mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 16:19:28 +01:00
1201 lines
41 KiB
C++
1201 lines
41 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
|
|
|
|
#pragma once
|
|
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/BitSet.h"
|
|
#include "Common/CodeBlock.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/x64ABI.h"
|
|
|
|
namespace Gen
|
|
{
|
|
enum CCFlags
|
|
{
|
|
CC_O = 0,
|
|
CC_NO = 1,
|
|
CC_B = 2,
|
|
CC_C = 2,
|
|
CC_NAE = 2,
|
|
CC_NB = 3,
|
|
CC_NC = 3,
|
|
CC_AE = 3,
|
|
CC_Z = 4,
|
|
CC_E = 4,
|
|
CC_NZ = 5,
|
|
CC_NE = 5,
|
|
CC_BE = 6,
|
|
CC_NA = 6,
|
|
CC_NBE = 7,
|
|
CC_A = 7,
|
|
CC_S = 8,
|
|
CC_NS = 9,
|
|
CC_P = 0xA,
|
|
CC_PE = 0xA,
|
|
CC_NP = 0xB,
|
|
CC_PO = 0xB,
|
|
CC_L = 0xC,
|
|
CC_NGE = 0xC,
|
|
CC_NL = 0xD,
|
|
CC_GE = 0xD,
|
|
CC_LE = 0xE,
|
|
CC_NG = 0xE,
|
|
CC_NLE = 0xF,
|
|
CC_G = 0xF
|
|
};
|
|
|
|
enum
|
|
{
|
|
NUMGPRs = 16,
|
|
NUMXMMs = 16,
|
|
};
|
|
|
|
enum
|
|
{
|
|
SCALE_NONE = 0,
|
|
SCALE_1 = 1,
|
|
SCALE_2 = 2,
|
|
SCALE_4 = 4,
|
|
SCALE_8 = 8,
|
|
SCALE_ATREG = 16,
|
|
// SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
|
|
SCALE_NOBASE_2 = 34,
|
|
SCALE_NOBASE_4 = 36,
|
|
SCALE_NOBASE_8 = 40,
|
|
SCALE_RIP = 0xFF,
|
|
SCALE_IMM8 = 0xF0,
|
|
SCALE_IMM16 = 0xF1,
|
|
SCALE_IMM32 = 0xF2,
|
|
SCALE_IMM64 = 0xF3,
|
|
};
|
|
|
|
enum SSECompare
|
|
{
|
|
CMP_EQ = 0,
|
|
CMP_LT = 1,
|
|
CMP_LE = 2,
|
|
CMP_UNORD = 3,
|
|
CMP_NEQ = 4,
|
|
CMP_NLT = 5,
|
|
CMP_NLE = 6,
|
|
CMP_ORD = 7,
|
|
};
|
|
|
|
class XEmitter;
|
|
enum class FloatOp;
|
|
enum class NormalOp;
|
|
|
|
// Information about a generated MOV op
|
|
struct MovInfo final
|
|
{
|
|
u8* address;
|
|
bool nonAtomicSwapStore;
|
|
// valid iff nonAtomicSwapStore is true
|
|
X64Reg nonAtomicSwapStoreSrc;
|
|
};
|
|
|
|
// RIP addressing does not benefit from micro op fusion on Core arch
|
|
struct OpArg
|
|
{
|
|
// For accessing offset and operandReg.
|
|
// This also allows us to keep the op writing functions private.
|
|
friend class XEmitter;
|
|
|
|
// dummy op arg, used for storage
|
|
constexpr OpArg() = default;
|
|
constexpr OpArg(u64 offset_, int scale_, X64Reg rm_reg = RAX, X64Reg scaled_reg = RAX)
|
|
: scale{static_cast<u8>(scale_)}, offsetOrBaseReg{static_cast<u16>(rm_reg)},
|
|
indexReg{static_cast<u16>(scaled_reg)}, offset{offset_}
|
|
{
|
|
}
|
|
constexpr bool operator==(const OpArg& b) const
|
|
{
|
|
return std::tie(scale, offsetOrBaseReg, indexReg, offset, operandReg) ==
|
|
std::tie(b.scale, b.offsetOrBaseReg, b.indexReg, b.offset, b.operandReg);
|
|
}
|
|
constexpr bool operator!=(const OpArg& b) const { return !operator==(b); }
|
|
u64 Imm64() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM64);
|
|
return (u64)offset;
|
|
}
|
|
u32 Imm32() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM32);
|
|
return (u32)offset;
|
|
}
|
|
u16 Imm16() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM16);
|
|
return (u16)offset;
|
|
}
|
|
u8 Imm8() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM8);
|
|
return (u8)offset;
|
|
}
|
|
|
|
s64 SImm64() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM64);
|
|
return (s64)offset;
|
|
}
|
|
s32 SImm32() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM32);
|
|
return (s32)offset;
|
|
}
|
|
s16 SImm16() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM16);
|
|
return (s16)offset;
|
|
}
|
|
s8 SImm8() const
|
|
{
|
|
DEBUG_ASSERT(scale == SCALE_IMM8);
|
|
return (s8)offset;
|
|
}
|
|
|
|
OpArg AsImm64() const
|
|
{
|
|
DEBUG_ASSERT(IsImm());
|
|
return OpArg((u64)offset, SCALE_IMM64);
|
|
}
|
|
OpArg AsImm32() const
|
|
{
|
|
DEBUG_ASSERT(IsImm());
|
|
return OpArg((u32)offset, SCALE_IMM32);
|
|
}
|
|
OpArg AsImm16() const
|
