878 lines
29 KiB
C++

// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/Present.h"
#include "Common/ChunkFile.h"
#include "Core/Config/GraphicsSettings.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h"
#include "Present.h"
#include "VideoCommon/AbstractGfx.h"
#include "VideoCommon/FrameDumper.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/OnScreenUI.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/VideoEvents.h"
#include "VideoCommon/Widescreen.h"
std::unique_ptr<VideoCommon::Presenter> g_presenter;
// The video encoder needs the image to be a multiple of x samples.
static constexpr int VIDEO_ENCODER_LCM = 4;
namespace VideoCommon
{
// Stretches the native/internal analog resolution aspect ratio from ~4:3 to ~16:9
static float SourceAspectRatioToWidescreen(float source_aspect)
{
return source_aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
static std::tuple<int, int> FindClosestIntegerResolution(float width, float height,
float aspect_ratio)
{
// We can't round both the x and y resolution as that might generate an aspect ratio
// further away from the target one, we also can't either ceil or floor both sides,
// so we find the combination or flooring and ceiling that is closest to the target ar.
const int ceiled_width = static_cast<int>(std::ceil(width));
const int ceiled_height = static_cast<int>(std::ceil(height));
const int floored_width = static_cast<int>(std::floor(width));
const int floored_height = static_cast<int>(std::floor(height));
int int_width = floored_width;
int int_height = floored_height;
float min_aspect_ratio_distance = std::numeric_limits<float>::max();
for (const int new_width : std::array<int, 2>{ceiled_width, floored_width})
{
for (const int new_height : std::array<int, 2>{ceiled_height, floored_height})
{
const float new_aspect_ratio = static_cast<float>(new_width) / new_height;
const float aspect_ratio_distance = std::abs((new_aspect_ratio / aspect_ratio) - 1.f);
if (aspect_ratio_distance < min_aspect_ratio_distance)
{
min_aspect_ratio_distance = aspect_ratio_distance;
int_width = new_width;
int_height = new_height;
}
}
}
return std::make_tuple(int_width, int_height);
}
static void TryToSnapToXFBSize(int& width, int& height, int xfb_width, int xfb_height)
{
// Screen is blanking (e.g. game booting up), nothing to do here
if (xfb_width == 0 || xfb_height == 0)
return;
// If there's only 1 pixel of either horizontal or vertical resolution difference,
// make the output size match a multiple of the XFB native resolution,
// to achieve the highest quality (least scaling).
// The reason why the threshold is 1 pixel (per internal resolution multiplier) is because of
// minor inaccuracies of the VI aspect ratio (and because some resolutions are rounded
// while other are floored).
const unsigned int efb_scale = g_framebuffer_manager->GetEFBScale();
const unsigned int pixel_difference_width = std::abs(width - xfb_width);
const unsigned int pixel_difference_height = std::abs(height - xfb_height);
// We ignore this if there's an offset on both hor and ver size,
// as then we'd be changing the aspect ratio too much and would need to
// re-calculate a lot of stuff (like black bars).
if ((pixel_difference_width <= efb_scale && pixel_difference_height == 0) ||
(pixel_difference_height <= efb_scale && pixel_difference_width == 0))
{
width = xfb_width;
height = xfb_height;
}
}
Presenter::Presenter()
{
m_config_changed =
ConfigChangedEvent::Register([this](u32 bits) { ConfigChanged(bits); }, "Presenter");
}
Presenter::~Presenter()
{
// Disable ControllerInterface's aspect ratio adjustments so mapping dialog behaves normally.
