735 lines
22 KiB
C++

// Copyright 2023 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/OGL/OGLGfx.h"
#include "Common/GL/GLContext.h"
#include "Common/GL/GLExtensions/GLExtensions.h"
#include "Common/Logging/LogManager.h"
#include "Core/Config/GraphicsSettings.h"
#include "VideoBackends/OGL/OGLConfig.h"
#include "VideoBackends/OGL/OGLPipeline.h"
#include "VideoBackends/OGL/OGLShader.h"
#include "VideoBackends/OGL/OGLTexture.h"
#include "VideoBackends/OGL/ProgramShaderCache.h"
#include "VideoBackends/OGL/SamplerCache.h"
#include "VideoCommon/AsyncShaderCompiler.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/Present.h"
#include "VideoCommon/VideoConfig.h"
#include <algorithm>
#include <string_view>
namespace OGL
{
VideoConfig g_ogl_config;
static void APIENTRY ErrorCallback(GLenum source, GLenum type, GLuint id, GLenum severity,
GLsizei length, const char* message, const void* userParam)
{
const char* s_source;
const char* s_type;
// Performance - DualCore driver performance warning:
// DualCore application thread syncing with server thread
if (id == 0x200b0)
return;
switch (source)
{
case GL_DEBUG_SOURCE_API_ARB:
s_source = "API";
break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB:
s_source = "Window System";
break;
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB:
s_source = "Shader Compiler";
break;
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB:
s_source = "Third Party";
break;
case GL_DEBUG_SOURCE_APPLICATION_ARB:
s_source = "Application";
break;
case GL_DEBUG_SOURCE_OTHER_ARB:
s_source = "Other";
break;
default:
s_source = "Unknown";
break;
}
switch (type)
{
case GL_DEBUG_TYPE_ERROR_ARB:
s_type = "Error";
break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB:
s_type = "Deprecated";
break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB:
s_type = "Undefined";
break;
case GL_DEBUG_TYPE_PORTABILITY_ARB:
s_type = "Portability";
break;
case GL_DEBUG_TYPE_PERFORMANCE_ARB:
s_type = "Performance";
break;
case GL_DEBUG_TYPE_OTHER_ARB:
s_type = "Other";
break;
default:
s_type = "Unknown";
break;
}
switch (severity)
{
case GL_DEBUG_SEVERITY_HIGH_ARB:
ERROR_LOG_FMT(HOST_GPU, "id: {:x}, source: {}, type: {} - {}", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_MEDIUM_ARB:
WARN_LOG_FMT(HOST_GPU, "id: {:x}, source: {}, type: {} - {}", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_LOW_ARB:
DEBUG_LOG_FMT(HOST_GPU, "id: {:x}, source: {}, type: {} - {}", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_NOTIFICATION:
DEBUG_LOG_FMT(HOST_GPU, "id: {:x}, source: {}, type: {} - {}", id, s_source, s_type, message);
break;
default:
ERROR_LOG_FMT(HOST_GPU, "id: {:x}, source: {}, type: {} - {}", id, s_source, s_type, message);
break;
}
}
// Two small Fallbacks to avoid GL_ARB_ES2_compatibility
static void APIENTRY DepthRangef(GLfloat neardepth, GLfloat fardepth)
{
glDepthRange(neardepth, fardepth);
}
static void APIENTRY ClearDepthf(GLfloat depthval)
{
glClearDepth(depthval);
}
OGLGfx::OGLGfx(std::unique_ptr<GLContext> main_gl_context, float backbuffer_scale)
: m_main_gl_context(std::move(main_gl_context)),
m_current_rasterization_state(RenderState::GetInvalidRasterizationState()),
m_current_depth_state(RenderState::GetInvalidDepthState()),
m_current_blend_state(RenderState::GetInvalidBlendingState()),
m_backbuffer_scale(backbuffer_scale)
{
// Create the window framebuffer.
if (!m_main_gl_context->IsHeadless())
{
m_system_framebuffer = std::make_unique<OGLFramebuffer>(
nullptr, nullptr, std::vector<AbstractTexture*>{}, AbstractTextureFormat::RGBA8,
AbstractTextureFormat::Undefined, std::max(m_main_gl_context->GetBackBufferWidth(), 1u),
std::max(m_main_gl_context->GetBackBufferHeight(), 1u), 1, 1, 0);
m_current_framebuffer = m_system_framebuffer.get();
}
if (!m_main_gl_context->IsGLES())
{
// OpenGL 3 doesn't provide GLES like float functions for depth.
// They are in core in OpenGL 4.1, so almost every driver should support them.