|
{
|
|
DEBUG_ASSERT(IsImm());
|
|
return OpArg((u16)offset, SCALE_IMM16);
|
|
}
|
|
OpArg AsImm8() const
|
|
{
|
|
DEBUG_ASSERT(IsImm());
|
|
return OpArg((u8)offset, SCALE_IMM8);
|
|
}
|
|
|
|
constexpr bool IsImm() const
|
|
{
|
|
return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 ||
|
|
scale == SCALE_IMM64;
|
|
}
|
|
constexpr bool IsSimpleReg() const { return scale == SCALE_NONE; }
|
|
constexpr bool IsSimpleReg(X64Reg reg) const { return IsSimpleReg() && GetSimpleReg() == reg; }
|
|
constexpr bool IsZero() const { return IsImm() && offset == 0; }
|
|
constexpr int GetImmBits() const
|
|
{
|
|
switch (scale)
|
|
{
|
|
case SCALE_IMM8:
|
|
return 8;
|
|
case SCALE_IMM16:
|
|
return 16;
|
|
case SCALE_IMM32:
|
|
return 32;
|
|
case SCALE_IMM64:
|
|
return 64;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
constexpr X64Reg GetSimpleReg() const
|
|
{
|
|
if (scale == SCALE_NONE)
|
|
return static_cast<X64Reg>(offsetOrBaseReg);
|
|
|
|
return INVALID_REG;
|
|
}
|
|
|
|
void AddMemOffset(int val)
|
|
{
|
|
DEBUG_ASSERT_MSG(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE),
|
|
"Tried to increment an OpArg which doesn't have an offset");
|
|
offset += val;
|
|
}
|
|
|
|
private:
|
|
void WriteREX(XEmitter* emit, int opBits, int bits, int customOp = -1) const;
|
|
void WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
|
|
int W = 0) const;
|
|
void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG,
|
|
bool warn_64bit_offset = true) const;
|
|
void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits);
|
|
void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const;
|
|
|
|
u8 scale = 0;
|
|
u16 offsetOrBaseReg = 0;
|
|
u16 indexReg = 0;
|
|
u64 offset = 0; // Also used to store immediates.
|
|
u16 operandReg = 0;
|
|
};
|
|
|
|
template <typename T>
|
|
inline OpArg M(const T* ptr)
|
|
{
|
|
return OpArg((u64)(const void*)ptr, (int)SCALE_RIP);
|
|
}
|
|
constexpr OpArg R(X64Reg value)
|
|
{
|
|
return OpArg(0, SCALE_NONE, value);
|
|
}
|
|
constexpr OpArg MatR(X64Reg value)
|
|
{
|
|
return OpArg(0, SCALE_ATREG, value);
|
|
}
|
|
|
|
constexpr OpArg MDisp(X64Reg value, int offset)
|
|
{
|
|
return OpArg(static_cast<u32>(offset), SCALE_ATREG, value);
|
|
}
|
|
|
|
constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
|
|
{
|
|
return OpArg(offset, scale, base, scaled);
|
|
}
|
|
|
|
constexpr OpArg MScaled(X64Reg scaled, int scale, int offset)
|
|
{
|
|
if (scale == SCALE_1)
|
|
return OpArg(offset, SCALE_ATREG, scaled);
|
|
|
|
return OpArg(offset, scale | 0x20, RAX, scaled);
|
|
}
|
|
|
|
constexpr OpArg MRegSum(X64Reg base, X64Reg offset)
|
|
{
|
|
return MComplex(base, offset, 1, 0);
|
|
}
|
|
|
|
constexpr OpArg Imm8(u8 imm)
|
|
{
|
|
return OpArg(imm, SCALE_IMM8);
|
|
}
|
|
constexpr OpArg Imm16(u16 imm)
|
|
{
|
|
return OpArg(imm, SCALE_IMM16);
|
|
} // rarely used
|
|
constexpr OpArg Imm32(u32 imm)
|
|
{
|
|
return OpArg(imm, SCALE_IMM32);
|
|
}
|
|
constexpr OpArg Imm64(u64 imm)
|
|
{
|
|
return OpArg(imm, SCALE_IMM64);
|
|
}
|
|
inline OpArg ImmPtr(const void* imm)
|
|
{
|
|
return Imm64(reinterpret_cast<u64>(imm));
|
|
}
|
|
|
|
inline u32 PtrOffset(const void* ptr, const void* base = nullptr)
|
|
{
|
|
s64 distance = (s64)ptr - (s64)base;
|
|
if (distance >= 0x80000000LL || distance < -0x80000000LL)
|
|
{
|
|
ASSERT_MSG(DYNA_REC, 0, "pointer offset out of range");
|
|
return 0;
|
|
}
|
|
|
|
return (u32)distance;
|
|
}
|
|
|
|
struct FixupBranch
|
|
{
|
|
enum class Type
|
|
{
|
|
Branch8Bit,
|
|
Branch32Bit
|
|
};
|
|
|
|
u8* ptr;
|
|
Type type;
|
|
};
|
|
|
|
class XEmitter
|
|
{
|
|
friend struct OpArg; // for Write8 etc
|
|
private:
|
|
// Pointer to memory where code will be emitted to.
