.hex = RenderState::GetNoDepthTestingDepthStencilState().hex;
|
|
pinfo.blend_state.hex = RenderState::GetNoBlendingBlendState().hex;
|
|
pinfo.multisampling_state.hex = FramebufferManager::GetInstance()->GetEFBMultisamplingState().hex;
|
|
pinfo.rasterization_state.primitive =
|
|
static_cast<PrimitiveType>(guid.GetUidData()->primitive_type);
|
|
GetPipelineWithCacheResultAsync(pinfo);
|
|
}
|
|
|
|
void ShaderCache::PrecompileUberShaders()
|
|
{
|
|
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
|
|
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
|
|
// UIDs must have compatible texgens, a mismatching combination will never be queried.
|
|
if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens)
|
|
return;
|
|
|
|
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
|
|
if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens)
|
|
return;
|
|
|
|
CreateDummyPipeline(vuid, guid, puid);
|
|
});
|
|
});
|
|
});
|
|
|
|
WaitForBackgroundCompilesToComplete();
|
|
|
|
// Switch to the runtime/background thread config.
|
|
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
|
|
}
|
|
|
|
void ShaderCache::WaitForBackgroundCompilesToComplete()
|
|
{
|
|
m_async_shader_compiler->WaitUntilCompletion([](size_t completed, size_t total) {
|
|
Host_UpdateProgressDialog(GetStringT("Compiling shaders...").c_str(),
|
|
static_cast<int>(completed), static_cast<int>(total));
|
|
});
|
|
m_async_shader_compiler->RetrieveWorkItems();
|
|
Host_UpdateProgressDialog("", -1, -1);
|
|
}
|
|
|
|
void ShaderCache::RetrieveAsyncShaders()
|
|
{
|
|
m_async_shader_compiler->RetrieveWorkItems();
|
|
}
|
|
|
|
std::pair<VkShaderModule, bool> ShaderCache::GetVertexShaderForUidAsync(const VertexShaderUid& uid)
|
|
{
|
|
auto it = m_vs_cache.shader_map.find(uid);
|
|
if (it != m_vs_cache.shader_map.end())
|
|
return it->second;
|
|
|
|
// Kick a compile job off.
|
|
m_async_shader_compiler->QueueWorkItem(
|
|
m_async_shader_compiler->CreateWorkItem<VertexShaderCompilerWorkItem>(uid));
|
|
m_vs_cache.shader_map.emplace(uid,
|
|
std::make_pair(static_cast<VkShaderModule>(VK_NULL_HANDLE), true));
|
|
return std::make_pair<VkShaderModule, bool>(VK_NULL_HANDLE, true);
|
|
}
|
|
|
|
std::pair<VkShaderModule, bool> ShaderCache::GetPixelShaderForUidAsync(const PixelShaderUid& uid)
|
|
{
|
|
auto it = m_ps_cache.shader_map.find(uid);
|
|
if (it != m_ps_cache.shader_map.end())
|
|
return it->second;
|
|
|
|
// Kick a compile job off.
|
|
m_async_shader_compiler->QueueWorkItem(
|
|
m_async_shader_compiler->CreateWorkItem<PixelShaderCompilerWorkItem>(uid));
|
|
m_ps_cache.shader_map.emplace(uid,
|
|
std::make_pair(static_cast<VkShaderModule>(VK_NULL_HANDLE), true));
|
|
return std::make_pair<VkShaderModule, bool>(VK_NULL_HANDLE, true);
|
|
}
|
|
|
|
bool ShaderCache::VertexShaderCompilerWorkItem::Compile()
|
|
{
|
|
ShaderCode code =
|
|
GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData());
|
|
if (!ShaderCompiler::CompileVertexShader(&m_spirv, code.GetBuffer().c_str(),
|
|
code.GetBuffer().length()))
|
|
return true;
|
|
|
|
m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size());
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::VertexShaderCompilerWorkItem::Retrieve()
|
|
{
|
|
auto it = g_shader_cache->m_vs_cache.shader_map.find(m_uid);
|
|
if (it == g_shader_cache->m_vs_cache.shader_map.end())
|
|
{
|
|
g_shader_cache->m_vs_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false));
|
|
g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(),
|
|
static_cast<u32>(m_spirv.size()));
|
|
return;
|
|
}
|
|
|
|
// The main thread may have also compiled this shader.
|
|
if (!it->second.second)
|
|
{
|
|
if (m_module != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr);
|
|
return;
|
|
}
|
|
|
|
// No longer pending.
|
|
it->second.first = m_module;
|
|
it->second.second = false;
|
|
g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(),
|
|
static_cast<u32>(m_spirv.size()));
|
|
}
|
|
|
|
bool ShaderCache::PixelShaderCompilerWorkItem::Compile()
|
|
{
|
|
ShaderCode code =
|
|
GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData());
|
|
if (!ShaderCompiler::CompileFragmentShader(&m_spirv, code.GetBuffer().c_str(),
|
|
code.GetBuffer().length()))
|
|
return true;
|
|
|
|
m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size());
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::PixelShaderCompilerWorkItem::Retrieve()
|
|
{
|
|
auto it = g_shader_cache->m_ps_cache.shader_map.find(m_uid);
|
|
if (it == g_shader_cache->m_ps_cache.shader_map.end())
|
|
{
|
|
g_shader_cache->m_ps_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false));
|
|
g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(),
|
|
static_cast<u32>(m_spirv.size()));
|
|
return;
|
|
}
|
|
|
|
// The main thread may have also compiled this shader.
|
|
if (!it->second.second)
|
|
{
|
|
if (m_module != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr);
|
|
return;
|
|
}
|
|
|
|
// No longer pending.
|
|
it->second.first = m_module;
|
|
it->second.second = false;
|
|
g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(),
|
|
static_cast<u32>(m_spirv.size()));
|
|
}
|
|
|
|
bool ShaderCache::PipelineCompilerWorkItem::Compile()
|
|
{
|
|
m_pipeline = g_shader_cache->CreatePipeline(m_info);
|
|
return true;
|
|
}
|
|
|
|
void ShaderCache::PipelineCompilerWorkItem::Retrieve()
|
|
{
|
|
auto it = g_shader_cache->m_pipeline_objects.find(m_info);
|
|
if (it == g_shader_cache->m_pipeline_objects.end())
|
|
{
|
|
g_shader_cache->m_pipeline_objects.emplace(m_info, std::make_pair(m_pipeline, false));
|
|
return;
|
|
}
|
|
|
|
// The main thread may have also compiled this shader.
|
|
if (!it->second.second)
|
|
{
|
|
if (m_pipeline != VK_NULL_HANDLE)
|
|
vkDestroyPipeline(g_vulkan_context->GetDevice(), m_pipeline, nullptr);
|
|
return;
|
|
}
|
|
|
|
// No longer pending.
|
|
it->second.first = m_pipeline;
|
|
it->second.second = false;
|
|
}
|
|
}
|