mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-22 14:01:16 +01:00
78e43a4404
fmt 8.0.0 requires this.
500 lines
19 KiB
C++
500 lines
19 KiB
C++
// Copyright 2014 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
// Copyright 2014 Tony Wasserka
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the owner nor the names of its contributors may
|
|
// be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#pragma once
|
|
|
|
#include <cstddef>
|
|
#include <fmt/format.h>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#include "Common/Inline.h"
|
|
|
|
/*
|
|
* Abstract bitfield class
|
|
*
|
|
* Allows endianness-independent access to individual bitfields within some raw
|
|
* integer value. The assembly generated by this class is identical to the
|
|
* usage of raw bitfields, so it's a perfectly fine replacement.
|
|
*
|
|
* For BitField<X,Y,Z>, X is the distance of the bitfield to the LSB of the
|
|
* raw value, Y is the length in bits of the bitfield. Z is an integer type
|
|
* which determines the sign of the bitfield. Z must have the same size as the
|
|
* raw integer.
|
|
*
|
|
*
|
|
* General usage:
|
|
*
|
|
* Create a new union with the raw integer value as a member.
|
|
* Then for each bitfield you want to expose, add a BitField member
|
|
* in the union. The template parameters are the bit offset and the number
|
|
* of desired bits.
|
|
*
|
|
* Changes in the bitfield members will then get reflected in the raw integer
|
|
* value and vice-versa.
|
|
*
|
|
*
|
|
* Sample usage:
|
|
*
|
|
* union SomeRegister
|
|
* {
|
|
* u32 hex;
|
|
*
|
|
* BitField<0,7,u32> first_seven_bits; // unsigned
|
|
* BitField<7,8,u32> next_eight_bits; // unsigned
|
|
* BitField<3,15,s32> some_signed_fields; // signed
|
|
* };
|
|
*
|
|
* This is equivalent to the little-endian specific code:
|
|
*
|
|
* union SomeRegister
|
|
* {
|
|
* u32 hex;
|
|
*
|
|
* struct
|
|
* {
|
|
* u32 first_seven_bits : 7;
|
|
* u32 next_eight_bits : 8;
|
|
* };
|
|
* struct
|
|
* {
|
|
* u32 : 3; // padding
|
|
* s32 some_signed_fields : 15;
|
|
* };
|
|
* };
|
|
*
|
|
*
|
|
* Caveats:
|
|
*
|
|
* 1)
|
|
* BitField provides automatic casting from and to the storage type where
|
|
* appropriate. However, when using non-typesafe functions like printf, an
|
|
* explicit cast must be performed on the BitField object to make sure it gets
|
|
* passed correctly, e.g.:
|
|
* printf("Value: %d", (s32)some_register.some_signed_fields);
|
|
* Note that this does not apply when using fmt, as a formatter is provided that
|
|
* handles this conversion automatically.
|
|
*
|
|
* 2)
|
|
* Not really a caveat, but potentially irritating: This class is used in some
|
|
* packed structures that do not guarantee proper alignment. Therefore we have
|
|
* to use #pragma pack here not to pack the members of the class, but instead
|
|
* to break GCC's assumption that the members of the class are aligned on
|
|
* sizeof(StorageType).
|
|
* TODO(neobrain): Confirm that this is a proper fix and not just masking
|
|
* symptoms.
|
|
*/
|
|
#pragma pack(1)
|
|
template <std::size_t position, std::size_t bits, typename T,
|
|
// StorageType is T for non-enum types and the underlying type of T if
|
|
// T is an enumeration. Note that T is wrapped within an enable_if in the
|
|
// former case to workaround compile errors which arise when using
|
|
// std::underlying_type<T>::type directly.
|
|
typename StorageType = typename std::conditional_t<
|
|
std::is_enum<T>::value, std::underlying_type<T>, std::enable_if<true, T>>::type>
|
|
struct BitField
|
|
{
|
|
private:
|
|
// This constructor might be considered ambiguous:
|
|
// Would it initialize the storage or just the bitfield?
|
|
// Hence, delete it. Use the assignment operator to set bitfield values!