|
|
u8* code = nullptr;
|
|
|
|
// Pointer past the end of the memory region we're allowed to emit to.
|
|
// Writes that would reach this memory are refused and will set the m_write_failed flag instead.
|
|
u8* m_code_end = nullptr;
|
|
|
|
bool flags_locked = false;
|
|
|
|
// Set to true when a write request happens that would write past m_code_end.
|
|
// Must be cleared with SetCodePtr() afterwards.
|
|
bool m_write_failed = false;
|
|
|
|
void CheckFlags();
|
|
|
|
void Rex(int w, int r, int x, int b);
|
|
void WriteModRM(int mod, int reg, int rm);
|
|
void WriteSIB(int scale, int index, int base);
|
|
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
|
|
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
|
|
void WriteMulDivType(int bits, OpArg src, int ext);
|
|
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
|
|
void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
|
|
void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
|
|
void WriteMXCSR(OpArg arg, int ext);
|
|
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
|
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
|
|
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
|
|
void WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
|
|
int extrabytes = 0);
|
|
void WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
|
|
X64Reg regOp3, int W = 0);
|
|
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
|
|
int extrabytes = 0);
|
|
void WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
|
|
X64Reg regOp3, int W = 0);
|
|
void WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
|
|
void WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
|
|
void WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
|
|
int extrabytes = 0);
|
|
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
|
|
int extrabytes = 0);
|
|
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
|
|
int extrabytes = 0);
|
|
void WriteMOVBE(int bits, u8 op, X64Reg regOp, const OpArg& arg);
|
|
void WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2);
|
|
|
|
void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size,
|
|
size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
|
|
|
|
protected:
|
|
void Write8(u8 value);
|
|
void Write16(u16 value);
|
|
void Write32(u32 value);
|
|
void Write64(u64 value);
|
|
|
|
public:
|
|
XEmitter() = default;
|
|
explicit XEmitter(u8* code_ptr, u8* code_end) : code(code_ptr), m_code_end(code_end) {}
|
|
virtual ~XEmitter() = default;
|
|
void SetCodePtr(u8* ptr, u8* end, bool write_failed = false);
|
|
void ReserveCodeSpace(int bytes);
|
|
u8* AlignCodeTo(size_t alignment);
|
|
u8* AlignCode4();
|
|
u8* AlignCode16();
|
|
u8* AlignCodePage();
|
|
const u8* GetCodePtr() const;
|
|
u8* GetWritableCodePtr();
|
|
const u8* GetCodeEnd() const;
|
|
u8* GetWritableCodeEnd();
|
|
|
|
void LockFlags() { flags_locked = true; }
|
|
void UnlockFlags() { flags_locked = false; }
|
|
|
|
// Should be checked after a block of code has been generated to see if the code has been
|
|
// successfully written to memory. Do not call the generated code when this returns true!
|
|
bool HasWriteFailed() const { return m_write_failed; }
|
|
|
|
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
|
|
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other
|
|
// string instr.,
|
|
// INC and DEC are slow on Intel Core, but not on AMD. They create a
|
|
// false flag dependency because they only update a subset of the flags.
|
|
// XCHG is SLOW and should be avoided.
|
|
|
|
// Debug breakpoint
|
|
void INT3();
|
|
|
|
// Do nothing
|
|
void NOP(size_t count = 1);
|
|
|
|
// Save energy in wait-loops on P4 only. Probably not too useful.
|
|
void PAUSE();
|
|
|
|
// Flag control
|
|
void STC();
|
|
void CLC();
|
|
void CMC();
|
|
|
|
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and
|
|
// AMD!
|
|
void LAHF(); // 3 cycle vector path
|
|
void SAHF(); // direct path fast
|
|
|
|
// Stack control
|
|
void PUSH(X64Reg reg);
|
|
void POP(X64Reg reg);
|
|
void PUSH(int bits, const OpArg& reg);
|
|
void POP(int bits, const OpArg& reg);
|
|
void PUSHF();
|
|
void POPF();
|
|
|
|
// Flow control
|
|
void RET();
|
|
void RET_FAST();
|
|
void UD2();
|
|
FixupBranch J(bool force5bytes = false);
|
|
|
|
void JMP(const u8* addr, bool force5Bytes = false);
|
|
void JMPptr(const OpArg& arg);
|
|
void JMPself(); // infinite loop!
|
|
#ifdef CALL
|
|
#undef CALL
|
|
#endif
|
|
void CALL(const void* fnptr);
|
|
FixupBranch CALL();
|
|
void CALLptr(OpArg arg);
|
|
|
|
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
|
|
void J_CC(CCFlags conditionCode, const u8* addr);
|
|
|
|
void SetJumpTarget(const FixupBranch& branch);
|
|
|
|
void SETcc(CCFlags flag, OpArg dest);
|
|
// Note: CMOV brings small if any benefit on current CPUs.
