mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-11 00:29:11 +01:00
f4e34703c0
Public domain does not have an internationally agreed upon definition, As such it's generally preferred to use an extremely liberal license, which can explicitly list the rights granted by the copyright holder. The CC0 license is the usual choice here. This "relicensing" is done without hunting down copyright holders, since it is presumed that their release of this work into the public domain authorizes us to redistribute this code under any other license of our choosing.
213 lines
5.9 KiB
C++
213 lines
5.9 KiB
C++
// SPDX-License-Identifier: CC0-1.0
|
|
|
|
#include "DiscIO/LaggedFibonacciGenerator.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
|
|
#include "Common/Align.h"
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Swap.h"
|
|
|
|
namespace DiscIO
|
|
{
|
|
void LaggedFibonacciGenerator::SetSeed(const u32 seed[SEED_SIZE])
|
|
{
|
|
SetSeed(reinterpret_cast<const u8*>(seed));
|
|
}
|
|
|
|
void LaggedFibonacciGenerator::SetSeed(const u8 seed[SEED_SIZE * sizeof(u32)])
|
|
{
|
|
m_position_bytes = 0;
|
|
|
|
for (size_t i = 0; i < SEED_SIZE; ++i)
|
|
m_buffer[i] = Common::swap32(seed + i * sizeof(u32));
|
|
|
|
Initialize(false);
|
|
}
|
|
|
|
size_t LaggedFibonacciGenerator::GetSeed(const u8* data, size_t size, size_t data_offset,
|
|
u32 seed_out[SEED_SIZE])
|
|
{
|
|
if ((reinterpret_cast<uintptr_t>(data) - data_offset) % alignof(u32) != 0)
|
|
{
|
|
ASSERT(false);
|
|
return 0;
|
|
}
|
|
|
|
// For code simplicity, only include whole u32 words when regenerating the seed. It would be
|
|
// possible to get rid of this restriction and use a few additional bytes, but it's probably more
|
|
// effort than it's worth considering that junk data often starts or ends on 4-byte offsets.
|
|
const size_t bytes_to_skip = Common::AlignUp(data_offset, sizeof(u32)) - data_offset;
|
|
const u32* u32_data = reinterpret_cast<const u32*>(data + bytes_to_skip);
|
|
const size_t u32_size = (size - bytes_to_skip) / sizeof(u32);
|
|
const size_t u32_data_offset = (data_offset + bytes_to_skip) / sizeof(u32);
|
|
|
|
LaggedFibonacciGenerator lfg;
|
|
if (!GetSeed(u32_data, u32_size, u32_data_offset, &lfg, seed_out))
|
|
return false;
|
|
|
|
lfg.m_position_bytes = data_offset % (LFG_K * sizeof(u32));
|
|
|
|
const u8* end = data + size;
|
|
size_t reconstructed_bytes = 0;
|
|
while (data < end && lfg.GetByte() == *data)
|
|
{
|
|
++reconstructed_bytes;
|
|
++data;
|
|
}
|
|
return reconstructed_bytes;
|
|
}
|
|
|
|
bool LaggedFibonacciGenerator::GetSeed(const u32* data, size_t size, size_t data_offset,
|
|
LaggedFibonacciGenerator* lfg, u32 seed_out[SEED_SIZE])
|
|
{
|
|
if (size < LFG_K)
|
|
return false;
|
|
|
|
// If the data doesn't look like something we can regenerate, return early to save time
|
|
if (!std::all_of(data, data + LFG_K, [](u32 x) {
|
|
return (Common::swap32(x) & 0x00C00000) == (Common::swap32(x) >> 2 & 0x00C00000);
|
|
}))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const size_t data_offset_mod_k = data_offset % LFG_K;
|
|
const size_t data_offset_div_k = data_offset / LFG_K;
|
|
|
|
std::copy(data, data + LFG_K - data_offset_mod_k, lfg->m_buffer.data() + data_offset_mod_k);
|
|
std::copy(data + LFG_K - data_offset_mod_k, data + LFG_K, lfg->m_buffer.data());
|
|
|
|
lfg->Backward(0, data_offset_mod_k);
|
|
|
|
for (size_t i = 0; i < data_offset_div_k; ++i)
|
|
lfg->Backward();
|
|
|
|
if (!lfg->Reinitialize(seed_out))