g_controller_interface.SetAspectRatioAdjustment(1);
}
bool Presenter::Initialize()
{
UpdateDrawRectangle();
if (!g_gfx->IsHeadless())
{
SetBackbuffer(g_gfx->GetSurfaceInfo());
m_post_processor = std::make_unique<VideoCommon::PostProcessing>();
if (!m_post_processor->Initialize(m_backbuffer_format))
return false;
m_onscreen_ui = std::make_unique<OnScreenUI>();
if (!m_onscreen_ui->Initialize(m_backbuffer_width, m_backbuffer_height, m_backbuffer_scale))
return false;
// Draw a blank frame (and complete OnScreenUI initialization)
g_gfx->BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}});
g_gfx->PresentBackbuffer();
}
return true;
}
bool Presenter::FetchXFB(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
{
ReleaseXFBContentLock();
u64 old_xfb_id = m_last_xfb_id;
if (fb_width == 0 || fb_height == 0)
{
// Game is blanking the screen
m_xfb_entry.reset();
m_xfb_rect = MathUtil::Rectangle<int>();
m_last_xfb_id = std::numeric_limits<u64>::max();
}
else
{
m_xfb_entry =
g_texture_cache->GetXFBTexture(xfb_addr, fb_width, fb_height, fb_stride, &m_xfb_rect);
m_last_xfb_id = m_xfb_entry->id;
m_xfb_entry->AcquireContentLock();
}
m_last_xfb_addr = xfb_addr;
m_last_xfb_ticks = ticks;
m_last_xfb_width = fb_width;
m_last_xfb_stride = fb_stride;
m_last_xfb_height = fb_height;
return old_xfb_id == m_last_xfb_id;
}
void Presenter::ViSwap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
{
bool is_duplicate = FetchXFB(xfb_addr, fb_width, fb_stride, fb_height, ticks);
PresentInfo present_info;
present_info.emulated_timestamp = ticks;
present_info.present_count = m_present_count++;
if (is_duplicate)
{
present_info.frame_count = m_frame_count - 1; // Previous frame
present_info.reason = PresentInfo::PresentReason::VideoInterfaceDuplicate;
}
else
{
present_info.frame_count = m_frame_count++;
present_info.reason = PresentInfo::PresentReason::VideoInterface;
}
if (m_xfb_entry)
{
// With no references, this XFB copy wasn't stitched together
// so just use its name directly
if (m_xfb_entry->references.empty())
{
if (!m_xfb_entry->texture_info_name.empty())
present_info.xfb_copy_hashes.push_back(m_xfb_entry->texture_info_name);
}
else
{
for (const auto& reference : m_xfb_entry->references)
{
if (!reference->texture_info_name.empty())
present_info.xfb_copy_hashes.push_back(reference->texture_info_name);
}
}
}
BeforePresentEvent::Trigger(present_info);
if (!is_duplicate || !g_ActiveConfig.bSkipPresentingDuplicateXFBs)
{
Present();
ProcessFrameDumping(ticks);
AfterPresentEvent::Trigger(present_info);
}
}
void Presenter::ImmediateSwap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
{
FetchXFB(xfb_addr, fb_width, fb_stride, fb_height, ticks);
PresentInfo present_info;
present_info.emulated_timestamp = ticks; // TODO: This should be the time of the next VI field
present_info.frame_count = m_frame_count++;
present_info.reason = PresentInfo::PresentReason::Immediate;
present_info.present_count = m_present_count++;
BeforePresentEvent::Trigger(present_info);
Present();
ProcessFrameDumping(ticks);
AfterPresentEvent::Trigger(present_info);
}
void Presenter::ProcessFrameDumping(u64 ticks) const
{
if (g_frame_dumper->IsFrameDumping() && m_xfb_entry)
{
MathUtil::Rectangle<int> target_rect;
if (!g_ActiveConfig.bInternalResolutionFrameDumps && !g_gfx->IsHeadless())
{
target_rect = GetTargetRectangle();
}
else
{
int width, height;
std::tie(width, height) =
CalculateOutputDimensions(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
target_rect = MathUtil::Rectangle<int>(0, 0, width, height);
}
g_frame_dumper->DumpCurrentFrame(m_xfb_entry->texture.get(), m_xfb_rect, target_rect, ticks,
m_frame_count);
}
}
void Presenter::SetBackbuffer(int backbuffer_width, int backbuffer_height)
{
const bool is_first = m_backbuffer_width == 0 && m_backbuffer_height == 0;
const bool size_changed =
(m_backbuffer_width != backbuffer_width || m_backbuffer_height != backbuffer_height);
m_backbuffer_width = backbuffer_width;
m_backbuffer_height = backbuffer_height;
UpdateDrawRectangle();
OnBackbufferSet(size_changed, is_first);
}
void Presenter::SetBackbuffer(SurfaceInfo info)
{
const bool is_first = m_backbuffer_width == 0 && m_backbuffer_height == 0;
const bool size_changed =
(m_backbuffer_width != (int)info.width || m_backbuffer_height != (int)info.height);
m_backbuffer_width = info.width;
m_backbuffer_height = info.height;
m_backbuffer_scale = info.scale;
m_backbuffer_format = info.format;
if (m_onscreen_ui)
m_onscreen_ui->SetScale(info.scale);
OnBackbufferSet(size_changed, is_first);
}
void Presenter::OnBackbufferSet(bool size_changed, bool is_first_set)
{
UpdateDrawRectangle();
// Automatically update the resolution scale if the window size changed,
// or if the game XFB resolution changed.