|
|
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
|
|
|
|
// Fences
|
|
void LFENCE();
|
|
void MFENCE();
|
|
void SFENCE();
|
|
|
|
// Bit scan
|
|
void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
|
|
void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit
|
|
|
|
// Cache control
|
|
enum PrefetchLevel
|
|
{
|
|
PF_NTA, // Non-temporal (data used once and only once)
|
|
PF_T0, // All cache levels
|
|
PF_T1, // Levels 2+ (aliased to T0 on AMD)
|
|
PF_T2, // Levels 3+ (aliased to T0 on AMD)
|
|
};
|
|
void PREFETCH(PrefetchLevel level, OpArg arg);
|
|
void MOVNTI(int bits, const OpArg& dest, X64Reg src);
|
|
void MOVNTDQ(const OpArg& arg, X64Reg regOp);
|
|
void MOVNTPS(const OpArg& arg, X64Reg regOp);
|
|
void MOVNTPD(const OpArg& arg, X64Reg regOp);
|
|
|
|
// Multiplication / division
|
|
void MUL(int bits, const OpArg& src); // UNSIGNED
|
|
void IMUL(int bits, const OpArg& src); // SIGNED
|
|
void IMUL(int bits, X64Reg regOp, const OpArg& src);
|
|
void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
|
|
void DIV(int bits, const OpArg& src);
|
|
void IDIV(int bits, const OpArg& src);
|
|
|
|
// Shift
|
|
void ROL(int bits, const OpArg& dest, const OpArg& shift);
|
|
void ROR(int bits, const OpArg& dest, const OpArg& shift);
|
|
void RCL(int bits, const OpArg& dest, const OpArg& shift);
|
|
void RCR(int bits, const OpArg& dest, const OpArg& shift);
|
|
void SHL(int bits, const OpArg& dest, const OpArg& shift);
|
|
void SHR(int bits, const OpArg& dest, const OpArg& shift);
|
|
void SAR(int bits, const OpArg& dest, const OpArg& shift);
|
|
|
|
// Bit Test
|
|
void BT(int bits, const OpArg& dest, const OpArg& index);
|
|
void BTS(int bits, const OpArg& dest, const OpArg& index);
|
|
void BTR(int bits, const OpArg& dest, const OpArg& index);
|
|
void BTC(int bits, const OpArg& dest, const OpArg& index);
|
|
|
|
// Double-Precision Shift
|
|
void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
|
|
void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
|
|
|
|
// Extend EAX into EDX in various ways
|
|
void CWD(int bits = 16);
|
|
inline void CDQ() { CWD(32); }
|
|
inline void CQO() { CWD(64); }
|
|
void CBW(int bits = 8);
|
|
inline void CWDE() { CBW(16); }
|
|
inline void CDQE() { CBW(32); }
|
|
// Load effective address
|
|
void LEA(int bits, X64Reg dest, OpArg src);
|
|
|
|
// Integer arithmetic
|
|
void NEG(int bits, const OpArg& src);
|
|
void ADD(int bits, const OpArg& a1, const OpArg& a2);
|
|
void ADC(int bits, const OpArg& a1, const OpArg& a2);
|
|
void SUB(int bits, const OpArg& a1, const OpArg& a2);
|
|
void SBB(int bits, const OpArg& a1, const OpArg& a2);
|
|
void AND(int bits, const OpArg& a1, const OpArg& a2);
|
|
void CMP(int bits, const OpArg& a1, const OpArg& a2);
|
|
|
|
// Bit operations
|
|
void NOT(int bits, const OpArg& src);
|
|
void OR(int bits, const OpArg& a1, const OpArg& a2);
|
|
void XOR(int bits, const OpArg& a1, const OpArg& a2);
|
|
void MOV(int bits, const OpArg& a1, const OpArg& a2);
|
|
void TEST(int bits, const OpArg& a1, const OpArg& a2);
|
|
|
|
void CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2);
|
|
void MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2);
|
|
|
|
// Are these useful at all? Consider removing.
|
|
void XCHG(int bits, const OpArg& a1, const OpArg& a2);
|
|
void XCHG_AHAL();
|
|
|
|
// Byte swapping (32 and 64-bit only).