|
|
BitField(T val) = delete;
|
|
|
|
public:
|
|
// Force default constructor to be created
|
|
// so that we can use this within unions
|
|
constexpr BitField() = default;
|
|
|
|
// We explicitly delete the copy assignment operator here, because the
|
|
// default copy assignment would copy the full storage value, rather than
|
|
// just the bits relevant to this particular bit field.
|
|
// Ideally, we would just implement the copy assignment to copy only the
|
|
// relevant bits, but we're prevented from doing that because the savestate
|
|
// code expects that this class is trivially copyable.
|
|
BitField& operator=(const BitField&) = delete;
|
|
|
|
DOLPHIN_FORCE_INLINE BitField& operator=(T val)
|
|
{
|
|
storage = (storage & ~GetMask()) | ((static_cast<StorageType>(val) << position) & GetMask());
|
|
return *this;
|
|
}
|
|
|
|
constexpr T Value() const { return Value(std::is_signed<T>()); }
|
|
constexpr operator T() const { return Value(); }
|
|
static constexpr bool IsSigned() { return std::is_signed<T>(); }
|
|
static constexpr std::size_t StartBit() { return position; }
|
|
static constexpr std::size_t NumBits() { return bits; }
|
|
|
|
private:
|
|
// Unsigned version of StorageType
|
|
using StorageTypeU = std::make_unsigned_t<StorageType>;
|
|
|
|
constexpr T Value(std::true_type) const
|
|
{
|
|
const size_t shift_amount = 8 * sizeof(StorageType) - bits;
|
|
return static_cast<T>((storage << (shift_amount - position)) >> shift_amount);
|
|
}
|
|
|
|
constexpr T Value(std::false_type) const
|
|
{
|
|
return static_cast<T>((storage & GetMask()) >> position);
|
|
}
|
|
|
|
static constexpr StorageType GetMask()
|
|
{
|
|
return (std::numeric_limits<StorageTypeU>::max() >> (8 * sizeof(StorageType) - bits))
|
|
<< position;
|
|
}
|
|
|
|
StorageType storage;
|
|
|
|
static_assert(bits + position <= 8 * sizeof(StorageType), "Bitfield out of range");
|
|
static_assert(sizeof(T) <= sizeof(StorageType), "T must fit in StorageType");
|
|
|
|
// And, you know, just in case people specify something stupid like bits=position=0x80000000
|
|
static_assert(position < 8 * sizeof(StorageType), "Invalid position");
|
|
static_assert(bits <= 8 * sizeof(T), "Invalid number of bits");
|
|
static_assert(bits > 0, "Invalid number of bits");
|
|
};
|
|
#pragma pack()
|
|
|
|
// Use the underlying type's formatter for BitFields, if one exists
|
|
template <std::size_t position, std::size_t bits, typename T, typename S>
|
|
struct fmt::formatter<BitField<position, bits, T, S>>
|
|
{
|
|
fmt::formatter<T> m_formatter;
|
|
constexpr auto parse(format_parse_context& ctx) { return m_formatter.parse(ctx); }
|
|
template <typename FormatContext>
|
|
auto format(const BitField<position, bits, T, S>& bitfield, FormatContext& ctx) const
|
|
{
|
|
return m_formatter.format(bitfield.Value(), ctx);
|
|
}
|
|
};
|
|
|
|
// Language limitations require the following to make these formattable
|
|
// (formatter<BitFieldArray<position, bits, size, T>::Ref> is not legal)
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayConstRef;
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayRef;
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayConstIterator;
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayIterator;
|
|
|
|
#pragma pack(1)
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T,
|
|
// StorageType is T for non-enum types and the underlying type of T if
|
|
// T is an enumeration. Note that T is wrapped within an enable_if in the
|
|
// former case to workaround compile errors which arise when using
|
|
// std::underlying_type<T>::type directly.
