dolphin/Source/Core/VideoCommon/PixelShaderGen.cpp

1323 lines
52 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cmath>
#include <cstdio>
#include <cstring>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/LightingShaderGen.h"
#include "VideoCommon/PixelShaderGen.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h" // for texture projection mode
// TODO: Get rid of these
enum : u32
{
C_COLORMATRIX = 0, // 0
C_COLORS = 0, // 0
C_KCOLORS = C_COLORS + 4, // 4
C_ALPHA = C_KCOLORS + 4, // 8
C_TEXDIMS = C_ALPHA + 1, // 9
C_ZBIAS = C_TEXDIMS + 8, // 17
C_INDTEXSCALE = C_ZBIAS + 2, // 19
C_INDTEXMTX = C_INDTEXSCALE + 2, // 21
C_FOGCOLOR = C_INDTEXMTX + 6, // 27
C_FOGI = C_FOGCOLOR + 1, // 28
C_FOGF = C_FOGI + 1, // 29
C_ZSLOPE = C_FOGF + 2, // 31
C_EFBSCALE = C_ZSLOPE + 1, // 32
C_PENVCONST_END = C_EFBSCALE + 1
};
static const char* tevKSelTableC[] = {
"255,255,255", // 1 = 0x00
"223,223,223", // 7_8 = 0x01
"191,191,191", // 3_4 = 0x02
"159,159,159", // 5_8 = 0x03
"128,128,128", // 1_2 = 0x04
"96,96,96", // 3_8 = 0x05
"64,64,64", // 1_4 = 0x06
"32,32,32", // 1_8 = 0x07
"0,0,0", // INVALID = 0x08
"0,0,0", // INVALID = 0x09
"0,0,0", // INVALID = 0x0a
"0,0,0", // INVALID = 0x0b
I_KCOLORS "[0].rgb", // K0 = 0x0C
I_KCOLORS "[1].rgb", // K1 = 0x0D
I_KCOLORS "[2].rgb", // K2 = 0x0E
I_KCOLORS "[3].rgb", // K3 = 0x0F
I_KCOLORS "[0].rrr", // K0_R = 0x10
I_KCOLORS "[1].rrr", // K1_R = 0x11
I_KCOLORS "[2].rrr", // K2_R = 0x12
I_KCOLORS "[3].rrr", // K3_R = 0x13
I_KCOLORS "[0].ggg", // K0_G = 0x14
I_KCOLORS "[1].ggg", // K1_G = 0x15
I_KCOLORS "[2].ggg", // K2_G = 0x16
I_KCOLORS "[3].ggg", // K3_G = 0x17
I_KCOLORS "[0].bbb", // K0_B = 0x18
I_KCOLORS "[1].bbb", // K1_B = 0x19
I_KCOLORS "[2].bbb", // K2_B = 0x1A
I_KCOLORS "[3].bbb", // K3_B = 0x1B
I_KCOLORS "[0].aaa", // K0_A = 0x1C
I_KCOLORS "[1].aaa", // K1_A = 0x1D
I_KCOLORS "[2].aaa", // K2_A = 0x1E
I_KCOLORS "[3].aaa", // K3_A = 0x1F
};
static const char* tevKSelTableA[] = {
"255", // 1 = 0x00
"223", // 7_8 = 0x01
"191", // 3_4 = 0x02
"159", // 5_8 = 0x03
"128", // 1_2 = 0x04
"96", // 3_8 = 0x05
"64", // 1_4 = 0x06
"32", // 1_8 = 0x07
"0", // INVALID = 0x08
"0", // INVALID = 0x09
"0", // INVALID = 0x0a
"0", // INVALID = 0x0b
"0", // INVALID = 0x0c
"0", // INVALID = 0x0d
"0", // INVALID = 0x0e
"0", // INVALID = 0x0f
I_KCOLORS "[0].r", // K0_R = 0x10
I_KCOLORS "[1].r", // K1_R = 0x11
I_KCOLORS "[2].r", // K2_R = 0x12
I_KCOLORS "[3].r", // K3_R = 0x13
I_KCOLORS "[0].g", // K0_G = 0x14
I_KCOLORS "[1].g", // K1_G = 0x15
I_KCOLORS "[2].g", // K2_G = 0x16
I_KCOLORS "[3].g", // K3_G = 0x17
I_KCOLORS "[0].b", // K0_B = 0x18
I_KCOLORS "[1].b", // K1_B = 0x19
I_KCOLORS "[2].b", // K2_B = 0x1A
