TellowKrinkle 6ab24e6c17 VideoCommon: Better driver bug handling
Adds a pass to process driver deficiencies between UID caching and use, allowing a full view of the whole pipeline, since some bugs/workarounds involve interactions between blend modes and the pixel shader
2022-07-13 21:51:24 -05:00

406 lines
19 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Vulkan/VKPipeline.h"
#include <array>
#include "Common/Assert.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/VKShader.h"
#include "VideoBackends/Vulkan/VKTexture.h"
#include "VideoBackends/Vulkan/VKVertexFormat.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
namespace Vulkan
{
VKPipeline::VKPipeline(VkPipeline pipeline, VkPipelineLayout pipeline_layout,
AbstractPipelineUsage usage)
: m_pipeline(pipeline), m_pipeline_layout(pipeline_layout), m_usage(usage)
{
}
VKPipeline::~VKPipeline()
{
vkDestroyPipeline(g_vulkan_context->GetDevice(), m_pipeline, nullptr);
}
static bool IsStripPrimitiveTopology(VkPrimitiveTopology topology)
{
return topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP ||
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY;
}
static VkPipelineRasterizationStateCreateInfo
GetVulkanRasterizationState(const RasterizationState& state)
{
static constexpr std::array<VkCullModeFlags, 4> cull_modes = {
{VK_CULL_MODE_NONE, VK_CULL_MODE_BACK_BIT, VK_CULL_MODE_FRONT_BIT,
VK_CULL_MODE_FRONT_AND_BACK}};
bool depth_clamp = g_ActiveConfig.backend_info.bSupportsDepthClamp;
return {
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineRasterizationStateCreateFlags flags
depth_clamp, // VkBool32 depthClampEnable
VK_FALSE, // VkBool32 rasterizerDiscardEnable
VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode
cull_modes[u32(state.cullmode.Value())], // VkCullModeFlags cullMode
VK_FRONT_FACE_CLOCKWISE, // VkFrontFace frontFace
VK_FALSE, // VkBool32 depthBiasEnable
0.0f, // float depthBiasConstantFactor
0.0f, // float depthBiasClamp
0.0f, // float depthBiasSlopeFactor
1.0f // float lineWidth
};
}
static VkPipelineMultisampleStateCreateInfo GetVulkanMultisampleState(const FramebufferState& state)
{
return {
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineMultisampleStateCreateFlags flags
static_cast<VkSampleCountFlagBits>(
state.samples.Value()), // VkSampleCountFlagBits rasterizationSamples
state.per_sample_shading, // VkBool32 sampleShadingEnable
1.0f, // float minSampleShading
nullptr, // const VkSampleMask* pSampleMask;
VK_FALSE, // VkBool32 alphaToCoverageEnable
VK_FALSE // VkBool32 alphaToOneEnable
};
}
static VkPipelineDepthStencilStateCreateInfo GetVulkanDepthStencilState(const DepthState& state)
{
// Less/greater are swapped due to inverted depth.
VkCompareOp compare_op;
bool inverted_depth = !g_ActiveConfig.backend_info.bSupportsReversedDepthRange;
switch (state.func)
{
case CompareMode::Never:
compare_op = VK_COMPARE_OP_NEVER;
break;
case CompareMode::Less:
compare_op = inverted_depth ? VK_COMPARE_OP_GREATER : VK_COMPARE_OP_LESS;
break;
case CompareMode::Equal:
compare_op = VK_COMPARE_OP_EQUAL;
break;
case CompareMode::LEqual:
compare_op = inverted_depth ? VK_COMPARE_OP_GREATER_OR_EQUAL : VK_COMPARE_OP_LESS_OR_EQUAL;
break;
case CompareMode::Greater:
compare_op = inverted_depth ? VK_COMPARE_OP_LESS : VK_COMPARE_OP_GREATER;
break;
case CompareMode::NEqual:
compare_op = VK_COMPARE_OP_NOT_EQUAL;
break;
case CompareMode::GEqual:
compare_op = inverted_depth ? VK_COMPARE_OP_LESS_OR_EQUAL : VK_COMPARE_OP_GREATER_OR_EQUAL;
break;
case CompareMode::Always:
compare_op = VK_COMPARE_OP_ALWAYS;
break;
default:
PanicAlertFmt("Invalid compare mode {}", state.func);
compare_op = VK_COMPARE_OP_ALWAYS;
break;
}
return {
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineDepthStencilStateCreateFlags flags
state.testenable, // VkBool32 depthTestEnable
state.updateenable, // VkBool32 depthWriteEnable