|
|
void BSWAP(int bits, X64Reg reg);
|
|
|
|
// Sign/zero extension
|
|
void MOVSX(int dbits, int sbits, X64Reg dest,
|
|
OpArg src); // automatically uses MOVSXD if necessary
|
|
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
|
|
|
|
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
|
|
void MOVBE(int bits, X64Reg dest, const OpArg& src);
|
|
void MOVBE(int bits, const OpArg& dest, X64Reg src);
|
|
void LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend = false,
|
|
MovInfo* info = nullptr);
|
|
void SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info = nullptr);
|
|
|
|
// Available only on AMD >= Phenom or Intel >= Haswell
|
|
void LZCNT(int bits, X64Reg dest, const OpArg& src);
|
|
// Note: this one is actually part of BMI1
|
|
void TZCNT(int bits, X64Reg dest, const OpArg& src);
|
|
|
|
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
|
|
void STMXCSR(const OpArg& memloc);
|
|
void LDMXCSR(const OpArg& memloc);
|
|
|
|
// Prefixes
|
|
void LOCK();
|
|
void REP();
|
|
void REPNE();
|
|
void FSOverride();
|
|
void GSOverride();
|
|
|
|
// SSE/SSE2: Floating point arithmetic
|
|
void ADDSS(X64Reg regOp, const OpArg& arg);
|
|
void ADDSD(X64Reg regOp, const OpArg& arg);
|
|
void SUBSS(X64Reg regOp, const OpArg& arg);
|
|
void SUBSD(X64Reg regOp, const OpArg& arg);
|
|
void MULSS(X64Reg regOp, const OpArg& arg);
|
|
void MULSD(X64Reg regOp, const OpArg& arg);
|
|
void DIVSS(X64Reg regOp, const OpArg& arg);
|
|
void DIVSD(X64Reg regOp, const OpArg& arg);
|
|
void MINSS(X64Reg regOp, const OpArg& arg);
|
|
void MINSD(X64Reg regOp, const OpArg& arg);
|
|
void MAXSS(X64Reg regOp, const OpArg& arg);
|
|
void MAXSD(X64Reg regOp, const OpArg& arg);
|
|
void SQRTSS(X64Reg regOp, const OpArg& arg);
|
|
void SQRTSD(X64Reg regOp, const OpArg& arg);
|
|
void RCPSS(X64Reg regOp, const OpArg& arg);
|
|
void RSQRTSS(X64Reg regOp, const OpArg& arg);
|
|
|
|
// SSE/SSE2: Floating point bitwise (yes)
|
|
void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
|
|
void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);
|
|
|
|
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
|
|
void ADDPS(X64Reg regOp, const OpArg& arg);
|
|
void ADDPD(X64Reg regOp, const OpArg& arg);
|
|
void SUBPS(X64Reg regOp, const OpArg& arg);
|
|
void SUBPD(X64Reg regOp, const OpArg& arg);
|
|
void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
|
|
void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
|
|
void MULPS(X64Reg regOp, const OpArg& arg);
|
|
void MULPD(X64Reg regOp, const OpArg& arg);
|
|
void DIVPS(X64Reg regOp, const OpArg& arg);
|
|
void DIVPD(X64Reg regOp, const OpArg& arg);
|
|
void MINPS(X64Reg regOp, const OpArg& arg);
|
|
void MINPD(X64Reg regOp, const OpArg& arg);
|
|
void MAXPS(X64Reg regOp, const OpArg& arg);
|
|
void MAXPD(X64Reg regOp, const OpArg& arg);
|
|
void SQRTPS(X64Reg regOp, const OpArg& arg);
|
|
void SQRTPD(X64Reg regOp, const OpArg& arg);
|
|
void RCPPS(X64Reg regOp, const OpArg& arg);
|
|
void RSQRTPS(X64Reg regOp, const OpArg& arg);
|
|
|
|
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
|
|
void ANDPS(X64Reg regOp, const OpArg& arg);
|
|
void ANDPD(X64Reg regOp, const OpArg& arg);
|
|
void ANDNPS(X64Reg regOp, const OpArg& arg);
|
|
void ANDNPD(X64Reg regOp, const OpArg& arg);
|
|
void ORPS(X64Reg regOp, const OpArg& arg);
|
|
void ORPD(X64Reg regOp, const OpArg& arg);
|
|
void XORPS(X64Reg regOp, const OpArg& arg);
|
|
void XORPD(X64Reg regOp, const OpArg& arg);
|
|
|
|
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
|
|
void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
|
|
void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);
|
|
|
|
// SSE3
|
|
void MOVSLDUP(X64Reg regOp, const OpArg& arg);
|
|
void MOVSHDUP(X64Reg regOp, const OpArg& arg);
|
|
void MOVDDUP(X64Reg regOp, const OpArg& arg);
|
|
|
|
// SSE/SSE2: Useful alternative to shuffle in some cases.
|
|
void UNPCKLPS(X64Reg dest, const OpArg& src);
|
|
void UNPCKHPS(X64Reg dest, const OpArg& src);
|
|
void UNPCKLPD(X64Reg dest, const OpArg& src);
|
|
void UNPCKHPD(X64Reg dest, const OpArg& src);
|
|
|
|
// SSE/SSE2: Compares.
|
|
void COMISS(X64Reg regOp, const OpArg& arg);
|
|
void COMISD(X64Reg regOp, const OpArg& arg);
|
|
void UCOMISS(X64Reg regOp, const OpArg& arg);
|
|
void UCOMISD(X64Reg regOp, const OpArg& arg);
|
|
|
|
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
|
|
void MOVAPS(X64Reg regOp, const OpArg& arg);
|
|
void MOVAPD(X64Reg regOp, const OpArg& arg);
|
|
void MOVAPS(const OpArg& arg, X64Reg regOp);
|
|
void MOVAPD(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVUPS(X64Reg regOp, const OpArg& arg);
|
|
void MOVUPD(X64Reg regOp, const OpArg& arg);
|
|
void MOVUPS(const OpArg& arg, X64Reg regOp);
|
|
void MOVUPD(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVDQA(X64Reg regOp, const OpArg& arg);
|
|
void MOVDQA(const OpArg& arg, X64Reg regOp);
|
|
void MOVDQU(X64Reg regOp, const OpArg& arg);
|
|
void MOVDQU(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVSS(X64Reg regOp, const OpArg& arg);
|
|
void MOVSD(X64Reg regOp, const OpArg& arg);
|
|
void MOVSS(const OpArg& arg, X64Reg regOp);
|
|
void MOVSD(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVLPS(X64Reg regOp, const OpArg& arg);
|
|
void MOVLPD(X64Reg regOp, const OpArg& arg);
|
|
void MOVLPS(const OpArg& arg, X64Reg regOp);
|
|
void MOVLPD(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVHPS(X64Reg regOp, const OpArg& arg);
|
|
void MOVHPD(X64Reg regOp, const OpArg& arg);
|
|
void MOVHPS(const OpArg& arg, X64Reg regOp);
|
|
void MOVHPD(const OpArg& arg, X64Reg regOp);
|
|
|
|
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
|
|
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
|
|
|
|
// Be careful when using these overloads for reg <--> xmm moves.