if (size_changed && !is_first_set && g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL &&
m_auto_resolution_scale != AutoIntegralScale())
{
g_framebuffer_manager->RecreateEFBFramebuffer();
}
if (size_changed || is_first_set)
{
m_auto_resolution_scale = AutoIntegralScale();
}
}
void Presenter::ConfigChanged(u32 changed_bits)
{
// Check for post-processing shader changes. Done up here as it doesn't affect anything outside
// the post-processor. Note that options are applied every frame, so no need to check those.
if (changed_bits & ConfigChangeBits::CONFIG_CHANGE_BIT_POST_PROCESSING_SHADER && m_post_processor)
{
// The existing shader must not be in use when it's destroyed
g_gfx->WaitForGPUIdle();
m_post_processor->RecompileShader();
}
// Stereo mode change requires recompiling our post processing pipeline and imgui pipelines for
// rendering the UI.
if (changed_bits & ConfigChangeBits::CONFIG_CHANGE_BIT_STEREO_MODE)
{
if (m_onscreen_ui)
m_onscreen_ui->RecompileImGuiPipeline();
if (m_post_processor)
m_post_processor->RecompilePipeline();
}
}
std::tuple<MathUtil::Rectangle<int>, MathUtil::Rectangle<int>>
Presenter::ConvertStereoRectangle(const MathUtil::Rectangle<int>& rc) const
{
// Resize target to half its original size
auto draw_rc = rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
draw_rc.top += height / 4;
draw_rc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
draw_rc.left += width / 4;
draw_rc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
auto left_rc = draw_rc;
auto right_rc = draw_rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
left_rc.top -= m_backbuffer_height / 4;
left_rc.bottom -= m_backbuffer_height / 4;
right_rc.top += m_backbuffer_height / 4;
right_rc.bottom += m_backbuffer_height / 4;
}
else
{
left_rc.left -= m_backbuffer_width / 4;
left_rc.right -= m_backbuffer_width / 4;
right_rc.left += m_backbuffer_width / 4;
right_rc.right += m_backbuffer_width / 4;
}
return std::make_tuple(left_rc, right_rc);
}
float Presenter::CalculateDrawAspectRatio(bool allow_stretch) const
{
auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
// If stretch is enabled, we prefer the aspect ratio of the window.
if (aspect_mode == AspectMode::Stretch)
return (static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
auto& vi = Core::System::GetInstance().GetVideoInterface();
const float source_aspect_ratio = vi.GetAspectRatio();
// This will scale up the source ~4:3 resolution to its equivalent ~16:9 resolution
if (aspect_mode == AspectMode::ForceWide ||
(aspect_mode == AspectMode::Auto && g_widescreen->IsGameWidescreen()))
{
return SourceAspectRatioToWidescreen(source_aspect_ratio);
}
else if (aspect_mode == AspectMode::Custom)
{
return source_aspect_ratio * (g_ActiveConfig.GetCustomAspectRatio() / (4.0f / 3.0f));
}
// For the "custom stretch" mode, we force the exact target aspect ratio, without
// acknowleding the difference between the source aspect ratio and 4:3.