|
|
typename StorageType = typename std::conditional_t<
|
|
std::is_enum<T>::value, std::underlying_type<T>, std::enable_if<true, T>>::type>
|
|
struct BitFieldArray
|
|
{
|
|
using Ref = BitFieldArrayRef<position, bits, size, T, StorageType>;
|
|
using ConstRef = BitFieldArrayConstRef<position, bits, size, T, StorageType>;
|
|
using Iterator = BitFieldArrayIterator<position, bits, size, T, StorageType>;
|
|
using ConstIterator = BitFieldArrayConstIterator<position, bits, size, T, StorageType>;
|
|
|
|
private:
|
|
// This constructor might be considered ambiguous:
|
|
// Would it initialize the storage or just the bitfield?
|
|
// Hence, delete it. Use the assignment operator to set bitfield values!
|
|
BitFieldArray(T val) = delete;
|
|
|
|
public:
|
|
// Force default constructor to be created
|
|
// so that we can use this within unions
|
|
constexpr BitFieldArray() = default;
|
|
|
|
// We explicitly delete the copy assignment operator here, because the
|
|
// default copy assignment would copy the full storage value, rather than
|
|
// just the bits relevant to this particular bit field.
|
|
// Ideally, we would just implement the copy assignment to copy only the
|
|
// relevant bits, but we're prevented from doing that because the savestate
|
|
// code expects that this class is trivially copyable.
|
|
BitFieldArray& operator=(const BitFieldArray&) = delete;
|
|
|
|
public:
|
|
constexpr bool IsSigned() const { return std::is_signed<T>(); }
|
|
constexpr std::size_t StartBit() const { return position; }
|
|
constexpr std::size_t NumBits() const { return bits; }
|
|
constexpr std::size_t Size() const { return size; }
|
|
constexpr std::size_t TotalNumBits() const { return bits * size; }
|
|
|
|
constexpr T Value(size_t index) const { return Value(std::is_signed<T>(), index); }
|
|
void SetValue(size_t index, T value)
|
|
{
|
|
const size_t pos = position + bits * index;
|
|
storage = (storage & ~GetElementMask(index)) |
|
|
((static_cast<StorageType>(value) << pos) & GetElementMask(index));
|
|
}
|
|
Ref operator[](size_t index) { return Ref(this, index); }
|
|
constexpr const ConstRef operator[](size_t index) const { return ConstRef(this, index); }
|
|
|
|
constexpr Iterator begin() { return Iterator(this, 0); }
|
|
constexpr Iterator end() { return Iterator(this, size); }
|
|
constexpr ConstIterator begin() const { return ConstIterator(this, 0); }
|
|
constexpr ConstIterator end() const { return ConstIterator(this, size); }
|
|
constexpr ConstIterator cbegin() const { return begin(); }
|
|
constexpr ConstIterator cend() const { return end(); }
|
|
|
|
private:
|
|
// Unsigned version of StorageType
|
|
using StorageTypeU = std::make_unsigned_t<StorageType>;
|
|
|
|
constexpr T Value(std::true_type, size_t index) const
|
|
{
|
|
const size_t pos = position + bits * index;
|
|
const size_t shift_amount = 8 * sizeof(StorageType) - bits;
|
|
return static_cast<T>((storage << (shift_amount - pos)) >> shift_amount);
|
|
}
|
|
|
|
constexpr T Value(std::false_type, size_t index) const
|
|
{
|
|
const size_t pos = position + bits * index;
|
|
return static_cast<T>((storage & GetElementMask(index)) >> pos);
|
|
}
|
|
|
|
static constexpr StorageType GetElementMask(size_t index)
|
|
{
|
|
const size_t pos = position + bits * index;
|
|
return (std::numeric_limits<StorageTypeU>::max() >> (8 * sizeof(StorageType) - bits)) << pos;
|
|
}
|
|
|
|
StorageType storage;
|
|
|
|
static_assert(bits * size + position <= 8 * sizeof(StorageType), "Bitfield array out of range");
|
|
static_assert(sizeof(T) <= sizeof(StorageType), "T must fit in StorageType");
|
|
|
|
// And, you know, just in case people specify something stupid like bits=position=0x80000000
|
|
static_assert(position < 8 * sizeof(StorageType), "Invalid position");
|
|
static_assert(bits <= 8 * sizeof(T), "Invalid number of bits");
|
|