|
|
return false;
|
|
|
|
for (size_t i = 0; i < data_offset_div_k; ++i)
|
|
lfg->Forward();
|
|
|
|
return true;
|
|
}
|
|
|
|
void LaggedFibonacciGenerator::GetBytes(size_t count, u8* out)
|
|
{
|
|
while (count > 0)
|
|
{
|
|
const size_t length = std::min(count, LFG_K * sizeof(u32) - m_position_bytes);
|
|
|
|
std::memcpy(out, reinterpret_cast<u8*>(m_buffer.data()) + m_position_bytes, length);
|
|
|
|
m_position_bytes += length;
|
|
count -= length;
|
|
out += length;
|
|
|
|
if (m_position_bytes == LFG_K * sizeof(u32))
|
|
{
|
|
Forward();
|
|
m_position_bytes = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
u8 LaggedFibonacciGenerator::GetByte()
|
|
{
|
|
const u8 result = reinterpret_cast<u8*>(m_buffer.data())[m_position_bytes];
|
|
|
|
++m_position_bytes;
|
|
|
|
if (m_position_bytes == LFG_K * sizeof(u32))
|
|
{
|
|
Forward();
|
|
m_position_bytes = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void LaggedFibonacciGenerator::Forward(size_t count)
|
|
{
|
|
m_position_bytes += count;
|
|
while (m_position_bytes >= LFG_K * sizeof(u32))
|
|
{
|
|
Forward();
|
|
m_position_bytes -= LFG_K * sizeof(u32);
|
|
}
|
|
}
|
|
|
|
void LaggedFibonacciGenerator::Forward()
|
|
{
|
|
for (size_t i = 0; i < LFG_J; ++i)
|
|
m_buffer[i] ^= m_buffer[i + LFG_K - LFG_J];
|
|
|
|
for (size_t i = LFG_J; i < LFG_K; ++i)
|
|
m_buffer[i] ^= m_buffer[i - LFG_J];
|
|
}
|
|
|
|
void LaggedFibonacciGenerator::Backward(size_t start_word, size_t end_word)
|
|
{
|
|
const size_t loop_end = std::max(LFG_J, start_word);
|
|
for (size_t i = std::min(end_word, LFG_K); i > loop_end; --i)
|
|
m_buffer[i - 1] ^= m_buffer[i - 1 - LFG_J];
|
|
|
|
for (size_t i = std::min(end_word, LFG_J); i > start_word; --i)
|
|
m_buffer[i - 1] ^= m_buffer[i - 1 + LFG_K - LFG_J];
|
|
}
|
|
|
|
bool LaggedFibonacciGenerator::Reinitialize(u32 seed_out[SEED_SIZE])
|
|
{
|
|
for (size_t i = 0; i < 4; ++i)
|
|
Backward();
|
|
|
|
for (u32& x : m_buffer)
|
|
x = Common::swap32(x);
|
|
|
|
// Reconstruct the bits which are missing due to the output code shifting by 18 instead of 16.
|
|
// Unfortunately we can't reconstruct bits 16 and 17 (counting LSB as 0) for the first word,
|
|
// but the observable result (when shifting by 18 instead of 16) is not affected by this.
|
|
for (size_t i = 0; i < SEED_SIZE; ++i)
|
|
{
|
|
m_buffer[i] = (m_buffer[i] & 0xFF00FFFF) | (m_buffer[i] << 2 & 0x00FC0000) |
|
|
((m_buffer[i + 16] ^ m_buffer[i + 15]) << 9 & 0x00030000);
|
|
}
|
|
|
|
for (size_t i = 0; i < SEED_SIZE; ++i)
|
|
seed_out[i] = Common::swap32(m_buffer[i]);
|
|
|
|
return Initialize(true);
|
|
}
|
|
|
|
bool LaggedFibonacciGenerator::Initialize(bool check_existing_data)
|
|
{
|
|
for (size_t i = SEED_SIZE; i < LFG_K; ++i)
|
|
{
|
|
const u32 calculated = (m_buffer[i - 17] << 23) ^ (m_buffer[i - 16] >> 9) ^ m_buffer[i - 1];
|
|
|
|
if (check_existing_data)
|
|
{
|
|
const u32 actual = (m_buffer[i] & 0xFF00FFFF) | (m_buffer[i] << 2 & 0x00FC0000);
|
|
if ((calculated & 0xFFFCFFFF) != actual)
|
|
return false;
|
|
}
|
|
|
|
m_buffer[i] = calculated;
|
|
}
|
|
|
|
// Instead of doing the "shift by 18 instead of 16" oddity when actually outputting the data,
|
|
// we can do the shifting (and byteswapping) at this point to make the output code simpler.
|
|
for (u32& x : m_buffer)
|
|
x = Common::swap32((x & 0xFF00FFFF) | ((x >> 2) & 0x00FF0000));
|
|
|
|
for (size_t i = 0; i < 4; ++i)
|
|
Forward();
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace DiscIO
|