|
|
// The one you cast to OpArg with R(reg) is the x86 reg, the other
|
|
// one is the xmm reg.
|
|
// ie: "MOVD_xmm(eax, R(xmm1))" generates incorrect code (movd xmm0, rcx)
|
|
// use "MOVD_xmm(R(eax), xmm1)" instead.
|
|
void MOVD_xmm(X64Reg dest, const OpArg& arg);
|
|
void MOVQ_xmm(X64Reg dest, OpArg arg);
|
|
void MOVD_xmm(const OpArg& arg, X64Reg src);
|
|
void MOVQ_xmm(OpArg arg, X64Reg src);
|
|
|
|
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in
|
|
// question.
|
|
void MOVMSKPS(X64Reg dest, const OpArg& arg);
|
|
void MOVMSKPD(X64Reg dest, const OpArg& arg);
|
|
|
|
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a
|
|
// weird one.
|
|
void MASKMOVDQU(X64Reg dest, X64Reg src);
|
|
void LDDQU(X64Reg dest, const OpArg& src);
|
|
|
|
// SSE/SSE2: Data type conversions.
|
|
void CVTPS2PD(X64Reg dest, const OpArg& src);
|
|
void CVTPD2PS(X64Reg dest, const OpArg& src);
|
|
void CVTSS2SD(X64Reg dest, const OpArg& src);
|
|
void CVTSI2SS(X64Reg dest, const OpArg& src);
|
|
void CVTSD2SS(X64Reg dest, const OpArg& src);
|
|
void CVTSI2SD(X64Reg dest, const OpArg& src);
|
|
void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
|
|
void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
|
|
void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
|
|
void CVTPS2DQ(X64Reg regOp, const OpArg& arg);
|
|
|
|
void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
|
|
void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);
|
|
|
|
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
|
|
void CVTSS2SI(X64Reg xregdest, const OpArg& src);
|
|
void CVTSD2SI(X64Reg xregdest, const OpArg& src);
|
|
void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
|
|
void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);
|
|
|
|
// SSE2: Packed integer instructions
|
|
void PACKSSDW(X64Reg dest, const OpArg& arg);
|
|
void PACKSSWB(X64Reg dest, const OpArg& arg);
|
|
void PACKUSDW(X64Reg dest, const OpArg& arg);
|
|
void PACKUSWB(X64Reg dest, const OpArg& arg);
|
|
|
|
void PUNPCKLBW(X64Reg dest, const OpArg& arg);
|
|
void PUNPCKLWD(X64Reg dest, const OpArg& arg);
|
|
void PUNPCKLDQ(X64Reg dest, const OpArg& arg);
|
|
void PUNPCKLQDQ(X64Reg dest, const OpArg& arg);
|
|
|
|
void PTEST(X64Reg dest, const OpArg& arg);
|
|
void PAND(X64Reg dest, const OpArg& arg);
|
|
void PANDN(X64Reg dest, const OpArg& arg);
|
|
void PXOR(X64Reg dest, const OpArg& arg);
|
|
void POR(X64Reg dest, const OpArg& arg);
|
|
|
|
void PADDB(X64Reg dest, const OpArg& arg);
|
|
void PADDW(X64Reg dest, const OpArg& arg);
|
|
void PADDD(X64Reg dest, const OpArg& arg);
|
|
void PADDQ(X64Reg dest, const OpArg& arg);
|
|
|
|
void PADDSB(X64Reg dest, const OpArg& arg);
|
|
void PADDSW(X64Reg dest, const OpArg& arg);
|
|
void PADDUSB(X64Reg dest, const OpArg& arg);
|
|
void PADDUSW(X64Reg dest, const OpArg& arg);
|
|
|
|
void PSUBB(X64Reg dest, const OpArg& arg);
|
|
void PSUBW(X64Reg dest, const OpArg& arg);
|
|
void PSUBD(X64Reg dest, const OpArg& arg);
|
|
void PSUBQ(X64Reg dest, const OpArg& arg);
|
|
|
|
void PSUBSB(X64Reg dest, const OpArg& arg);
|
|
void PSUBSW(X64Reg dest, const OpArg& arg);
|
|
void PSUBUSB(X64Reg dest, const OpArg& arg);
|
|
void PSUBUSW(X64Reg dest, const OpArg& arg);
|
|
|
|
void PAVGB(X64Reg dest, const OpArg& arg);
|
|
void PAVGW(X64Reg dest, const OpArg& arg);
|
|
|
|
void PCMPEQB(X64Reg dest, const OpArg& arg);
|
|
void PCMPEQW(X64Reg dest, const OpArg& arg);
|
|
void PCMPEQD(X64Reg dest, const OpArg& arg);
|
|
|
|
void PCMPGTB(X64Reg dest, const OpArg& arg);
|
|
void PCMPGTW(X64Reg dest, const OpArg& arg);
|
|
void PCMPGTD(X64Reg dest, const OpArg& arg);
|
|
|
|
void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
|
|
void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);
|
|
void PINSRD(X64Reg dest, const OpArg& arg, u8 subreg);