compare_op, // VkCompareOp depthCompareOp
VK_FALSE, // VkBool32 depthBoundsTestEnable
VK_FALSE, // VkBool32 stencilTestEnable
{}, // VkStencilOpState front
{}, // VkStencilOpState back
0.0f, // float minDepthBounds
1.0f // float maxDepthBounds
};
}
static VkPipelineColorBlendAttachmentState
GetVulkanAttachmentBlendState(const BlendingState& state, AbstractPipelineUsage usage)
{
VkPipelineColorBlendAttachmentState vk_state = {};
bool use_dual_source = state.usedualsrc;
vk_state.blendEnable = static_cast<VkBool32>(state.blendenable);
vk_state.colorBlendOp = state.subtract ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
vk_state.alphaBlendOp = state.subtractAlpha ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD;
if (use_dual_source)
{
static constexpr std::array<VkBlendFactor, 8> src_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
vk_state.srcColorBlendFactor = src_factors[u32(state.srcfactor.Value())];
vk_state.srcAlphaBlendFactor = src_factors[u32(state.srcfactoralpha.Value())];
vk_state.dstColorBlendFactor = dst_factors[u32(state.dstfactor.Value())];
vk_state.dstAlphaBlendFactor = dst_factors[u32(state.dstfactoralpha.Value())];
}
else
{
static constexpr std::array<VkBlendFactor, 8> src_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
static constexpr std::array<VkBlendFactor, 8> dst_factors = {
{VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}};
vk_state.srcColorBlendFactor = src_factors[u32(state.srcfactor.Value())];
vk_state.srcAlphaBlendFactor = src_factors[u32(state.srcfactoralpha.Value())];
vk_state.dstColorBlendFactor = dst_factors[u32(state.dstfactor.Value())];
vk_state.dstAlphaBlendFactor = dst_factors[u32(state.dstfactoralpha.Value())];
}
if (state.colorupdate)
{
vk_state.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT;
}
else
{
vk_state.colorWriteMask = 0;
}
if (state.alphaupdate)
vk_state.colorWriteMask |= VK_COLOR_COMPONENT_A_BIT;
return vk_state;
}
static VkPipelineColorBlendStateCreateInfo
GetVulkanColorBlendState(const BlendingState& state,
const VkPipelineColorBlendAttachmentState* attachments,
uint32_t num_attachments)
{
static constexpr std::array<VkLogicOp, 16> vk_logic_ops = {
{VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY,
VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR,
VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE,
VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}};
VkBool32 vk_logic_op_enable = static_cast<VkBool32>(state.logicopenable);
if (vk_logic_op_enable && !g_ActiveConfig.backend_info.bSupportsLogicOp)
{
// At the time of writing, Adreno and Mali drivers didn't support logic ops.
// The "emulation" through blending path has been removed, so just disable it completely.
// These drivers don't support dual-source blend either, so issues are to be expected.
vk_logic_op_enable = VK_FALSE;
}
VkLogicOp vk_logic_op =
vk_logic_op_enable ? vk_logic_ops[u32(state.logicmode.Value())] : VK_LOGIC_OP_CLEAR;
VkPipelineColorBlendStateCreateInfo vk_state = {
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineColorBlendStateCreateFlags flags
vk_logic_op_enable, // VkBool32 logicOpEnable
vk_logic_op, // VkLogicOp logicOp
num_attachments, // uint32_t attachmentCount
attachments, // const VkPipelineColorBlendAttachmentState* pAttachments
{1.0f, 1.0f, 1.0f, 1.0f} // float blendConstants[4]
};
return vk_state;
}
std::unique_ptr<VKPipeline> VKPipeline::Create(const AbstractPipelineConfig& config)
{
DEBUG_ASSERT(config.vertex_shader && config.pixel_shader);
// Get render pass for config.
VkRenderPass render_pass = g_object_cache->GetRenderPass(
VKTexture::GetVkFormatForHostTextureFormat(config.framebuffer_state.color_texture_format),
VKTexture::GetVkFormatForHostTextureFormat(config.framebuffer_state.depth_texture_format),
config.framebuffer_state.samples, VK_ATTACHMENT_LOAD_OP_LOAD);
// Get pipeline layout.