I_KCOLORS "[3].b", // K3_B = 0x1B
I_KCOLORS "[0].a", // K0_A = 0x1C
I_KCOLORS "[1].a", // K1_A = 0x1D
I_KCOLORS "[2].a", // K2_A = 0x1E
I_KCOLORS "[3].a", // K3_A = 0x1F
};
static const char* tevCInputTable[] = {
"prev.rgb", // CPREV,
"prev.aaa", // APREV,
"c0.rgb", // C0,
"c0.aaa", // A0,
"c1.rgb", // C1,
"c1.aaa", // A1,
"c2.rgb", // C2,
"c2.aaa", // A2,
"textemp.rgb", // TEXC,
"textemp.aaa", // TEXA,
"rastemp.rgb", // RASC,
"rastemp.aaa", // RASA,
"int3(255,255,255)", // ONE
"int3(128,128,128)", // HALF
"konsttemp.rgb", // KONST
"int3(0,0,0)", // ZERO
};
static const char* tevAInputTable[] = {
"prev.a", // APREV,
"c0.a", // A0,
"c1.a", // A1,
"c2.a", // A2,
"textemp.a", // TEXA,
"rastemp.a", // RASA,
"konsttemp.a", // KONST, (hw1 had quarter)
"0", // ZERO
};
static const char* tevRasTable[] = {
"iround(col0 * 255.0)",
"iround(col1 * 255.0)",
"ERROR13", // 2
"ERROR14", // 3
"ERROR15", // 4
"(int4(1, 1, 1, 1) * alphabump)", // bump alpha (0..248)
"(int4(1, 1, 1, 1) * (alphabump | (alphabump >> 5)))", // normalized bump alpha (0..255)
"int4(0, 0, 0, 0)", // zero
};
static const char* tevCOutputTable[] = {"prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb"};
static const char* tevAOutputTable[] = {"prev.a", "c0.a", "c1.a", "c2.a"};
// FIXME: Some of the video card's capabilities (BBox support, EarlyZ support, dstAlpha support)
// leak
// into this UID; This is really unhelpful if these UIDs ever move from one machine to
// another.
PixelShaderUid GetPixelShaderUid(DSTALPHA_MODE dstAlphaMode)
{
PixelShaderUid out;
pixel_shader_uid_data* uid_data = out.GetUidData<pixel_shader_uid_data>();
memset(uid_data, 0, sizeof(*uid_data));
uid_data->dstAlphaMode = dstAlphaMode;
uid_data->genMode_numindstages = bpmem.genMode.numindstages;
uid_data->genMode_numtevstages = bpmem.genMode.numtevstages;
uid_data->genMode_numtexgens = bpmem.genMode.numtexgens;
uid_data->per_pixel_lighting = g_ActiveConfig.bEnablePixelLighting;
uid_data->bounding_box = g_ActiveConfig.backend_info.bSupportsBBox &&
g_ActiveConfig.bBBoxEnable && BoundingBox::active;
uid_data->rgba6_format =
bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24 && !g_ActiveConfig.bForceTrueColor;
uid_data->dither = bpmem.blendmode.dither && uid_data->rgba6_format;
u32 numStages = uid_data->genMode_numtevstages + 1;
const bool forced_early_z =
g_ActiveConfig.backend_info.bSupportsEarlyZ && bpmem.UseEarlyDepthTest() &&
(g_ActiveConfig.bFastDepthCalc || bpmem.alpha_test.TestResult() == AlphaTest::UNDETERMINED)
// We can't allow early_ztest for zfreeze because depth is overridden per-pixel.
// This means it's impossible for zcomploc to be emulated on a zfrozen polygon.