static_assert(bits > 0, "Invalid number of bits");
|
|
static_assert(size <= 8 * sizeof(StorageType), "Invalid size");
|
|
static_assert(size > 0, "Invalid size");
|
|
};
|
|
#pragma pack()
|
|
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayConstRef
|
|
{
|
|
friend struct BitFieldArray<position, bits, size, T, S>;
|
|
friend class BitFieldArrayConstIterator<position, bits, size, T, S>;
|
|
|
|
public:
|
|
constexpr T Value() const { return m_array->Value(m_index); };
|
|
constexpr operator T() const { return Value(); }
|
|
|
|
private:
|
|
constexpr BitFieldArrayConstRef(const BitFieldArray<position, bits, size, T, S>* array,
|
|
size_t index)
|
|
: m_array(array), m_index(index)
|
|
{
|
|
}
|
|
|
|
const BitFieldArray<position, bits, size, T, S>* const m_array;
|
|
const size_t m_index;
|
|
};
|
|
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayRef
|
|
{
|
|
friend struct BitFieldArray<position, bits, size, T, S>;
|
|
friend class BitFieldArrayIterator<position, bits, size, T, S>;
|
|
|
|
public:
|
|
constexpr T Value() const { return m_array->Value(m_index); };
|
|
constexpr operator T() const { return Value(); }
|
|
T operator=(const BitFieldArrayRef<position, bits, size, T, S>& value) const
|
|
{
|
|
m_array->SetValue(m_index, value);
|
|
return value;
|
|
}
|
|
T operator=(T value) const
|
|
{
|
|
m_array->SetValue(m_index, value);
|
|
return value;
|
|
}
|
|
|
|
private:
|
|
constexpr BitFieldArrayRef(BitFieldArray<position, bits, size, T, S>* array, size_t index)
|
|
: m_array(array), m_index(index)
|
|
{
|
|
}
|
|
|
|
BitFieldArray<position, bits, size, T, S>* const m_array;
|
|
const size_t m_index;
|
|
};
|
|
|
|
// Satisfies LegacyOutputIterator / std::output_iterator.
|
|
// Does not satisfy LegacyInputIterator / std::input_iterator as std::output_iterator_tag does not
|
|
// extend std::input_iterator_tag.
|
|
// Does not satisfy LegacyForwardIterator / std::forward_iterator, as that requires use of real
|
|
// references instead of proxy objects.
|
|
// This iterator allows use of BitFieldArray in range-based for loops, and with fmt::join.
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayIterator
|
|
{
|
|
friend struct BitFieldArray<position, bits, size, T, S>;
|
|
|
|
public:
|
|
using iterator_category = std::output_iterator_tag;
|
|
using value_type = T;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = void;
|
|
using reference = BitFieldArrayRef<position, bits, size, T, S>;
|
|
|
|
private:
|
|
constexpr BitFieldArrayIterator(BitFieldArray<position, bits, size, T, S>* array, size_t index)
|
|
: m_array(array), m_index(index)
|
|
{
|
|
}
|
|
|
|
public:
|
|
// Required by std::input_or_output_iterator
|
|
constexpr BitFieldArrayIterator() = default;
|
|
// Required by LegacyIterator
|
|
constexpr BitFieldArrayIterator(const BitFieldArrayIterator& other) = default;
|
|
// Required by LegacyIterator
|
|
BitFieldArrayIterator& operator=(const BitFieldArrayIterator& other) = default;
|
|
// Move constructor and assignment operators, explicitly defined for completeness
|
|
constexpr BitFieldArrayIterator(BitFieldArrayIterator&& other) = default;
|
|
BitFieldArrayIterator& operator=(BitFieldArrayIterator&& other) = default;
|
|
|
|
public:
|
|
BitFieldArrayIterator& operator++()
|
|
{
|
|
m_index++;
|
|
return *this;
|
|
}
|
|
BitFieldArrayIterator operator++(int)
|
|
{
|
|
BitFieldArrayIterator other(*this);
|
|
++*this;
|
|
return other;
|
|
}
|
|
constexpr reference operator*() const { return reference(m_array, m_index); }
|
|
constexpr bool operator==(BitFieldArrayIterator other) const { return m_index == other.m_index; }
|
|
constexpr bool operator!=(BitFieldArrayIterator other) const { return m_index != other.m_index; }
|
|
|
|
private:
|
|
BitFieldArray<position, bits, size, T, S>* m_array;
|
|
size_t m_index;
|
|
};
|
|
|
|
// Satisfies LegacyInputIterator / std::input_iterator.