|
|
|
|
void PMADDWD(X64Reg dest, const OpArg& arg);
|
|
void PSADBW(X64Reg dest, const OpArg& arg);
|
|
|
|
void PMAXSW(X64Reg dest, const OpArg& arg);
|
|
void PMAXUB(X64Reg dest, const OpArg& arg);
|
|
void PMINSW(X64Reg dest, const OpArg& arg);
|
|
void PMINUB(X64Reg dest, const OpArg& arg);
|
|
|
|
void PMOVMSKB(X64Reg dest, const OpArg& arg);
|
|
void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
|
|
void PSHUFB(X64Reg dest, const OpArg& arg);
|
|
|
|
void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
|
|
void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);
|
|
|
|
void PSRLW(X64Reg reg, int shift);
|
|
void PSRLD(X64Reg reg, int shift);
|
|
void PSRLQ(X64Reg reg, int shift);
|
|
void PSRLQ(X64Reg reg, const OpArg& arg);
|
|
void PSRLDQ(X64Reg reg, int shift);
|
|
|
|
void PSLLW(X64Reg reg, int shift);
|
|
void PSLLD(X64Reg reg, int shift);
|
|
void PSLLQ(X64Reg reg, int shift);
|
|
void PSLLDQ(X64Reg reg, int shift);
|
|
|
|
void PSRAW(X64Reg reg, int shift);
|
|
void PSRAD(X64Reg reg, int shift);
|
|
|
|
// SSE4: data type conversions
|
|
void PMOVSXBW(X64Reg dest, const OpArg& arg);
|
|
void PMOVSXBD(X64Reg dest, const OpArg& arg);
|
|
void PMOVSXBQ(X64Reg dest, const OpArg& arg);
|
|
void PMOVSXWD(X64Reg dest, const OpArg& arg);
|
|
void PMOVSXWQ(X64Reg dest, const OpArg& arg);
|
|
void PMOVSXDQ(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXBW(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXBD(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXBQ(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXWD(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXWQ(X64Reg dest, const OpArg& arg);
|
|
void PMOVZXDQ(X64Reg dest, const OpArg& arg);
|
|
|
|
// SSE4: blend instructions
|
|
void PBLENDVB(X64Reg dest, const OpArg& arg);
|
|
void BLENDVPS(X64Reg dest, const OpArg& arg);
|
|
void BLENDVPD(X64Reg dest, const OpArg& arg);
|
|
void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
|
|
void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
|
|
|
|
// AVX
|
|
void VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare);
|
|
void VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
|
|
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
|
|
void VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg mask);
|
|
void VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
|
|
void VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
|
|
|
|
void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
|
|
void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
|
|
// FMA3
|
|
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
|
|
#define FMA4(name) \
|
|
void name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); \
|
|
void name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
|
|
FMA4(VFMADDSUBPS)
|
|
FMA4(VFMADDSUBPD)
|
|
FMA4(VFMSUBADDPS)
|
|
FMA4(VFMSUBADDPD)
|
|
FMA4(VFMADDPS)
|
|
FMA4(VFMADDPD)
|
|
FMA4(VFMADDSS)
|
|
FMA4(VFMADDSD)
|
|
FMA4(VFMSUBPS)
|
|
FMA4(VFMSUBPD)
|
|
FMA4(VFMSUBSS)
|
|
FMA4(VFMSUBSD)
|
|
FMA4(VFNMADDPS)
|
|
FMA4(VFNMADDPD)
|
|
FMA4(VFNMADDSS)
|
|
FMA4(VFNMADDSD)
|
|
FMA4(VFNMSUBPS)
|
|
FMA4(VFNMSUBPD)
|
|
FMA4(VFNMSUBSS)
|
|
FMA4(VFNMSUBSD)
|
|
#undef FMA4
|
|
|
|
// VEX GPR instructions
|
|
void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
|
|
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
void BLSR(int bits, X64Reg regOp, const OpArg& arg);
|
|
void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
|
|
void BLSI(int bits, X64Reg regOp, const OpArg& arg);
|
|
void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
|
|
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
|
|
|
|
void RDTSC();
|
|
|
|
// Utility functions
|
|
// The difference between this and CALL is that this aligns the stack
|
|
// where appropriate.