else if (aspect_mode == AspectMode::CustomStretch)
{
return g_ActiveConfig.GetCustomAspectRatio();
}
else if (aspect_mode == AspectMode::Raw)
{
return m_xfb_entry ? (static_cast<float>(m_last_xfb_width) / m_last_xfb_height) : 1.f;
}
return source_aspect_ratio;
}
void Presenter::AdjustRectanglesToFitBounds(MathUtil::Rectangle<int>* target_rect,
MathUtil::Rectangle<int>* source_rect, int fb_width,
int fb_height)
{
const int orig_target_width = target_rect->GetWidth();
const int orig_target_height = target_rect->GetHeight();
const int orig_source_width = source_rect->GetWidth();
const int orig_source_height = source_rect->GetHeight();
if (target_rect->left < 0)
{
const int offset = -target_rect->left;
target_rect->left = 0;
source_rect->left += offset * orig_source_width / orig_target_width;
}
if (target_rect->right > fb_width)
{
const int offset = target_rect->right - fb_width;
target_rect->right -= offset;
source_rect->right -= offset * orig_source_width / orig_target_width;
}
if (target_rect->top < 0)
{
const int offset = -target_rect->top;
target_rect->top = 0;
source_rect->top += offset * orig_source_height / orig_target_height;
}
if (target_rect->bottom > fb_height)
{
const int offset = target_rect->bottom - fb_height;
target_rect->bottom -= offset;
source_rect->bottom -= offset * orig_source_height / orig_target_height;
}
}
void Presenter::ReleaseXFBContentLock()
{
if (m_xfb_entry)
m_xfb_entry->ReleaseContentLock();
}
void Presenter::ChangeSurface(void* new_surface_handle)
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_new_surface_handle = new_surface_handle;
m_surface_changed.Set();
}
void Presenter::ResizeSurface()
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_surface_resized.Set();
}
void* Presenter::GetNewSurfaceHandle()
{
void* handle = m_new_surface_handle;
m_new_surface_handle = nullptr;
return handle;
}
u32 Presenter::AutoIntegralScale() const
{
// Take the source/native resolution (XFB) and stretch it on the target (window) aspect ratio.
// If the target resolution is larger (on either x or y), we scale the source
// by a integer multiplier until it won't have to be scaled up anymore.
// NOTE: this might conflict with "Config::MAIN_RENDER_WINDOW_AUTOSIZE",
// as they mutually influence each other.
u32 source_width = m_last_xfb_width;
u32 source_height = m_last_xfb_height;
const u32 target_width = m_target_rectangle.GetWidth();
const u32 target_height = m_target_rectangle.GetHeight();
const float source_aspect_ratio = (float)source_width / source_height;
const float target_aspect_ratio = (float)target_width / target_height;
if (source_aspect_ratio >= target_aspect_ratio)
source_width = std::round(source_height * target_aspect_ratio);
else
source_height = std::round(source_width / target_aspect_ratio);
const u32 width_scale =
source_width > 0 ? ((target_width + (source_width - 1)) / source_width) : 1;
const u32 height_scale =
source_height > 0 ? ((target_height + (source_height - 1)) / source_height) : 1;
// Limit to the max to avoid creating textures larger than their max supported resolution.
return std::min(std::max(width_scale, height_scale),
static_cast<u32>(Config::Get(Config::GFX_MAX_EFB_SCALE)));
}
void Presenter::SetSuggestedWindowSize(int width, int height)
{
// While trying to guess the best window resolution, we can't allow it to use the
// "AspectMode::Stretch" setting because that would self influence the output result,
// given it would be based on the previous frame resolution
const bool allow_stretch = false;
const auto [out_width, out_height] = CalculateOutputDimensions(width, height, allow_stretch);
// Track the last values of width/height to avoid sending a window resize event every frame.
if (out_width == m_last_window_request_width && out_height == m_last_window_request_height)
return;
m_last_window_request_width = out_width;
m_last_window_request_height = out_height;
// Pass in the suggested window size. This might not always be acknowledged.