&& !(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
const bool per_pixel_depth =
(bpmem.ztex2.op != ZTEXTURE_DISABLE && bpmem.UseLateDepthTest()) ||
(!g_ActiveConfig.bFastDepthCalc && bpmem.zmode.testenable && !forced_early_z) ||
(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
uid_data->per_pixel_depth = per_pixel_depth;
uid_data->forced_early_z = forced_early_z;
uid_data->fast_depth_calc = g_ActiveConfig.bFastDepthCalc;
uid_data->msaa = g_ActiveConfig.iMultisamples > 1;
uid_data->ssaa = g_ActiveConfig.iMultisamples > 1 && g_ActiveConfig.bSSAA;
uid_data->stereo = g_ActiveConfig.iStereoMode > 0;
if (!uid_data->forced_early_z && bpmem.UseEarlyDepthTest() &&
(!uid_data->fast_depth_calc || bpmem.alpha_test.TestResult() == AlphaTest::UNDETERMINED))
{
static bool warn_once = true;
if (warn_once)
WARN_LOG(VIDEO, "Early z test enabled but not possible to emulate with current "
"configuration. Make sure to enable fast depth calculations. If this message "
"still shows up your hardware isn't able to emulate the feature properly (a "
"GPU with D3D 11.0 / OGL 4.2 support is required).");
warn_once = false;
}
if (uid_data->per_pixel_lighting)
{
// The lighting shader only needs the two color bits of the 23bit component bit array.
uid_data->components =
(VertexLoaderManager::g_current_components & (VB_HAS_COL0 | VB_HAS_COL1)) >> VB_COL_SHIFT;
uid_data->numColorChans = xfmem.numChan.numColorChans;
GetLightingShaderUid(uid_data->lighting);
}
if (uid_data->genMode_numtexgens > 0)
{
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
{
// optional perspective divides
uid_data->texMtxInfo_n_projection |= xfmem.texMtxInfo[i].projection << i;
}
}
// indirect texture map lookup
int nIndirectStagesUsed = 0;
if (uid_data->genMode_numindstages > 0)
{
for (unsigned int i = 0; i < numStages; ++i)
{
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < uid_data->genMode_numindstages)
nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt;
}
}
uid_data->nIndirectStagesUsed = nIndirectStagesUsed;
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
{
if (uid_data->nIndirectStagesUsed & (1 << i))
uid_data->SetTevindrefValues(i, bpmem.tevindref.getTexCoord(i), bpmem.tevindref.getTexMap(i));
}
for (unsigned int n = 0; n < numStages; n++)
{
int texcoord = bpmem.tevorders[n / 2].getTexCoord(n & 1);
bool bHasTexCoord = (u32)texcoord < bpmem.genMode.numtexgens;
// HACK to handle cases where the tex gen is not enabled
if (!bHasTexCoord)
texcoord = bpmem.genMode.numtexgens;
uid_data->stagehash[n].hasindstage = bpmem.tevind[n].bt < bpmem.genMode.numindstages;
uid_data->stagehash[n].tevorders_texcoord = texcoord;
if (uid_data->stagehash[n].hasindstage)
uid_data->stagehash[n].tevind = bpmem.tevind[n].hex;
TevStageCombiner::ColorCombiner& cc = bpmem.combiners[n].colorC;
TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[n].alphaC;
uid_data->stagehash[n].cc = cc.hex & 0xFFFFFF;
uid_data->stagehash[n].ac = ac.hex & 0xFFFFF0; // Storing rswap and tswap later
if (cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC || cc.b == TEVCOLORARG_RASA ||
cc.b == TEVCOLORARG_RASC || cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC ||
cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC || ac.a == TEVALPHAARG_RASA ||
ac.b == TEVALPHAARG_RASA || ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
const int i = bpmem.combiners[n].alphaC.rswap;
uid_data->stagehash[n].tevksel_swap1a = bpmem.tevksel[i * 2].swap1;
