mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-22 14:01:16 +01:00
573 lines
15 KiB
C++
573 lines
15 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
// ---------------------------------------------------------------------------------------------
|
|
// GC graphics pipeline
|
|
// ---------------------------------------------------------------------------------------------
|
|
// 3d commands are issued through the fifo. The gpu draws to the 2MB EFB.
|
|
// The efb can be copied back into ram in two forms: as textures or as XFB.
|
|
// The XFB is the region in RAM that the VI chip scans out to the television.
|
|
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
|
|
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
|
|
// ---------------------------------------------------------------------------------------------
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
#include "Common/Atomic.h"
|
|
#include "Common/StringUtil.h"
|
|
#include "Common/Timer.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Core.h"
|
|
#include "Core/Host.h"
|
|
#include "Core/FifoPlayer/FifoRecorder.h"
|
|
|
|
#include "VideoCommon/AVIDump.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/CommandProcessor.h"
|
|
#include "VideoCommon/CPMemory.h"
|
|
#include "VideoCommon/Debugger.h"
|
|
#include "VideoCommon/Fifo.h"
|
|
#include "VideoCommon/FPSCounter.h"
|
|
#include "VideoCommon/FramebufferManagerBase.h"
|
|
#include "VideoCommon/MainBase.h"
|
|
#include "VideoCommon/OpcodeDecoding.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/TextureCacheBase.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
// TODO: Move these out of here.
|
|
int frameCount;
|
|
int OSDChoice;
|
|
static int OSDTime;
|
|
|
|
Renderer *g_renderer = nullptr;
|
|
|
|
std::mutex Renderer::s_criticalScreenshot;
|
|
std::string Renderer::s_sScreenshotName;
|
|
|
|
volatile bool Renderer::s_bScreenshot;
|
|
|
|
// The framebuffer size
|
|
int Renderer::s_target_width;
|
|
int Renderer::s_target_height;
|
|
|
|
// TODO: Add functionality to reinit all the render targets when the window is resized.
|
|
int Renderer::s_backbuffer_width;
|
|
int Renderer::s_backbuffer_height;
|
|
|
|
PostProcessingShaderImplementation* Renderer::m_post_processor;
|
|
|
|
TargetRectangle Renderer::target_rc;
|
|
|
|
int Renderer::s_LastEFBScale;
|
|
|
|
bool Renderer::XFBWrited;
|
|
|
|
PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT;
|
|
unsigned int Renderer::efb_scale_numeratorX = 1;
|
|
unsigned int Renderer::efb_scale_numeratorY = 1;
|
|
unsigned int Renderer::efb_scale_denominatorX = 1;
|
|
unsigned int Renderer::efb_scale_denominatorY = 1;
|
|
|
|
|
|
Renderer::Renderer()
|
|
: frame_data()
|
|
, bLastFrameDumped(false)
|
|
{
|
|
UpdateActiveConfig();
|
|
TextureCache::OnConfigChanged(g_ActiveConfig);
|
|
|
|
#if defined _WIN32 || defined HAVE_LIBAV
|
|
bAVIDumping = false;
|
|
#endif
|
|
|
|
OSDChoice = 0;
|
|
OSDTime = 0;
|
|
}
|
|
|
|
Renderer::~Renderer()
|
|
{
|
|
// invalidate previous efb format
|
|
prev_efb_format = PEControl::INVALID_FMT;
|
|
|
|
efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1;
|
|
|
|
#if defined _WIN32 || defined HAVE_LIBAV
|
|
if (SConfig::GetInstance().m_DumpFrames && bLastFrameDumped && bAVIDumping)
|
|
AVIDump::Stop();
|
|
#else
|
|
if (pFrameDump.IsOpen())
|
|
pFrameDump.Close();
|
|
#endif
|
|
}
|
|
|
|
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbWidth, u32 fbHeight, float Gamma)
|
|
{
|
|
CheckFifoRecording();
|
|
|
|
if (!fbWidth || !fbHeight)
|
|
return;
|
|
|
|
VideoFifo_CheckEFBAccess();
|
|
VideoFifo_CheckSwapRequestAt(xfbAddr, fbWidth, fbHeight);
|
|
XFBWrited = true;
|
|
|
|
if (g_ActiveConfig.bUseXFB)
|
|
{
|
|
FramebufferManagerBase::CopyToXFB(xfbAddr, fbWidth, fbHeight, sourceRc,Gamma);