Host_RequestRenderWindowSize(out_width, out_height);
}
// Crop to exact forced aspect ratios if enabled and not AspectMode::Stretch.
std::tuple<float, float> Presenter::ApplyStandardAspectCrop(float width, float height,
bool allow_stretch) const
{
auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
if (!g_ActiveConfig.bCrop || aspect_mode == AspectMode::Stretch || aspect_mode == AspectMode::Raw)
return {width, height};
// Force aspect ratios by cropping the image.
const float current_aspect = width / height;
float expected_aspect;
switch (aspect_mode)
{
default:
case AspectMode::Auto:
expected_aspect = g_widescreen->IsGameWidescreen() ? (16.0f / 9.0f) : (4.0f / 3.0f);
break;
case AspectMode::ForceWide:
expected_aspect = 16.0f / 9.0f;
break;
case AspectMode::ForceStandard:
expected_aspect = 4.0f / 3.0f;
break;
// For the custom (relative) case, we want to crop from the native aspect ratio
// to the specific target one, as they likely have a small difference
case AspectMode::Custom:
// There should be no cropping needed in the custom strech case,
// as output should always exactly match the target aspect ratio
case AspectMode::CustomStretch:
expected_aspect = g_ActiveConfig.GetCustomAspectRatio();
break;
}
if (current_aspect > expected_aspect)
{
// keep height, crop width
width = height * expected_aspect;
}
else
{
// keep width, crop height
height = width / expected_aspect;
}
return {width, height};
}
void Presenter::UpdateDrawRectangle()
{
const float draw_aspect_ratio = CalculateDrawAspectRatio();
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
auto& vi = Core::System::GetInstance().GetVideoInterface();
float source_aspect_ratio = vi.GetAspectRatio();
// If the game is meant to be in widescreen (or forced to),
// scale the source aspect ratio to it.
if (g_widescreen->IsGameWidescreen())
source_aspect_ratio = SourceAspectRatioToWidescreen(source_aspect_ratio);
const float adjust = source_aspect_ratio / draw_aspect_ratio;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled.
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// The rendering window size
const float win_width = static_cast<float>(m_backbuffer_width);
const float win_height = static_cast<float>(m_backbuffer_height);
const float win_aspect_ratio = win_width / win_height;
// FIXME: this breaks at very low widget sizes
// Make ControllerInterface aware of the render window region actually being used
// to adjust mouse cursor inputs.
// This also fails to acknowledge "g_ActiveConfig.bCrop".
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / win_aspect_ratio);
float draw_width = draw_aspect_ratio;
float draw_height = 1;
// Crop the picture to a standard aspect ratio. (if enabled)
auto [crop_width, crop_height] = ApplyStandardAspectCrop(draw_width, draw_height);
// scale the picture to fit the rendering window
if (win_aspect_ratio >= crop_width / crop_height)
{
// the window is flatter than the picture
draw_width *= win_height / crop_height;
crop_width *= win_height / crop_height;
draw_height *= win_height / crop_height;
crop_height = win_height;
}
else
{
// the window is skinnier than the picture
draw_width *= win_width / crop_width;
draw_height *= win_width / crop_width;
crop_height *= win_width / crop_width;
crop_width = win_width;
}
int int_draw_width;
int int_draw_height;
if (g_frame_dumper->IsFrameDumping())
{
// ensure divisibility by "VIDEO_ENCODER_LCM" to make it compatible with all the video encoders.