// But for the oldest ones, we provide fallbacks to the old double functions.
if (!GLExtensions::Supports("GL_ARB_ES2_compatibility"))
{
glDepthRangef = DepthRangef;
glClearDepthf = ClearDepthf;
}
}
InitDriverInfo();
// Setup Debug logging
if (g_ogl_config.bSupportsDebug)
{
if (GLExtensions::Supports("GL_KHR_debug"))
{
glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true);
glDebugMessageCallback(ErrorCallback, nullptr);
}
else
{
glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true);
glDebugMessageCallbackARB(ErrorCallback, nullptr);
}
if (Common::Log::LogManager::GetInstance()->IsEnabled(Common::Log::LogType::HOST_GPU,
Common::Log::LogLevel::LERROR))
{
glEnable(GL_DEBUG_OUTPUT);
}
else
{
glDisable(GL_DEBUG_OUTPUT);
}
}
// Handle VSync on/off
if (!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC))
m_main_gl_context->SwapInterval(g_ActiveConfig.bVSyncActive);
if (g_ActiveConfig.backend_info.bSupportsClipControl)
glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glEnable(GL_CLIP_DISTANCE0);
glEnable(GL_CLIP_DISTANCE1);
glEnable(GL_DEPTH_CLAMP);
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glGenFramebuffers(1, &m_shared_read_framebuffer);
glGenFramebuffers(1, &m_shared_draw_framebuffer);
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart)
GLUtil::EnablePrimitiveRestart(m_main_gl_context.get());
UpdateActiveConfig();
}
OGLGfx::~OGLGfx()
{
glDeleteFramebuffers(1, &m_shared_draw_framebuffer);
glDeleteFramebuffers(1, &m_shared_read_framebuffer);
}
bool OGLGfx::IsHeadless() const
{
return m_main_gl_context->IsHeadless();
}
std::unique_ptr<AbstractTexture> OGLGfx::CreateTexture(const TextureConfig& config,
std::string_view name)
{
return std::make_unique<OGLTexture>(config, name);
}
std::unique_ptr<AbstractStagingTexture> OGLGfx::CreateStagingTexture(StagingTextureType type,
const TextureConfig& config)
{
return OGLStagingTexture::Create(type, config);
}
std::unique_ptr<AbstractFramebuffer>
OGLGfx::CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment,
std::vector<AbstractTexture*> additional_color_attachments)
{
return OGLFramebuffer::Create(static_cast<OGLTexture*>(color_attachment),
static_cast<OGLTexture*>(depth_attachment),
std::move(additional_color_attachments));
}
std::unique_ptr<AbstractShader>
OGLGfx::CreateShaderFromSource(ShaderStage stage, std::string_view source, std::string_view name)
{
return OGLShader::CreateFromSource(stage, source, name);
}
std::unique_ptr<AbstractShader>
OGLGfx::CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length,
[[maybe_unused]] std::string_view name)
{
return nullptr;
}
std::unique_ptr<AbstractPipeline> OGLGfx::CreatePipeline(const AbstractPipelineConfig& config,
const void* cache_data,
size_t cache_data_length)
{
return OGLPipeline::Create(config, cache_data, cache_data_length);
}
void OGLGfx::SetScissorRect(const MathUtil::Rectangle<int>& rc)
{
glScissor(rc.left, rc.top, rc.GetWidth(), rc.GetHeight());
}
void OGLGfx::SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
if (g_ogl_config.bSupportViewportFloat)
{
glViewportIndexedf(0, x, y, width, height);
}
else
{
auto iceilf = [](float f) { return static_cast<GLint>(std::ceil(f)); };
glViewport(iceilf(x), iceilf(y), iceilf(width), iceilf(height));
}
glDepthRangef(near_depth, far_depth);
}
void OGLGfx::Draw(u32 base_vertex, u32 num_vertices)
{
glDrawArrays(static_cast<const OGLPipeline*>(m_current_pipeline)->GetGLPrimitive(), base_vertex,
num_vertices);
}
void OGLGfx::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex)
{
if (g_ogl_config.bSupportsGLBaseVertex)
{
glDrawElementsBaseVertex(static_cast<const OGLPipeline*>(m_current_pipeline)->GetGLPrimitive(),
num_indices, GL_UNSIGNED_SHORT,
static_cast<u16*>(nullptr) + base_index, base_vertex);
}
else
{
glDrawElements(static_cast<const OGLPipeline*>(m_current_pipeline)->GetGLPrimitive(),
num_indices, GL_UNSIGNED_SHORT, static_cast<u16*>(nullptr) + base_index);
}
}
void OGLGfx::DispatchComputeShader(const AbstractShader* shader, u32 groupsize_x, u32 groupsize_y,
u32 groupsize_z, u32 groups_x, u32 groups_y, u32 groups_z)
{
glUseProgram(static_cast<const OGLShader*>(shader)->GetGLComputeProgramID());
glDispatchCompute(groups_x, groups_y, groups_z);
// We messed up the program binding, so restore it.