|
|
}
|
|
else
|
|
{
|
|
Swap(xfbAddr, fbWidth, fbWidth, fbHeight, sourceRc, Gamma);
|
|
s_swapRequested.Clear();
|
|
}
|
|
}
|
|
|
|
int Renderer::EFBToScaledX(int x)
|
|
{
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO: // fractional
|
|
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, s_backbuffer_width);
|
|
|
|
default:
|
|
return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
|
|
};
|
|
}
|
|
|
|
int Renderer::EFBToScaledY(int y)
|
|
{
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO: // fractional
|
|
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, s_backbuffer_height);
|
|
|
|
default:
|
|
return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
|
|
};
|
|
}
|
|
|
|
void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY)
|
|
{
|
|
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
|
|
{
|
|
*scaledX = x;
|
|
*scaledY = y;
|
|
}
|
|
else
|
|
{
|
|
*scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
|
|
*scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
|
|
}
|
|
}
|
|
|
|
// return true if target size changed
|
|
bool Renderer::CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height)
|
|
{
|
|
int newEFBWidth, newEFBHeight;
|
|
newEFBWidth = newEFBHeight = 0;
|
|
|
|
// TODO: Ugly. Clean up
|
|
switch (s_LastEFBScale)
|
|
{
|
|
case SCALE_AUTO:
|
|
case SCALE_AUTO_INTEGRAL:
|
|
newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, framebuffer_width);
|
|
newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, framebuffer_height);
|
|
|
|
if (s_LastEFBScale == SCALE_AUTO_INTEGRAL)
|
|
{
|
|
newEFBWidth = ((newEFBWidth-1) / EFB_WIDTH + 1) * EFB_WIDTH;
|
|
newEFBHeight = ((newEFBHeight-1) / EFB_HEIGHT + 1) * EFB_HEIGHT;
|
|
}
|
|
efb_scale_numeratorX = newEFBWidth;
|
|
efb_scale_denominatorX = EFB_WIDTH;
|
|
efb_scale_numeratorY = newEFBHeight;
|
|
efb_scale_denominatorY = EFB_HEIGHT;
|
|
break;
|
|
|
|
case SCALE_1X:
|
|
efb_scale_numeratorX = efb_scale_numeratorY = 1;
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 1;
|
|
break;
|
|
|
|
case SCALE_1_5X:
|
|
efb_scale_numeratorX = efb_scale_numeratorY = 3;
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 2;
|
|
break;
|
|
|
|
case SCALE_2X:
|
|
efb_scale_numeratorX = efb_scale_numeratorY = 2;
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 1;
|
|
break;
|
|
|
|
case SCALE_2_5X:
|
|
efb_scale_numeratorX = efb_scale_numeratorY = 5;
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 2;
|
|
break;
|
|
|
|
case SCALE_3X:
|
|
case SCALE_4X:
|
|
default:
|
|
efb_scale_numeratorX = efb_scale_numeratorY = s_LastEFBScale - 3;
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 1;
|
|
|
|
|
|
int maxSize;
|
|
maxSize = GetMaxTextureSize();
|
|
if ((unsigned)maxSize < EFB_WIDTH * efb_scale_numeratorX / efb_scale_denominatorX)
|
|
{
|
|
efb_scale_numeratorX = efb_scale_numeratorY = (maxSize / EFB_WIDTH);
|
|
efb_scale_denominatorX = efb_scale_denominatorY = 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
if (s_LastEFBScale > SCALE_AUTO_INTEGRAL)
|
|
CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight);
|
|
|
|
if (newEFBWidth != s_target_width || newEFBHeight != s_target_height)
|
|
{
|
|
s_target_width = newEFBWidth;
|
|
s_target_height = newEFBHeight;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc, TargetRectangle& rightRc)
|
|
{
|
|
// Resize target to half its original size
|
|
TargetRectangle drawRc = rc;
|
|
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
|
|
{
|
|
// The height may be negative due to flipped rectangles
|
|
int height = rc.bottom - rc.top;
|
|
drawRc.top += height / 4;
|
|
drawRc.bottom -= height / 4;
|
|
}
|
|
else
|
|
{
|
|
int width = rc.right - rc.left;
|
|
drawRc.left += width / 4;
