mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-19 12:31:17 +01:00
cd069fdce1
bDAZ is now called bFlushToZero to better reflect what it's actually used for. I decided not to support any hardware-based flush-to-zero on systems that don't support this for both inputs _and_ outputs. It makes the code cleaner and the intersection of CPUs that support SSE2 but not DAZ should be very small.
265 lines
6.6 KiB
C++
265 lines
6.6 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <memory.h>
|
|
#include "Common.h"
|
|
|
|
#ifdef _WIN32
|
|
#define _interlockedbittestandset workaround_ms_header_bug_platform_sdk6_set
|
|
#define _interlockedbittestandreset workaround_ms_header_bug_platform_sdk6_reset
|
|
#define _interlockedbittestandset64 workaround_ms_header_bug_platform_sdk6_set64
|
|
#define _interlockedbittestandreset64 workaround_ms_header_bug_platform_sdk6_reset64
|
|
#include <intrin.h>
|
|
#undef _interlockedbittestandset
|
|
#undef _interlockedbittestandreset
|
|
#undef _interlockedbittestandset64
|
|
#undef _interlockedbittestandreset64
|
|
#else
|
|
|
|
//#include <config/i386/cpuid.h>
|
|
#ifndef _M_GENERIC
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#if defined __FreeBSD__
|
|
#include <sys/types.h>
|
|
#include <machine/cpufunc.h>
|
|
#else
|
|
static inline void do_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
#if defined _M_GENERIC
|
|
(*eax) = (*ebx) = (*ecx) = (*edx) = 0;
|
|
#elif defined _LP64
|
|
// Note: EBX is reserved on Mac OS X and in PIC on Linux, so it has to
|
|
// restored at the end of the asm block.
|
|
__asm__ (
|
|
"cpuid;"
|
|
"movl %%ebx,%1;"
|
|
: "=a" (*eax),
|
|
"=S" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "a" (*eax)
|
|
: "rbx"
|
|
);
|
|
#else
|
|
__asm__ (
|
|
"cpuid;"
|
|
"movl %%ebx,%1;"
|
|
: "=a" (*eax),
|
|
"=S" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "a" (*eax)
|
|
: "ebx"
|
|
);
|
|
#endif
|
|
}
|
|
#endif /* defined __FreeBSD__ */
|
|
|
|
static void __cpuid(int info[4], int x)
|
|
{
|
|
#if defined __FreeBSD__
|
|
do_cpuid((unsigned int)x, (unsigned int*)info);
|
|
#else
|
|
unsigned int eax = x, ebx = 0, ecx = 0, edx = 0;
|
|
do_cpuid(&eax, &ebx, &ecx, &edx);
|
|
info[0] = eax;
|
|
info[1] = ebx;
|
|
info[2] = ecx;
|
|
info[3] = edx;
|
|
#endif
|
|
}
|
|
|
|
#define _XCR_XFEATURE_ENABLED_MASK 0
|
|
static unsigned long long _xgetbv(unsigned int index)
|
|
{
|
|
#ifndef _M_GENERIC
|
|
unsigned int eax, edx;
|
|
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
|
|
return ((unsigned long long)edx << 32) | eax;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "Common.h"
|
|
#include "CPUDetect.h"
|
|
#include "StringUtil.h"
|
|
|
|
CPUInfo cpu_info;
|
|
|
|
CPUInfo::CPUInfo() {
|
|
Detect();
|
|
}
|
|
|
|
// Detects the various cpu features
|
|
void CPUInfo::Detect()
|
|
{
|
|
memset(this, 0, sizeof(*this));
|
|
#ifdef _M_IX86
|
|
Mode64bit = false;
|
|
#elif defined (_M_X64)
|
|
Mode64bit = true;
|
|
OS64bit = true;
|
|
#endif
|
|
num_cores = 1;
|
|
|
|
#ifdef _WIN32
|
|
#ifdef _M_IX86
|
|
BOOL f64 = false;
|
|
IsWow64Process(GetCurrentProcess(), &f64);
|
|
OS64bit = (f64 == TRUE) ? true : false;
|
|
#endif
|
|
#endif
|
|
|
|
// Set obvious defaults, for extra safety
|
|
if (Mode64bit) {
|
|
bSSE = true;
|
|
bSSE2 = true;
|
|
bLongMode = true;
|
|
}
|
|
|
|
// Assume CPU supports the CPUID instruction. Those that don't can barely
|
|
// boot modern OS:es anyway.
|
|
int cpu_id[4];
|
|
memset(cpu_string, 0, sizeof(cpu_string));
|
|
|
|
// Detect CPU's CPUID capabilities, and grab cpu string
|
|
__cpuid(cpu_id, 0x00000000);
|
|
u32 max_std_fn = cpu_id[0]; // EAX
|
|
*((int *)cpu_string) = cpu_id[1];
|
|
*((int *)(cpu_string + 4)) = cpu_id[3];
|
|
*((int *)(cpu_string + 8)) = cpu_id[2];
|
|
__cpuid(cpu_id, 0x80000000);
|
|
u32 max_ex_fn = cpu_id[0];
|
|
if (!strcmp(cpu_string, "GenuineIntel"))
|
|
vendor = VENDOR_INTEL;
|
|
else if (!strcmp(cpu_string, "AuthenticAMD"))
|
|
vendor = VENDOR_AMD;
|
|
else
|
|
vendor = VENDOR_OTHER;
|
|
|
|
// Set reasonable default brand string even if brand string not available.