uid_data->stagehash[n].tevksel_swap2a = bpmem.tevksel[i * 2].swap2;
uid_data->stagehash[n].tevksel_swap1b = bpmem.tevksel[i * 2 + 1].swap1;
uid_data->stagehash[n].tevksel_swap2b = bpmem.tevksel[i * 2 + 1].swap2;
uid_data->stagehash[n].tevorders_colorchan = bpmem.tevorders[n / 2].getColorChan(n & 1);
}
uid_data->stagehash[n].tevorders_enable = bpmem.tevorders[n / 2].getEnable(n & 1);
if (uid_data->stagehash[n].tevorders_enable)
{
const int i = bpmem.combiners[n].alphaC.tswap;
uid_data->stagehash[n].tevksel_swap1c = bpmem.tevksel[i * 2].swap1;
uid_data->stagehash[n].tevksel_swap2c = bpmem.tevksel[i * 2].swap2;
uid_data->stagehash[n].tevksel_swap1d = bpmem.tevksel[i * 2 + 1].swap1;
uid_data->stagehash[n].tevksel_swap2d = bpmem.tevksel[i * 2 + 1].swap2;
uid_data->stagehash[n].tevorders_texmap = bpmem.tevorders[n / 2].getTexMap(n & 1);
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST ||
cc.d == TEVCOLORARG_KONST || ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST ||
ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
uid_data->stagehash[n].tevksel_kc = bpmem.tevksel[n / 2].getKC(n & 1);
uid_data->stagehash[n].tevksel_ka = bpmem.tevksel[n / 2].getKA(n & 1);
}
}
#define MY_STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str)))
uid_data->num_values = (uid_data->per_pixel_lighting) ?
sizeof(*uid_data) :
MY_STRUCT_OFFSET(*uid_data, stagehash[numStages]);
AlphaTest::TEST_RESULT Pretest = bpmem.alpha_test.TestResult();
uid_data->Pretest = Pretest;
uid_data->late_ztest = bpmem.UseLateDepthTest();
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
// (in this case we need to write a depth value if depth test passes regardless of the alpha
// testing result)
if (uid_data->Pretest == AlphaTest::UNDETERMINED ||
(uid_data->Pretest == AlphaTest::FAIL && uid_data->late_ztest))
{
uid_data->alpha_test_comp0 = bpmem.alpha_test.comp0;
uid_data->alpha_test_comp1 = bpmem.alpha_test.comp1;
uid_data->alpha_test_logic = bpmem.alpha_test.logic;
// ZCOMPLOC HACK:
// The only way to emulate alpha test + early-z is to force early-z in the shader.
// As this isn't available on all drivers and as we can't emulate this feature otherwise,
// we are only able to choose which one we want to respect more.
// Tests seem to have proven that writing depth even when the alpha test fails is more
// important that a reliable alpha test, so we just force the alpha test to always succeed.
// At least this seems to be less buggy.
uid_data->alpha_test_use_zcomploc_hack =
bpmem.UseEarlyDepthTest() && bpmem.zmode.updateenable &&
!g_ActiveConfig.backend_info.bSupportsEarlyZ && !bpmem.genMode.zfreeze;
}
uid_data->zfreeze = bpmem.genMode.zfreeze;
uid_data->ztex_op = bpmem.ztex2.op;
uid_data->early_ztest = bpmem.UseEarlyDepthTest();
uid_data->fog_fsel = bpmem.fog.c_proj_fsel.fsel;
if (dstAlphaMode != DSTALPHA_ALPHA_PASS)
{
uid_data->fog_fsel = bpmem.fog.c_proj_fsel.fsel;
uid_data->fog_proj = bpmem.fog.c_proj_fsel.proj;
uid_data->fog_RangeBaseEnabled = bpmem.fogRange.Base.Enabled;
}
return out;
}
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
APIType ApiType);
static void WriteTevRegular(ShaderCode& out, const char* components, int bias, int op, int clamp,
int shift);
static void SampleTexture(ShaderCode& out, const char* texcoords, const char* texswap, int texmap,
bool stereo, APIType ApiType);
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType ApiType,
bool per_pixel_depth);