// Note that this is theoretically only necessary when recording videos and not screenshots.
draw_width =
std::ceil(draw_width) - static_cast<int>(std::ceil(draw_width)) % VIDEO_ENCODER_LCM;
draw_height =
std::ceil(draw_height) - static_cast<int>(std::ceil(draw_height)) % VIDEO_ENCODER_LCM;
int_draw_width = static_cast<int>(draw_width);
int_draw_height = static_cast<int>(draw_height);
}
else if (g_ActiveConfig.aspect_mode != AspectMode::Raw || !m_xfb_entry)
{
// Find the best integer resolution: the closest aspect ratio with the least black bars.
// This should have no influence if "AspectMode::Stretch" is active.
const float updated_draw_aspect_ratio = draw_width / draw_height;
const auto int_draw_res =
FindClosestIntegerResolution(draw_width, draw_height, updated_draw_aspect_ratio);
int_draw_width = std::get<0>(int_draw_res);
int_draw_height = std::get<1>(int_draw_res);
if (!g_ActiveConfig.bCrop)
{
if (g_ActiveConfig.aspect_mode != AspectMode::Stretch)
{
TryToSnapToXFBSize(int_draw_width, int_draw_height, m_xfb_rect.GetWidth(),
m_xfb_rect.GetHeight());
}
// We can't draw something bigger than the window, it will crop
int_draw_width = std::min(int_draw_width, static_cast<int>(win_width));
int_draw_height = std::min(int_draw_height, static_cast<int>(win_height));
}
}
else
{
int_draw_width = m_xfb_rect.GetWidth();
int_draw_height = m_xfb_rect.GetHeight();
}
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - int_draw_width / 2.0));
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - int_draw_height / 2.0));
m_target_rectangle.right = m_target_rectangle.left + int_draw_width;
m_target_rectangle.bottom = m_target_rectangle.top + int_draw_height;
}
std::tuple<float, float> Presenter::ScaleToDisplayAspectRatio(const int width, const int height,
bool allow_stretch) const
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float scaled_width = static_cast<float>(width);
float scaled_height = static_cast<float>(height);
const float draw_aspect = CalculateDrawAspectRatio(allow_stretch);
if (scaled_width / scaled_height >= draw_aspect)
scaled_height = scaled_width / draw_aspect;
else
scaled_width = scaled_height * draw_aspect;
return std::make_tuple(scaled_width, scaled_height);
}
std::tuple<int, int> Presenter::CalculateOutputDimensions(int width, int height,
bool allow_stretch) const
{
width = std::max(width, 1);
height = std::max(height, 1);
auto [scaled_width, scaled_height] = ScaleToDisplayAspectRatio(width, height, allow_stretch);
// Apply crop if enabled.
std::tie(scaled_width, scaled_height) =
ApplyStandardAspectCrop(scaled_width, scaled_height, allow_stretch);
auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
if (!g_ActiveConfig.bCrop && aspect_mode != AspectMode::Stretch)
{
// Find the closest integer resolution for the aspect ratio,
// this avoids a small black line from being drawn on one of the four edges
const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch);
auto [int_width, int_height] =
FindClosestIntegerResolution(scaled_width, scaled_height, draw_aspect_ratio);
if (aspect_mode != AspectMode::Raw)
{
TryToSnapToXFBSize(int_width, int_height, m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
}
width = int_width;
height = int_height;
}
else
{
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
}
if (g_frame_dumper->IsFrameDumping())
{
// UpdateDrawRectangle() makes sure that the rendered image is divisible by "VIDEO_ENCODER_LCM"
// for video encoders, so do that here too to match it
width -= width % VIDEO_ENCODER_LCM;
height -= height % VIDEO_ENCODER_LCM;
}
return std::make_tuple(width, height);
}
void Presenter::RenderXFBToScreen(const MathUtil::Rectangle<int>& target_rc,
const AbstractTexture* source_texture,
const MathUtil::Rectangle<int>& source_rc)
{
if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer &&
g_ActiveConfig.backend_info.bUsesExplictQuadBuffering)
{
// Quad-buffered stereo is annoying on GL.
g_gfx->SelectLeftBuffer();
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture, 0);
g_gfx->SelectRightBuffer();
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture, 1);
g_gfx->SelectMainBuffer();
}
else if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
const auto [left_rc, right_rc] = ConvertStereoRectangle(target_rc);
m_post_processor->BlitFromTexture(left_rc, source_rc, source_texture, 0);
m_post_processor->BlitFromTexture(right_rc, source_rc, source_texture, 1);
}
// Every other case will be treated the same (stereo or not).