|
|
strcpy(brand_string, cpu_string);
|
|
|
|
// Detect family and other misc stuff.
|
|
bool ht = false;
|
|
HTT = ht;
|
|
logical_cpu_count = 1;
|
|
if (max_std_fn >= 1) {
|
|
__cpuid(cpu_id, 0x00000001);
|
|
logical_cpu_count = (cpu_id[1] >> 16) & 0xFF;
|
|
ht = (cpu_id[3] >> 28) & 1;
|
|
|
|
if ((cpu_id[3] >> 25) & 1) bSSE = true;
|
|
if ((cpu_id[3] >> 26) & 1) bSSE2 = true;
|
|
if ((cpu_id[2]) & 1) bSSE3 = true;
|
|
if ((cpu_id[2] >> 9) & 1) bSSSE3 = true;
|
|
if ((cpu_id[2] >> 19) & 1) bSSE4_1 = true;
|
|
if ((cpu_id[2] >> 20) & 1) bSSE4_2 = true;
|
|
if ((cpu_id[2] >> 25) & 1) bAES = true;
|
|
|
|
// To check DAZ support, we first need to check FXSAVE support.
|
|
if ((cpu_id[3] >> 24) & 1)
|
|
{
|
|
// We can use FXSAVE.
|
|
bFXSR = true;
|
|
|
|
GC_ALIGNED16(u8 fx_state[512]);
|
|
memset(fx_state, 0, sizeof(fx_state));
|
|
#ifdef _WIN32
|
|
#ifdef _M_IX86
|
|
_fxsave(fx_state);
|
|
#elif defined (_M_X64)
|
|
_fxsave64(fx_state);
|
|
#endif
|
|
#else
|
|
__asm__("fxsave %0" : "=m" (fx_state));
|
|
#endif
|
|
|
|
// lowest byte of MXCSR_MASK
|
|
if ((fx_state[0x1C] >> 6) & 1)
|
|
{
|
|
// On x86, the FTZ field (supported since SSE1) only flushes denormal _outputs_ to zero,
|
|
// now that we checked DAZ support (flushing denormal _inputs_ to zero),
|
|
// we can set our generic flag.
|
|
bFlushToZero = true;
|
|
}
|
|
}
|
|
|
|
// AVX support requires 3 separate checks:
|
|
// - Is the AVX bit set in CPUID?
|
|
// - Is the XSAVE bit set in CPUID?
|
|
// - XGETBV result has the XCR bit set.
|
|
if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1))
|
|
{
|
|
if ((_xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6)
|
|
{
|
|
bAVX = true;
|
|
if ((cpu_id[2] >> 12) & 1)
|
|
bFMA = true;
|
|
}
|
|
}
|
|
}
|
|
if (max_ex_fn >= 0x80000004) {
|
|
// Extract brand string
|
|
__cpuid(cpu_id, 0x80000002);
|
|
memcpy(brand_string, cpu_id, sizeof(cpu_id));
|
|
__cpuid(cpu_id, 0x80000003);
|
|
memcpy(brand_string + 16, cpu_id, sizeof(cpu_id));
|
|
__cpuid(cpu_id, 0x80000004);
|
|
memcpy(brand_string + 32, cpu_id, sizeof(cpu_id));
|
|
}
|
|
if (max_ex_fn >= 0x80000001) {
|
|
// Check for more features.
|
|
__cpuid(cpu_id, 0x80000001);
|
|
if (cpu_id[2] & 1) bLAHFSAHF64 = true;
|
|
if ((cpu_id[3] >> 29) & 1) bLongMode = true;
|
|
}
|
|
|
|
num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count;
|
|
|
|
if (max_ex_fn >= 0x80000008) {
|
|
// Get number of cores. This is a bit complicated. Following AMD manual here.
|
|
__cpuid(cpu_id, 0x80000008);
|
|
int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF;
|
|
if (apic_id_core_id_size == 0) {
|
|
if (ht) {
|
|
// New mechanism for modern Intel CPUs.
|
|
if (vendor == VENDOR_INTEL) {
|
|
__cpuid(cpu_id, 0x00000004);
|
|
int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1;
|
|
HTT = (cores_x_package < logical_cpu_count);
|
|
cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1;
|
|
num_cores = (cores_x_package > 1) ? cores_x_package : num_cores;
|
|
logical_cpu_count /= cores_x_package;
|
|
}
|
|
}
|
|
} else {
|
|
// Use AMD's new method.
|
|
num_cores = (cpu_id[2] & 0xFF) + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Turn the cpu info into a string we can show
|
|
std::string CPUInfo::Summarize()
|
|
{
|
|
std::string sum(cpu_string);
|
|
if (bSSE) sum += ", SSE";
|
|
if (bSSE2) sum += ", SSE2";
|
|
if (bSSE3) sum += ", SSE3";
|
|
if (bSSSE3) sum += ", SSSE3";
|
|
if (bSSE4_1) sum += ", SSE4.1";
|
|
if (bSSE4_2) sum += ", SSE4.2";
|
|
if (HTT) sum += ", HTT";
|
|
if (bAVX) sum += ", AVX";
|
|
if (bFMA) sum += ", FMA";
|
|
if (bAES) sum += ", AES";
|
|
if (bLongMode) sum += ", 64-bit support";
|
|
return sum;
|
|
}
|