VkPipelineLayout pipeline_layout;
switch (config.usage)
{
case AbstractPipelineUsage::GX:
pipeline_layout = g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD);
break;
case AbstractPipelineUsage::Utility:
pipeline_layout = g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_UTILITY);
break;
default:
PanicAlertFmt("Unknown pipeline layout.");
return nullptr;
}
// Declare descriptors for empty vertex buffers/attributes
static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = {
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkPipelineVertexInputStateCreateFlags flags
0, // uint32_t vertexBindingDescriptionCount
nullptr, // const VkVertexInputBindingDescription* pVertexBindingDescriptions
0, // uint32_t vertexAttributeDescriptionCount
nullptr // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions
};
// Vertex inputs
const VkPipelineVertexInputStateCreateInfo& vertex_input_state =
config.vertex_format ?
static_cast<const VertexFormat*>(config.vertex_format)->GetVertexInputStateInfo() :
empty_vertex_input_state;
// Input assembly
static constexpr std::array<VkPrimitiveTopology, 4> vk_primitive_topologies = {
{VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP}};
VkPipelineInputAssemblyStateCreateInfo input_assembly_state = {
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
vk_primitive_topologies[static_cast<u32>(config.rasterization_state.primitive.Value())],
VK_FALSE};
// See Vulkan spec, section 19:
// If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
// VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
// primitiveRestartEnable must be VK_FALSE
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart &&
IsStripPrimitiveTopology(input_assembly_state.topology))
{
input_assembly_state.primitiveRestartEnable = VK_TRUE;
}
// Shaders to stages
VkPipelineShaderStageCreateInfo shader_stages[3];
uint32_t num_shader_stages = 0;
if (config.vertex_shader)
{
shader_stages[num_shader_stages++] = {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
static_cast<const VKShader*>(config.vertex_shader)->GetShaderModule(),
"main"};
}
if (config.geometry_shader)
{
shader_stages[num_shader_stages++] = {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_GEOMETRY_BIT,
static_cast<const VKShader*>(config.geometry_shader)->GetShaderModule(),
"main"};
}
if (config.pixel_shader)
{
shader_stages[num_shader_stages++] = {
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
static_cast<const VKShader*>(config.pixel_shader)->GetShaderModule(),
"main"};
}
// Fill in Vulkan descriptor structs from our state structures.
VkPipelineRasterizationStateCreateInfo rasterization_state =
GetVulkanRasterizationState(config.rasterization_state);
VkPipelineMultisampleStateCreateInfo multisample_state =
GetVulkanMultisampleState(config.framebuffer_state);
VkPipelineDepthStencilStateCreateInfo depth_stencil_state =
GetVulkanDepthStencilState(config.depth_state);
VkPipelineColorBlendAttachmentState blend_attachment_state =
GetVulkanAttachmentBlendState(config.blending_state, config.usage);
VkPipelineColorBlendStateCreateInfo blend_state =
GetVulkanColorBlendState(config.blending_state, &blend_attachment_state, 1);
// This viewport isn't used, but needs to be specified anyway.
static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
static const VkRect2D scissor = {{0, 0}, {1, 1}};
static const VkPipelineViewportStateCreateInfo viewport_state = {
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
nullptr,
0, // VkPipelineViewportStateCreateFlags flags;
1, // uint32_t viewportCount
&viewport, // const VkViewport* pViewports
1, // uint32_t scissorCount
&scissor // const VkRect2D* pScissors
};
// Set viewport and scissor dynamic state so we can change it elsewhere.
static const std::array<VkDynamicState, 2> dynamic_states{
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
static const VkPipelineDynamicStateCreateInfo dynamic_state = {
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr,
0, // VkPipelineDynamicStateCreateFlags flags
static_cast<u32>(dynamic_states.size()), // uint32_t dynamicStateCount
dynamic_states.data() // const VkDynamicState* pDynamicStates
};
// Combine to full pipeline info structure.
VkGraphicsPipelineCreateInfo pipeline_info = {
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
nullptr, // VkStructureType sType
0, // VkPipelineCreateFlags flags
num_shader_stages, // uint32_t stageCount
shader_stages, // const VkPipelineShaderStageCreateInfo* pStages
&vertex_input_state, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState
&input_assembly_state, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState
nullptr, // const VkPipelineTessellationStateCreateInfo* pTessellationState
&viewport_state, // const VkPipelineViewportStateCreateInfo* pViewportState
&rasterization_state, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState
&multisample_state, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState
&depth_stencil_state, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState
&blend_state, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState
&dynamic_state, // const VkPipelineDynamicStateCreateInfo* pDynamicState
pipeline_layout, // VkPipelineLayout layout
render_pass, // VkRenderPass renderPass
0, // uint32_t subpass
VK_NULL_HANDLE, // VkPipeline basePipelineHandle
-1 // int32_t basePipelineIndex
};
VkPipeline pipeline;
VkResult res =
vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), g_object_cache->GetPipelineCache(),
1, &pipeline_info, nullptr, &pipeline);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: ");
return VK_NULL_HANDLE;
}
return std::make_unique<VKPipeline>(pipeline, pipeline_layout, config.usage);
}
} // namespace Vulkan