ProgramShaderCache::InvalidateLastProgram();
if (m_current_pipeline)
static_cast<const OGLPipeline*>(m_current_pipeline)->GetProgram()->shader.Bind();
// Barrier to texture can be used for reads.
if (std::any_of(m_bound_image_textures.begin(), m_bound_image_textures.end(),
[](auto image) { return image != nullptr; }))
{
glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT);
}
}
void OGLGfx::SelectLeftBuffer()
{
glDrawBuffer(GL_BACK_LEFT);
}
void OGLGfx::SelectRightBuffer()
{
glDrawBuffer(GL_BACK_RIGHT);
}
void OGLGfx::SelectMainBuffer()
{
glDrawBuffer(GL_BACK);
}
void OGLGfx::SetFramebuffer(AbstractFramebuffer* framebuffer)
{
if (m_current_framebuffer == framebuffer)
return;
glBindFramebuffer(GL_FRAMEBUFFER, static_cast<OGLFramebuffer*>(framebuffer)->GetFBO());
m_current_framebuffer = framebuffer;
}
void OGLGfx::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer)
{
// EXT_discard_framebuffer could be used here to save bandwidth on tilers.
SetFramebuffer(framebuffer);
}
void OGLGfx::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value,
float depth_value)
{
SetFramebuffer(framebuffer);
glDisable(GL_SCISSOR_TEST);
GLbitfield clear_mask = 0;
if (framebuffer->HasColorBuffer())
{
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClearColor(color_value[0], color_value[1], color_value[2], color_value[3]);
clear_mask |= GL_COLOR_BUFFER_BIT;
}
if (framebuffer->HasDepthBuffer())
{
glDepthMask(GL_TRUE);
glClearDepthf(depth_value);
clear_mask |= GL_DEPTH_BUFFER_BIT;
}
glClear(clear_mask);
glEnable(GL_SCISSOR_TEST);
// Restore color/depth mask.
if (framebuffer->HasColorBuffer())
{
glColorMask(m_current_blend_state.colorupdate, m_current_blend_state.colorupdate,
m_current_blend_state.colorupdate, m_current_blend_state.alphaupdate);
}
if (framebuffer->HasDepthBuffer())
glDepthMask(m_current_depth_state.updateenable);
}
void OGLGfx::ClearRegion(const MathUtil::Rectangle<int>& target_rc, bool colorEnable,
bool alphaEnable, bool zEnable, u32 color, u32 z)
{
u32 clear_mask = 0;
if (colorEnable || alphaEnable)
{
glColorMask(colorEnable, colorEnable, colorEnable, alphaEnable);
glClearColor(float((color >> 16) & 0xFF) / 255.0f, float((color >> 8) & 0xFF) / 255.0f,
float((color >> 0) & 0xFF) / 255.0f, float((color >> 24) & 0xFF) / 255.0f);
clear_mask = GL_COLOR_BUFFER_BIT;
}
if (zEnable)
{
glDepthMask(zEnable ? GL_TRUE : GL_FALSE);
glClearDepthf(float(z & 0xFFFFFF) / 16777216.0f);
clear_mask |= GL_DEPTH_BUFFER_BIT;
}
// Update rect for clearing the picture
// glColorMask/glDepthMask/glScissor affect glClear (glViewport does not)
g_gfx->SetScissorRect(target_rc);
glClear(clear_mask);
// Restore color/depth mask.
if (colorEnable || alphaEnable)
{
glColorMask(m_current_blend_state.colorupdate, m_current_blend_state.colorupdate,
m_current_blend_state.colorupdate, m_current_blend_state.alphaupdate);
}
if (zEnable)
glDepthMask(m_current_depth_state.updateenable);
}
void OGLGfx::BindBackbuffer(const ClearColor& clear_color)
{
CheckForSurfaceChange();
CheckForSurfaceResize();
SetAndClearFramebuffer(m_system_framebuffer.get(), clear_color);
}
void OGLGfx::PresentBackbuffer()
{
if (g_ogl_config.bSupportsDebug)
{
if (Common::Log::LogManager::GetInstance()->IsEnabled(Common::Log::LogType::HOST_GPU,
Common::Log::LogLevel::LERROR))
{
glEnable(GL_DEBUG_OUTPUT);
}
else
{
glDisable(GL_DEBUG_OUTPUT);
}
}
// Swap the back and front buffers, presenting the image.