|
|
// Does not satisfy LegacyForwardIterator / std::forward_iterator, as that requires use of real
|
|
// references instead of proxy objects.
|
|
// This iterator allows use of BitFieldArray in range-based for loops, and with fmt::join.
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
class BitFieldArrayConstIterator
|
|
{
|
|
friend struct BitFieldArray<position, bits, size, T, S>;
|
|
|
|
public:
|
|
using iterator_category = std::input_iterator_tag;
|
|
using value_type = T;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = void;
|
|
using reference = BitFieldArrayConstRef<position, bits, size, T, S>;
|
|
|
|
private:
|
|
constexpr BitFieldArrayConstIterator(const BitFieldArray<position, bits, size, T, S>* array,
|
|
size_t index)
|
|
: m_array(array), m_index(index)
|
|
{
|
|
}
|
|
|
|
public:
|
|
// Required by std::input_or_output_iterator
|
|
constexpr BitFieldArrayConstIterator() = default;
|
|
// Required by LegacyIterator
|
|
constexpr BitFieldArrayConstIterator(const BitFieldArrayConstIterator& other) = default;
|
|
// Required by LegacyIterator
|
|
BitFieldArrayConstIterator& operator=(const BitFieldArrayConstIterator& other) = default;
|
|
// Move constructor and assignment operators, explicitly defined for completeness
|
|
constexpr BitFieldArrayConstIterator(BitFieldArrayConstIterator&& other) = default;
|
|
BitFieldArrayConstIterator& operator=(BitFieldArrayConstIterator&& other) = default;
|
|
|
|
public:
|
|
BitFieldArrayConstIterator& operator++()
|
|
{
|
|
m_index++;
|
|
return *this;
|
|
}
|
|
BitFieldArrayConstIterator operator++(int)
|
|
{
|
|
BitFieldArrayConstIterator other(*this);
|
|
++*this;
|
|
return other;
|
|
}
|
|
constexpr reference operator*() const { return reference(m_array, m_index); }
|
|
constexpr bool operator==(BitFieldArrayConstIterator other) const
|
|
{
|
|
return m_index == other.m_index;
|
|
}
|
|
constexpr bool operator!=(BitFieldArrayConstIterator other) const
|
|
{
|
|
return m_index != other.m_index;
|
|
}
|
|
|
|
private:
|
|
const BitFieldArray<position, bits, size, T, S>* m_array;
|
|
size_t m_index;
|
|
};
|
|
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
struct fmt::formatter<BitFieldArrayRef<position, bits, size, T, S>>
|
|
{
|
|
fmt::formatter<T> m_formatter;
|
|
constexpr auto parse(format_parse_context& ctx) { return m_formatter.parse(ctx); }
|
|
template <typename FormatContext>
|
|
auto format(const BitFieldArrayRef<position, bits, size, T, S>& ref, FormatContext& ctx) const
|
|
{
|
|
return m_formatter.format(ref.Value(), ctx);
|
|
}
|
|
};
|
|
|
|
template <std::size_t position, std::size_t bits, std::size_t size, typename T, typename S>
|
|
struct fmt::formatter<BitFieldArrayConstRef<position, bits, size, T, S>>
|
|
{
|
|
fmt::formatter<T> m_formatter;
|
|
constexpr auto parse(format_parse_context& ctx) { return m_formatter.parse(ctx); }
|
|
template <typename FormatContext>
|
|
auto format(const BitFieldArrayConstRef<position, bits, size, T, S>& ref,
|
|
FormatContext& ctx) const
|
|
{
|
|
return m_formatter.format(ref.Value(), ctx);
|
|
}
|
|
};
|