|
|
drawRc.right -= width / 4;
|
|
}
|
|
|
|
// Create two target rectangle offset to the sides of the backbuffer
|
|
leftRc = drawRc, rightRc = drawRc;
|
|
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
|
|
{
|
|
leftRc.top -= s_backbuffer_height / 4;
|
|
leftRc.bottom -= s_backbuffer_height / 4;
|
|
rightRc.top += s_backbuffer_height / 4;
|
|
rightRc.bottom += s_backbuffer_height / 4;
|
|
}
|
|
else
|
|
{
|
|
leftRc.left -= s_backbuffer_width / 4;
|
|
leftRc.right -= s_backbuffer_width / 4;
|
|
rightRc.left += s_backbuffer_width / 4;
|
|
rightRc.right += s_backbuffer_width / 4;
|
|
}
|
|
}
|
|
|
|
void Renderer::SetScreenshot(const std::string& filename)
|
|
{
|
|
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
|
|
s_sScreenshotName = filename;
|
|
s_bScreenshot = true;
|
|
}
|
|
|
|
// Create On-Screen-Messages
|
|
void Renderer::DrawDebugText()
|
|
{
|
|
// OSD Menu messages
|
|
if (OSDChoice > 0)
|
|
{
|
|
OSDTime = Common::Timer::GetTimeMs() + 3000;
|
|
OSDChoice = -OSDChoice;
|
|
}
|
|
|
|
if ((u32)OSDTime <= Common::Timer::GetTimeMs())
|
|
return;
|
|
|
|
const char* res_text = "";
|
|
switch (g_ActiveConfig.iEFBScale)
|
|
{
|
|
case SCALE_AUTO:
|
|
res_text = "Auto (fractional)";
|
|
break;
|
|
case SCALE_AUTO_INTEGRAL:
|
|
res_text = "Auto (integral)";
|
|
break;
|
|
case SCALE_1X:
|
|
res_text = "Native";
|
|
break;
|
|
case SCALE_1_5X:
|
|
res_text = "1.5x";
|
|
break;
|
|
case SCALE_2X:
|
|
res_text = "2x";
|
|
break;
|
|
case SCALE_2_5X:
|
|
res_text = "2.5x";
|
|
break;
|
|
case SCALE_3X:
|
|
res_text = "3x";
|
|
break;
|
|
case SCALE_4X:
|
|
res_text = "4x";
|
|
break;
|
|
}
|
|
|
|
const char* ar_text = "";
|
|
switch (g_ActiveConfig.iAspectRatio)
|
|
{
|
|
case ASPECT_AUTO:
|
|
ar_text = "Auto";
|
|
break;
|
|
case ASPECT_FORCE_16_9:
|
|
ar_text = "16:9";
|
|
break;
|
|
case ASPECT_FORCE_4_3:
|
|
ar_text = "4:3";
|
|
break;
|
|
case ASPECT_STRETCH:
|
|
ar_text = "Stretch";
|
|
break;
|
|
}
|
|
|
|
const char* const efbcopy_text = g_ActiveConfig.bEFBCopyEnable ?
|
|
(g_ActiveConfig.bCopyEFBToTexture ? "to Texture" : "to RAM") : "Disabled";
|
|
|
|
// The rows
|
|
const std::string lines[] =
|
|
{
|
|
std::string("3: Internal Resolution: ") + res_text,
|
|
std::string("4: Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
|
|
std::string("5: Copy EFB: ") + efbcopy_text,
|
|
std::string("6: Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
|
|
};
|
|
|
|
enum { lines_count = sizeof(lines)/sizeof(*lines) };
|
|
|
|
std::string final_yellow, final_cyan;
|
|
|
|
// If there is more text than this we will have a collision
|
|
if (g_ActiveConfig.bShowFPS)
|
|
{
|
|
final_yellow = final_cyan = "\n\n";
|
|
}
|
|
|
|
// The latest changed setting in yellow
|
|
for (int i = 0; i != lines_count; ++i)
|
|
{
|
|
if (OSDChoice == -i - 1)
|
|
final_yellow += lines[i];
|
|
final_yellow += '\n';
|
|
}
|
|
|
|
// The other settings in cyan
|
|
for (int i = 0; i != lines_count; ++i)
|
|
{
|
|
if (OSDChoice != -i - 1)
|
|
final_cyan += lines[i];
|
|
final_cyan += '\n';
|
|
}
|
|
|
|
// Render a shadow
|
|
g_renderer->RenderText(final_cyan, 21, 21, 0xDD000000);
|
|
g_renderer->RenderText(final_yellow, 21, 21, 0xDD000000);
|
|
//and then the text
|
|
g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF);
|
|
g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00);
|
|
}
|
|
|
|
void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height)
|
|
{
|
|
float FloatGLWidth = (float)backbuffer_width;
|
|
float FloatGLHeight = (float)backbuffer_height;
|
|
float FloatXOffset = 0;
|
|
float FloatYOffset = 0;
|
|
|
|
// The rendering window size
|
|
const float WinWidth = FloatGLWidth;
|
|
const float WinHeight = FloatGLHeight;
|
|
|
|
// Handle aspect ratio.
|
|
// Default to auto.