m_main_gl_context->Swap();
}
void OGLGfx::OnConfigChanged(u32 bits)
{
AbstractGfx::OnConfigChanged(bits);
if (bits & CONFIG_CHANGE_BIT_VSYNC && !DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC))
m_main_gl_context->SwapInterval(g_ActiveConfig.bVSyncActive);
if (bits & CONFIG_CHANGE_BIT_ANISOTROPY)
g_sampler_cache->Clear();
}
void OGLGfx::Flush()
{
// ensure all commands are sent to the GPU.
// Otherwise the driver could batch several frames together.
glFlush();
}
void OGLGfx::WaitForGPUIdle()
{
glFinish();
}
void OGLGfx::CheckForSurfaceChange()
{
if (!g_presenter->SurfaceChangedTestAndClear())
return;
m_main_gl_context->UpdateSurface(g_presenter->GetNewSurfaceHandle());
u32 width = m_main_gl_context->GetBackBufferWidth();
u32 height = m_main_gl_context->GetBackBufferHeight();
// With a surface change, the window likely has new dimensions.
g_presenter->SetBackbuffer(width, height);
m_system_framebuffer->UpdateDimensions(width, height);
}
void OGLGfx::CheckForSurfaceResize()
{
if (!g_presenter->SurfaceResizedTestAndClear())
return;
m_main_gl_context->Update();
u32 width = m_main_gl_context->GetBackBufferWidth();
u32 height = m_main_gl_context->GetBackBufferHeight();
g_presenter->SetBackbuffer(width, height);
m_system_framebuffer->UpdateDimensions(width, height);
}
void OGLGfx::BeginUtilityDrawing()
{
AbstractGfx::BeginUtilityDrawing();
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glDisable(GL_CLIP_DISTANCE0);
glDisable(GL_CLIP_DISTANCE1);
}
}
void OGLGfx::EndUtilityDrawing()
{
AbstractGfx::EndUtilityDrawing();
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glEnable(GL_CLIP_DISTANCE0);
glEnable(GL_CLIP_DISTANCE1);
}
}
void OGLGfx::ApplyRasterizationState(const RasterizationState state)
{
if (m_current_rasterization_state == state)
return;
// none, ccw, cw, ccw
if (state.cullmode != CullMode::None)
{
// TODO: GX_CULL_ALL not supported, yet!
glEnable(GL_CULL_FACE);
glFrontFace(state.cullmode == CullMode::Front ? GL_CCW : GL_CW);
}
else
{
glDisable(GL_CULL_FACE);
}
m_current_rasterization_state = state;
}
void OGLGfx::ApplyDepthState(const DepthState state)
{
if (m_current_depth_state == state)
return;
const GLenum glCmpFuncs[8] = {GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL,
GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, GL_ALWAYS};
if (state.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(state.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[u32(state.func.Value())]);
}
else
{
// if the test is disabled write is disabled too
// TODO: When PE performance metrics are being emulated via occlusion queries, we should
// (probably?) enable depth test with depth function ALWAYS here
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
m_current_depth_state = state;
}
void OGLGfx::ApplyBlendingState(const BlendingState state)
{
if (m_current_blend_state == state)
return;
bool useDualSource = state.usedualsrc;
const GLenum src_factors[8] = {GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
useDualSource ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
useDualSource ? GL_ONE_MINUS_SRC1_ALPHA :
(GLenum)GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA};
const GLenum dst_factors[8] = {GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
useDualSource ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
useDualSource ? GL_ONE_MINUS_SRC1_ALPHA :
(GLenum)GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA};
if (state.blendenable)
glEnable(GL_BLEND);
else
glDisable(GL_BLEND);
// Always call glBlendEquationSeparate and glBlendFuncSeparate, even when
// GL_BLEND is disabled, as a workaround for some bugs (possibly graphics
// driver issues?). See https://bugs.dolphin-emu.org/issues/10120 : "Sonic
// Adventure 2 Battle: graphics crash when loading first Dark level"
GLenum equation = state.subtract ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = state.subtractAlpha ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
glBlendEquationSeparate(equation, equationAlpha);
