dolphin/Source/Core/Core/FifoPlayer/FifoPlaybackAnalyzer.cpp
2014-09-08 15:39:58 -04:00

339 lines
7.3 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/CommonTypes.h"
#include "Core/FifoPlayer/FifoAnalyzer.h"
#include "Core/FifoPlayer/FifoDataFile.h"
#include "Core/FifoPlayer/FifoPlaybackAnalyzer.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexLoader.h"
using namespace FifoAnalyzer;
// For debugging
#define LOG_FIFO_CMDS 0
struct CmdData
{
u32 size;
u32 offset;
u8 *ptr;
};
FifoPlaybackAnalyzer::FifoPlaybackAnalyzer()
{
FifoAnalyzer::Init();
}
void FifoPlaybackAnalyzer::AnalyzeFrames(FifoDataFile *file, std::vector<AnalyzedFrameInfo> &frameInfo)
{
// Load BP memory
u32 *bpMem = file->GetBPMem();
memcpy(&m_BpMem, bpMem, sizeof(BPMemory));
u32 *cpMem = file->GetCPMem();
FifoAnalyzer::LoadCPReg(0x50, cpMem[0x50], m_CpMem);
FifoAnalyzer::LoadCPReg(0x60, cpMem[0x60], m_CpMem);
for (int i = 0; i < 8; ++i)
{
FifoAnalyzer::LoadCPReg(0x70 + i, cpMem[0x70 + i], m_CpMem);
FifoAnalyzer::LoadCPReg(0x80 + i, cpMem[0x80 + i], m_CpMem);
FifoAnalyzer::LoadCPReg(0x90 + i, cpMem[0x90 + i], m_CpMem);
}
frameInfo.clear();
frameInfo.resize(file->GetFrameCount());
for (u32 frameIdx = 0; frameIdx < file->GetFrameCount(); ++frameIdx)
{
const FifoFrameInfo& frame = file->GetFrame(frameIdx);
AnalyzedFrameInfo& analyzed = frameInfo[frameIdx];
m_DrawingObject = false;
u32 cmdStart = 0;
u32 nextMemUpdate = 0;
#if LOG_FIFO_CMDS
// Debugging
vector<CmdData> prevCmds;
#endif
while (cmdStart < frame.fifoDataSize)
{
// Add memory updates that have occurred before this point in the frame
while (nextMemUpdate < frame.memoryUpdates.size() && frame.memoryUpdates[nextMemUpdate].fifoPosition <= cmdStart)
{
AddMemoryUpdate(frame.memoryUpdates[nextMemUpdate], analyzed);
++nextMemUpdate;
}
bool wasDrawing = m_DrawingObject;
u32 cmdSize = DecodeCommand(&frame.fifoData[cmdStart]);
#if LOG_FIFO_CMDS
CmdData cmdData;
cmdData.offset = cmdStart;
cmdData.ptr = &frame.fifoData[cmdStart];
cmdData.size = cmdSize;
prevCmds.push_back(cmdData);
#endif
// Check for error
if (cmdSize == 0)
{
// Clean up frame analysis
analyzed.objectStarts.clear();
analyzed.objectEnds.clear();
return;
}
if (wasDrawing != m_DrawingObject)
{
if (m_DrawingObject)
analyzed.objectStarts.push_back(cmdStart);
else
analyzed.objectEnds.push_back(cmdStart);
}
cmdStart += cmdSize;
}
if (analyzed.objectEnds.size() < analyzed.objectStarts.size())
analyzed.objectEnds.push_back(cmdStart);
}
}
void FifoPlaybackAnalyzer::AddMemoryUpdate(MemoryUpdate memUpdate, AnalyzedFrameInfo &frameInfo)
{
u32 begin = memUpdate.address;
u32 end = memUpdate.address + memUpdate.size;
// Remove portions of memUpdate that overlap with memory ranges that have been written by the GP
for (const auto& range : m_WrittenMemory)
{
if (range.begin < end &&
range.end > begin)
{
s32 preSize = range.begin - begin;
s32 postSize = end - range.end;
if (postSize > 0)
{
if (preSize > 0)
{
memUpdate.size = preSize;
AddMemoryUpdate(memUpdate, frameInfo);
}
u32 bytesToRangeEnd = range.end - memUpdate.address;
memUpdate.data += bytesToRangeEnd;
memUpdate.size = postSize;
memUpdate.address = range.end;
}
else if (preSize > 0)
{
memUpdate.size = preSize;
}
else
{
// Ignore all of memUpdate
return;
}
}
}
frameInfo.memoryUpdates.push_back(memUpdate);
}
u32 FifoPlaybackAnalyzer::DecodeCommand(u8 *data)
{
u8 *dataStart = data;
int cmd = ReadFifo8(data);
switch (cmd)
{
case GX_NOP:
case 0x44:
case GX_CMD_INVL_VC:
break;
case GX_LOAD_CP_REG:
{
m_DrawingObject = false;
u32 cmd2 = ReadFifo8(data);
u32 value = ReadFifo32(data);
FifoAnalyzer::LoadCPReg(cmd2, value, m_CpMem);
}
break;
case GX_LOAD_XF_REG:
{
m_DrawingObject = false;
u32 cmd2 = ReadFifo32(data);
u8 streamSize = ((cmd2 >> 16) & 15) + 1;
data += streamSize * 4;
}
break;
case GX_LOAD_INDX_A:
case GX_LOAD_INDX_B:
case GX_LOAD_INDX_C:
case GX_LOAD_INDX_D:
m_DrawingObject = false;
data += 4;
break;
case GX_CMD_CALL_DL:
// The recorder should have expanded display lists into the fifo stream and skipped the call to start them
// That is done to make it easier to track where memory is updated
_assert_(false);
data += 8;
break;
case GX_LOAD_BP_REG:
{
m_DrawingObject = false;
u32 cmd2 = ReadFifo32(data);
BPCmd bp = FifoAnalyzer::DecodeBPCmd(cmd2, m_BpMem);
FifoAnalyzer::LoadBPReg(bp, m_BpMem);
if (bp.address == BPMEM_TRIGGER_EFB_COPY)
{
StoreEfbCopyRegion();
}
}
break;
default:
if (cmd & 0x80)
{
m_DrawingObject = true;
u32 vtxAttrGroup = cmd & GX_VAT_MASK;
int vertexSize = FifoAnalyzer::CalculateVertexSize(vtxAttrGroup, m_CpMem);
u16 streamSize = ReadFifo16(data);
data += streamSize * vertexSize;
}
else
{
PanicAlert("FifoPlayer: Unknown Opcode (0x%x).\nAborting frame analysis.\n", cmd);
return 0;
}
break;
}
return (u32)(data - dataStart);
}
void FifoPlaybackAnalyzer::StoreEfbCopyRegion()
{
UPE_Copy peCopy = m_BpMem.triggerEFBCopy;
u32 copyfmt = peCopy.tp_realFormat();
bool bFromZBuffer = m_BpMem.zcontrol.pixel_format == PEControl::Z24;
u32 address = bpmem.copyTexDest << 5;
u32 format = copyfmt;
if (peCopy.copy_to_xfb)
{
// Fake format to calculate size correctly
format = GX_TF_IA8;
}
else if (bFromZBuffer)
{
format |= _GX_TF_ZTF;
if (copyfmt == 11)
{
format = GX_TF_Z16;
}
else if (format < GX_TF_Z8 || format > GX_TF_Z24X8)
{
format |= _GX_TF_CTF;
}
}
else
{
if (copyfmt > GX_TF_RGBA8 || (copyfmt < GX_TF_RGB565 && !peCopy.intensity_fmt))
format |= _GX_TF_CTF;
}
int width = (m_BpMem.copyTexSrcWH.x + 1) >> peCopy.half_scale;
int height = (m_BpMem.copyTexSrcWH.y + 1) >> peCopy.half_scale;
u16 blkW = TexDecoder_GetBlockWidthInTexels(format) - 1;
u16 blkH = TexDecoder_GetBlockHeightInTexels(format) - 1;
s32 expandedWidth = (width + blkW) & (~blkW);
s32 expandedHeight = (height + blkH) & (~blkH);
int sizeInBytes = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, format);
StoreWrittenRegion(address, sizeInBytes);
}
void FifoPlaybackAnalyzer::StoreWrittenRegion(u32 address, u32 size)
{
u32 end = address + size;
auto newRangeIter = m_WrittenMemory.end();
// Search for overlapping memory regions and expand them to include the new region
for (auto iter = m_WrittenMemory.begin(); iter != m_WrittenMemory.end();)
{
MemoryRange &range = *iter;
if (range.begin < end && range.end > address)
{
// range at iterator and new range overlap
if (newRangeIter == m_WrittenMemory.end())
{
// Expand range to include the written region
range.begin = std::min(address, range.begin);
range.end = std::max(end, range.end);
newRangeIter = iter;
++iter;
}
else
{
// Expand region at rangeIter to include this range
MemoryRange &used = *newRangeIter;
used.begin = std::min(used.begin, range.begin);
used.end = std::max(used.end, range.end);
// Remove this entry
iter = m_WrittenMemory.erase(iter);
}
}
else
{
++iter;
}
}
if (newRangeIter == m_WrittenMemory.end())
{
MemoryRange range;
range.begin = address;
range.end = end;
m_WrittenMemory.push_back(range);
}
}