|
|
bool use16_9 = g_aspect_wide;
|
|
|
|
// Update aspect ratio hack values
|
|
// Won't take effect until next frame
|
|
// Don't know if there is a better place for this code so there isn't a 1 frame delay
|
|
if ( g_ActiveConfig.bWidescreenHack )
|
|
{
|
|
float source_aspect = use16_9 ? (16.0f / 9.0f) : (4.0f / 3.0f);
|
|
float target_aspect;
|
|
|
|
switch ( g_ActiveConfig.iAspectRatio )
|
|
{
|
|
case ASPECT_FORCE_16_9 :
|
|
target_aspect = 16.0f / 9.0f;
|
|
break;
|
|
case ASPECT_FORCE_4_3 :
|
|
target_aspect = 4.0f / 3.0f;
|
|
break;
|
|
case ASPECT_STRETCH :
|
|
target_aspect = WinWidth / WinHeight;
|
|
break;
|
|
default :
|
|
// ASPECT_AUTO == no hacking
|
|
target_aspect = source_aspect;
|
|
break;
|
|
}
|
|
|
|
float adjust = source_aspect / target_aspect;
|
|
if ( adjust > 1 )
|
|
{
|
|
// Vert+
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1/adjust;
|
|
}
|
|
else
|
|
{
|
|
// Hor+
|
|
g_Config.fAspectRatioHackW = adjust;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Hack is disabled
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
|
|
// Check for force-settings and override.
|
|
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
|
|
use16_9 = true;
|
|
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
|
|
use16_9 = false;
|
|
|
|
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
|
|
{
|
|
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
|
|
float Ratio = (WinWidth / WinHeight) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
|
|
// Check if height or width is the limiting factor. If ratio > 1 the picture is too wide and have to limit the width.
|
|
if (Ratio > 1.0f)
|
|
{
|
|
// Scale down and center in the X direction.
|
|
FloatGLWidth /= Ratio;
|
|
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
|
|
}
|
|
// The window is too high, we have to limit the height
|
|
else
|
|
{
|
|
// Scale down and center in the Y direction.
|
|
FloatGLHeight *= Ratio;
|
|
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Crop the picture from 4:3 to 5:4 or from 16:9 to 16:10.
|
|
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
|
|
// ------------------
|
|
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
|
|
{
|
|
float Ratio = !use16_9 ? ((4.0f / 3.0f) / (5.0f / 4.0f)) : (((16.0f / 9.0f) / (16.0f / 10.0f)));
|
|
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is adjusted)
|
|
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
|
|
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
|
|
// The new width and height
|
|
FloatGLWidth = FloatGLWidth * Ratio;
|
|
FloatGLHeight = FloatGLHeight * Ratio;
|
|
// Adjust the X and Y offset
|
|
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
|
|
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
|
|
}
|
|
|
|
int XOffset = (int)(FloatXOffset + 0.5f);
|
|
int YOffset = (int)(FloatYOffset + 0.5f);
|
|
int iWhidth = (int)ceil(FloatGLWidth);
|
|
int iHeight = (int)ceil(FloatGLHeight);
|
|
iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
|
|
iHeight -= iHeight % 4;
|
|
|
|
target_rc.left = XOffset;
|
|
target_rc.top = YOffset;
|
|
target_rc.right = XOffset + iWhidth;
|
|
target_rc.bottom = YOffset + iHeight;
|
|
}
|
|
|
|
void Renderer::SetWindowSize(int width, int height)
|
|
{
|
|
if (width < 1)
|
|
width = 1;
|
|
if (height < 1)
|
|
height = 1;
|
|
|
|
// Scale the window size by the EFB scale.
|
|
CalculateTargetScale(width, height, &width, &height);
|
|
|
|
Host_RequestRenderWindowSize(width, height);
|
|
}
|
|
|
|
void Renderer::CheckFifoRecording()
|
|
{
|
|
bool wasRecording = g_bRecordFifoData;
|
|
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
|
|
|
|
if (g_bRecordFifoData)
|
|
{
|
|
if (!wasRecording)
|
|
{
|
|
RecordVideoMemory();
|
|
}
|
|
|
|
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd);
|
|
}
|
|
}
|
|
|
|
void Renderer::RecordVideoMemory()
|
|
{
|
|
u32 *bpmem_ptr = (u32*)&bpmem;
|
|
u32 cpmem[256];
|
|
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
|
|
// that split here.
|
|
u32 *xfmem_ptr = (u32*)&xfmem;
|
|
u32 *xfregs_ptr = (u32*)&xfmem + FifoDataFile::XF_MEM_SIZE;
|
|
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
|
|
|
|
memset(cpmem, 0, 256 * 4);
|
|
FillCPMemoryArray(cpmem);
|
|
|
|
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size);
|
|
}
|
|
|
|
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, float Gamma)
|
|
{
|
|
// TODO: merge more generic parts into VideoCommon
|
|
g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, Gamma);
|
|
|
|
if (XFBWrited)
|
|
g_renderer->m_fps_counter.Update();
|
|
|
|
frameCount++;
|
|
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
|
|
|
|
// Begin new frame
|
|
// Set default viewport and scissor, for the clear to work correctly
|
|
// New frame
|
|
stats.ResetFrame();
|
|
|
|
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
|
|
XFBWrited = false;
|
|
}
|