glBlendFuncSeparate(src_factors[u32(state.srcfactor.Value())],
dst_factors[u32(state.dstfactor.Value())],
src_factors[u32(state.srcfactoralpha.Value())],
dst_factors[u32(state.dstfactoralpha.Value())]);
const GLenum logic_op_codes[16] = {
GL_CLEAR, GL_AND, GL_AND_REVERSE, GL_COPY, GL_AND_INVERTED, GL_NOOP,
GL_XOR, GL_OR, GL_NOR, GL_EQUIV, GL_INVERT, GL_OR_REVERSE,
GL_COPY_INVERTED, GL_OR_INVERTED, GL_NAND, GL_SET};
// Logic ops aren't available in GLES3
if (!IsGLES())
{
if (state.logicopenable)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(logic_op_codes[u32(state.logicmode.Value())]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
}
glColorMask(state.colorupdate, state.colorupdate, state.colorupdate, state.alphaupdate);
m_current_blend_state = state;
}
void OGLGfx::SetPipeline(const AbstractPipeline* pipeline)
{
if (m_current_pipeline == pipeline)
return;
if (pipeline)
{
ApplyRasterizationState(static_cast<const OGLPipeline*>(pipeline)->GetRasterizationState());
ApplyDepthState(static_cast<const OGLPipeline*>(pipeline)->GetDepthState());
ApplyBlendingState(static_cast<const OGLPipeline*>(pipeline)->GetBlendingState());
ProgramShaderCache::BindVertexFormat(
static_cast<const OGLPipeline*>(pipeline)->GetVertexFormat());
static_cast<const OGLPipeline*>(pipeline)->GetProgram()->shader.Bind();
}
else
{
ProgramShaderCache::InvalidateLastProgram();
glUseProgram(0);
}
m_current_pipeline = pipeline;
}
void OGLGfx::SetTexture(u32 index, const AbstractTexture* texture)
{
const OGLTexture* gl_texture = static_cast<const OGLTexture*>(texture);
if (m_bound_textures[index] == gl_texture)
return;
glActiveTexture(GL_TEXTURE0 + index);
if (gl_texture)
glBindTexture(gl_texture->GetGLTarget(), gl_texture->GetGLTextureId());
else
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
m_bound_textures[index] = gl_texture;
}
void OGLGfx::SetSamplerState(u32 index, const SamplerState& state)
{
g_sampler_cache->SetSamplerState(index, state);
}
void OGLGfx::SetComputeImageTexture(u32 index, AbstractTexture* texture, bool read, bool write)
{
if (m_bound_image_textures[index] == texture)
return;
if (texture)
{
const GLenum access = read ? (write ? GL_READ_WRITE : GL_READ_ONLY) : GL_WRITE_ONLY;
glBindImageTexture(index, static_cast<OGLTexture*>(texture)->GetGLTextureId(), 0, GL_TRUE, 0,
access, static_cast<OGLTexture*>(texture)->GetGLFormatForImageTexture());
}
else
{
glBindImageTexture(index, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RGBA8);
}
m_bound_image_textures[index] = texture;
}
void OGLGfx::UnbindTexture(const AbstractTexture* texture)
{
for (size_t i = 0; i < m_bound_textures.size(); i++)
{
if (m_bound_textures[i] != texture)
continue;
glActiveTexture(static_cast<GLenum>(GL_TEXTURE0 + i));
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
m_bound_textures[i] = nullptr;
}
for (size_t i = 0; i < m_bound_image_textures.size(); i++)
{
if (m_bound_image_textures[i] != texture)
continue;
glBindImageTexture(static_cast<GLuint>(i), 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RGBA8);
m_bound_image_textures[i] = nullptr;
}
}
std::unique_ptr<VideoCommon::AsyncShaderCompiler> OGLGfx::CreateAsyncShaderCompiler()
{
return std::make_unique<SharedContextAsyncShaderCompiler>();
}
bool OGLGfx::IsGLES() const
{
return m_main_gl_context->IsGLES();
}
void OGLGfx::BindSharedReadFramebuffer()
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_shared_read_framebuffer);
}
void OGLGfx::BindSharedDrawFramebuffer()
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_shared_draw_framebuffer);
}
void OGLGfx::RestoreFramebufferBinding()
{
glBindFramebuffer(
GL_FRAMEBUFFER,
m_current_framebuffer ? static_cast<OGLFramebuffer*>(m_current_framebuffer)->GetFBO() : 0);
}
SurfaceInfo OGLGfx::GetSurfaceInfo() const
{
return {std::max(m_main_gl_context->GetBackBufferWidth(), 1u),
std::max(m_main_gl_context->GetBackBufferHeight(), 1u), m_backbuffer_scale,
AbstractTextureFormat::RGBA8};
}
} // namespace OGL