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunction(FunctionPointer func)
|
|
{
|
|
static_assert(std::is_pointer<FunctionPointer>() &&
|
|
std::is_function<std::remove_pointer_t<FunctionPointer>>(),
|
|
"Supplied type must be a function pointer.");
|
|
|
|
const void* ptr = reinterpret_cast<const void*>(func);
|
|
const u64 address = reinterpret_cast<u64>(ptr);
|
|
const u64 distance = address - (reinterpret_cast<u64>(code) + 5);
|
|
|
|
if (distance >= 0x0000000080000000ULL && distance < 0xFFFFFFFF80000000ULL)
|
|
{
|
|
// Far call
|
|
MOV(64, R(RAX), Imm64(address));
|
|
CALLptr(R(RAX));
|
|
}
|
|
else
|
|
{
|
|
CALL(ptr);
|
|
}
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionC16(FunctionPointer func, u16 param1)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCC16(FunctionPointer func, u32 param1, u16 param2)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionC(FunctionPointer func, u32 param1)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCC(FunctionPointer func, u32 param1, u32 param2)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCP(FunctionPointer func, u32 param1, const void* param2)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCCC(FunctionPointer func, u32 param1, u32 param2, u32 param3)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCCP(FunctionPointer func, u32 param1, u32 param2, const void* param3)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
MOV(64, R(ABI_PARAM3), Imm64(reinterpret_cast<u64>(param3)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionCCCP(FunctionPointer func, u32 param1, u32 param2, u32 param3,
|
|
const void* param4)
|
|
{
|
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
|
MOV(64, R(ABI_PARAM4), Imm64(reinterpret_cast<u64>(param4)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionP(FunctionPointer func, const void* param1)
|
|
{
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionPC(FunctionPointer func, const void* param1, u32 param2)
|
|
{
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionPPC(FunctionPointer func, const void* param1, const void* param2, u32 param3)
|
|
{
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
|
|
MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
|
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
// Pass a register as a parameter.
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionR(FunctionPointer func, X64Reg reg1)
|
|
{
|
|
if (reg1 != ABI_PARAM1)
|
|
MOV(32, R(ABI_PARAM1), R(reg1));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
// Pass a pointer and register as a parameter.
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionPR(FunctionPointer func, const void* ptr, X64Reg reg1)
|
|
{
|
|
if (reg1 != ABI_PARAM2)
|
|
MOV(64, R(ABI_PARAM2), R(reg1));
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(ptr)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
// Pass two registers as parameters.
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionRR(FunctionPointer func, X64Reg reg1, X64Reg reg2)
|
|
{
|
|
MOVTwo(64, ABI_PARAM1, reg1, 0, ABI_PARAM2, reg2);
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
// Pass a pointer and two registers as parameters.
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionPRR(FunctionPointer func, const void* ptr, X64Reg reg1, X64Reg reg2)
|
|
{
|
|
MOVTwo(64, ABI_PARAM2, reg1, 0, ABI_PARAM3, reg2);
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(ptr)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionAC(int bits, FunctionPointer func, const Gen::OpArg& arg1, u32 param2)
|
|
{
|
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
|
MOV(bits, R(ABI_PARAM1), arg1);
|
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionPAC(int bits, FunctionPointer func, const void* ptr1, const Gen::OpArg& arg2,
|
|
u32 param3)
|
|
{
|
|
if (!arg2.IsSimpleReg(ABI_PARAM2))
|
|
MOV(bits, R(ABI_PARAM2), arg2);
|
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
|
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(ptr1)));
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
template <typename FunctionPointer>
|
|
void ABI_CallFunctionA(int bits, FunctionPointer func, const Gen::OpArg& arg1)
|
|
{
|
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
|
MOV(bits, R(ABI_PARAM1), arg1);
|
|
ABI_CallFunction(func);
|
|
}
|
|
|
|
// Helper method for ABI functions related to calling functions. May be used by itself as well.
|
|
void MOVTwo(int bits, X64Reg dst1, X64Reg src1, s32 offset, X64Reg dst2, X64Reg src2);
|
|
|
|
// Saves/restores the registers and adjusts the stack to be aligned as
|
|
// required by the ABI, where the previous alignment was as specified.
|
|
// Push returns the size of the shadow space, i.e. the offset of the frame.
|
|
size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
|
|
size_t needed_frame_size = 0);
|
|
void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
|
|
size_t needed_frame_size = 0);
|
|
|
|
// Utility to generate a call to a std::function object.
|
|
//
|
|
// Unfortunately, calling operator() directly is undefined behavior in C++
|
|
// (this method might be a thunk in the case of multi-inheritance) so we
|
|
// have to go through a trampoline function.
|
|
template <typename T, typename... Args>
|
|
static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
|
|
{
|
|
return (*f)(args...);
|
|
}
|
|
|
|
template <typename T, typename... Args>
|
|
void ABI_CallLambdaPC(const std::function<T(Args...)>* f, void* p1, u32 p2)
|
|
{
|
|
auto trampoline = &XEmitter::CallLambdaTrampoline<T, Args...>;
|
|
ABI_CallFunctionPPC(trampoline, reinterpret_cast<const void*>(f), p1, p2);
|
|
}
|
|
}; // class XEmitter
|
|
|
|
class X64CodeBlock : public Common::CodeBlock<XEmitter>
|
|
{
|
|
private:
|
|
void PoisonMemory() override
|
|
{
|
|
// x86/64: 0xCC = breakpoint
|
|
memset(region, 0xCC, region_size);
|
|
}
|
|
};
|
|
|
|
} // namespace Gen
|