// If there's multiple source layers, they should all be copied.
else
{
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture);
}
}
void Presenter::Present()
{
m_present_count++;
if (g_gfx->IsHeadless() || (!m_onscreen_ui && !m_xfb_entry))
return;
if (!g_gfx->SupportsUtilityDrawing())
{
// Video Software doesn't support drawing a UI or doing post-processing
// So just show the XFB
if (m_xfb_entry)
{
g_gfx->ShowImage(m_xfb_entry->texture.get(), m_xfb_rect);
// Update the window size based on the frame that was just rendered.
// Due to depending on guest state, we need to call this every frame.
SetSuggestedWindowSize(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
}
return;
}
// Since we use the common pipelines here and draw vertices if a batch is currently being
// built by the vertex loader, we end up trampling over its pointer, as we share the buffer
// with the loader, and it has not been unmapped yet. Force a pipeline flush to avoid this.
g_vertex_manager->Flush();
UpdateDrawRectangle();
g_gfx->BeginUtilityDrawing();
g_gfx->BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}});
// Render the XFB to the screen.
if (m_xfb_entry)
{
// Adjust the source rectangle instead of using an oversized viewport to render the XFB.
auto render_target_rc = GetTargetRectangle();
auto render_source_rc = m_xfb_rect;
AdjustRectanglesToFitBounds(&render_target_rc, &render_source_rc, m_backbuffer_width,
m_backbuffer_height);
RenderXFBToScreen(render_target_rc, m_xfb_entry->texture.get(), render_source_rc);
}
if (m_onscreen_ui)
{
m_onscreen_ui->Finalize();
m_onscreen_ui->DrawImGui();
}
// Present to the window system.
{
std::lock_guard<std::mutex> guard(m_swap_mutex);
g_gfx->PresentBackbuffer();
}
if (m_xfb_entry)
{
// Update the window size based on the frame that was just rendered.
// Due to depending on guest state, we need to call this every frame.
SetSuggestedWindowSize(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
}
if (m_onscreen_ui)
m_onscreen_ui->BeginImGuiFrame(m_backbuffer_width, m_backbuffer_height);
g_gfx->EndUtilityDrawing();
}
void Presenter::SetKeyMap(const DolphinKeyMap& key_map)
{
if (m_onscreen_ui)
m_onscreen_ui->SetKeyMap(key_map);
}
void Presenter::SetKey(u32 key, bool is_down, const char* chars)
{
if (m_onscreen_ui)
m_onscreen_ui->SetKey(key, is_down, chars);
}
void Presenter::SetMousePos(float x, float y)
{
if (m_onscreen_ui)
m_onscreen_ui->SetMousePos(x, y);
}
void Presenter::SetMousePress(u32 button_mask)
{
if (m_onscreen_ui)
m_onscreen_ui->SetMousePress(button_mask);
}
void Presenter::DoState(PointerWrap& p)
{
p.Do(m_frame_count);
p.Do(m_last_xfb_ticks);
p.Do(m_last_xfb_addr);
p.Do(m_last_xfb_width);
p.Do(m_last_xfb_stride);
p.Do(m_last_xfb_height);
// If we're loading and there is a last XFB, re-display it.
if (p.IsReadMode() && m_last_xfb_stride != 0)
{
// This technically counts as the end of the frame
AfterFrameEvent::Trigger(Core::System::GetInstance());
ImmediateSwap(m_last_xfb_addr, m_last_xfb_width, m_last_xfb_stride, m_last_xfb_height,
m_last_xfb_ticks);
}
}
} // namespace VideoCommon