Léo Lam 585899dba3
Turn format string issues into compile-time errors
If the compiler can detect an issue with a format string at compile
time, then we should take advantage of that and turn the issue into a
hard compile-time error as such problems almost always lead to UB.

This helps with catching logging or assertion messages that have been
converted over to fmt but are still using the old, non-fmt variants
of the logging macros.

This commit also fixes all incorrect usages that I could find.
2020-12-04 18:06:02 +01:00

107 lines
3.3 KiB
C++

// Copyright 2018 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cstring>
#include <vector>
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/FloatUtils.h"
#include "Common/x64ABI.h"
#include "Core/PowerPC/Gekko.h"
#include "Core/PowerPC/Jit64/Jit.h"
#include "Core/PowerPC/Jit64Common/Jit64AsmCommon.h"
#include "Core/PowerPC/Jit64Common/Jit64PowerPCState.h"
#include <fmt/format.h>
#include <gtest/gtest.h>
namespace
{
class TestCommonAsmRoutines : public CommonAsmRoutines
{
public:
TestCommonAsmRoutines() : CommonAsmRoutines(jit)
{
using namespace Gen;
AllocCodeSpace(4096);
m_const_pool.Init(AllocChildCodeSpace(1024), 1024);
const auto raw_frsqrte = reinterpret_cast<double (*)(double)>(AlignCode4());
GenFrsqrte();
wrapped_frsqrte = reinterpret_cast<u64 (*)(u64, UReg_FPSCR&)>(AlignCode4());
ABI_PushRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8, 16);
// We know the frsqrte implementation only accesses the fpscr. We manufacture a
// PPCSTATE pointer so we read/write to our provided fpscr argument instead.
XOR(32, R(RPPCSTATE), R(RPPCSTATE));
LEA(64, RSCRATCH, PPCSTATE(fpscr));
SUB(64, R(ABI_PARAM2), R(RSCRATCH));
MOV(64, R(RPPCSTATE), R(ABI_PARAM2));
// Call
MOVQ_xmm(XMM0, R(ABI_PARAM1));
ABI_CallFunction(raw_frsqrte);
MOVQ_xmm(R(ABI_RETURN), XMM0);
ABI_PopRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8, 16);
RET();
}
u64 (*wrapped_frsqrte)(u64, UReg_FPSCR&);
Jit64 jit;
};
} // namespace
TEST(Jit64, Frsqrte)
{
TestCommonAsmRoutines routines;
const std::vector<u64> special_values{
0x0000'0000'0000'0000, // positive zero
0x0000'0000'0000'0001, // smallest positive denormal
0x0000'0000'0100'0000,
0x000F'FFFF'FFFF'FFFF, // largest positive denormal
0x0010'0000'0000'0000, // smallest positive normal
0x0010'0000'0000'0002,
0x3FF0'0000'0000'0000, // 1.0
0x7FEF'FFFF'FFFF'FFFF, // largest positive normal
0x7FF0'0000'0000'0000, // positive infinity
0x7FF0'0000'0000'0001, // first positive SNaN
0x7FF7'FFFF'FFFF'FFFF, // last positive SNaN
0x7FF8'0000'0000'0000, // first positive QNaN
0x7FFF'FFFF'FFFF'FFFF, // last positive QNaN
0x8000'0000'0000'0000, // negative zero
0x8000'0000'0000'0001, // smallest negative denormal
0x8000'0000'0100'0000,
0x800F'FFFF'FFFF'FFFF, // largest negative denormal
0x8010'0000'0000'0000, // smallest negative normal
0x8010'0000'0000'0002,
0xBFF0'0000'0000'0000, // -1.0
0xFFEF'FFFF'FFFF'FFFF, // largest negative normal
0xFFF0'0000'0000'0000, // negative infinity
0xFFF0'0000'0000'0001, // first negative SNaN
0xFFF7'FFFF'FFFF'FFFF, // last negative SNaN
0xFFF8'0000'0000'0000, // first negative QNaN
0xFFFF'FFFF'FFFF'FFFF, // last negative QNaN
};
UReg_FPSCR fpscr;
for (u64 ivalue : special_values)
{
double dvalue = Common::BitCast<double>(ivalue);
u64 expected = Common::BitCast<u64>(Common::ApproximateReciprocalSquareRoot(dvalue));
u64 actual = routines.wrapped_frsqrte(ivalue, fpscr);
fmt::print("{:016x} -> {:016x} == {:016x}\n", ivalue, actual, expected);
EXPECT_EQ(expected, actual);
}
}