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data);
static void WriteColor(ShaderCode& out, const pixel_shader_uid_data* uid_data);
ShaderCode GeneratePixelShaderCode(APIType ApiType, const pixel_shader_uid_data* uid_data)
{
ShaderCode out;
u32 numStages = uid_data->genMode_numtevstages + 1;
out.Write("//Pixel Shader for TEV stages\n");
out.Write("//%i TEV stages, %i texgens, %i IND stages\n", numStages, uid_data->genMode_numtexgens,
uid_data->genMode_numindstages);
// dot product for integer vectors
out.Write("int idot(int3 x, int3 y)\n"
"{\n"
"\tint3 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z;\n"
"}\n");
out.Write("int idot(int4 x, int4 y)\n"
"{\n"
"\tint4 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z + tmp.w;\n"
"}\n\n");
// rounding + casting to integer at once in a single function
out.Write("int iround(float x) { return int (round(x)); }\n"
"int2 iround(float2 x) { return int2(round(x)); }\n"
"int3 iround(float3 x) { return int3(round(x)); }\n"
"int4 iround(float4 x) { return int4(round(x)); }\n\n");
out.Write("int itrunc(float x) { return int (trunc(x)); }\n"
"int2 itrunc(float2 x) { return int2(trunc(x)); }\n"
"int3 itrunc(float3 x) { return int3(trunc(x)); }\n"
"int4 itrunc(float4 x) { return int4(trunc(x)); }\n\n");
if (ApiType == APIType::OpenGL)
{
out.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp[8];\n");
}
else if (ApiType == APIType::Vulkan)
{
out.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
out.Write("SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n");
out.Write("SAMPLER_BINDING(2) uniform sampler2DArray samp2;\n");
out.Write("SAMPLER_BINDING(3) uniform sampler2DArray samp3;\n");
out.Write("SAMPLER_BINDING(4) uniform sampler2DArray samp4;\n");
out.Write("SAMPLER_BINDING(5) uniform sampler2DArray samp5;\n");
out.Write("SAMPLER_BINDING(6) uniform sampler2DArray samp6;\n");
out.Write("SAMPLER_BINDING(7) uniform sampler2DArray samp7;\n");
}
else // D3D
{
// Declare samplers
out.Write("SamplerState samp[8] : register(s0);\n");
out.Write("\n");
out.Write("Texture2DArray Tex[8] : register(t0);\n");
}
out.Write("\n");
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
out.Write("UBO_BINDING(std140, 1) uniform PSBlock {\n");
else
out.Write("cbuffer PSBlock : register(b0) {\n");
out.Write("\tint4 " I_COLORS "[4];\n"
"\tint4 " I_KCOLORS "[4];\n"
"\tint4 " I_ALPHA ";\n"
"\tfloat4 " I_TEXDIMS "[8];\n"
"\tint4 " I_ZBIAS "[2];\n"
"\tint4 " I_INDTEXSCALE "[2];\n"
"\tint4 " I_INDTEXMTX "[6];\n"
"\tint4 " I_FOGCOLOR ";\n"
"\tint4 " I_FOGI ";\n"
"\tfloat4 " I_FOGF "[2];\n"
"\tfloat4 " I_ZSLOPE ";\n"
"\tfloat4 " I_EFBSCALE ";\n"
"};\n");
if (uid_data->per_pixel_lighting)
{
out.Write("%s", s_lighting_struct);
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
out.Write("UBO_BINDING(std140, 2) uniform VSBlock {\n");
else
out.Write("cbuffer VSBlock : register(b1) {\n");
out.Write(s_shader_uniforms);
out.Write("};\n");
}
if (uid_data->bounding_box)
{
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
{
out.Write("SSBO_BINDING(0) buffer BBox {\n"
"\tint4 bbox_data;\n"
"};\n");
}
else
{
out.Write("globallycoherent RWBuffer<int> bbox_data : register(u2);\n");
}
}
out.Write("struct VS_OUTPUT {\n");
GenerateVSOutputMembers(out, ApiType, uid_data->genMode_numtexgens, uid_data->per_pixel_lighting,
"");
out.Write("};\n");
if (uid_data->forced_early_z)
{
// Zcomploc (aka early_ztest) is a way to control whether depth test is done before
// or after texturing and alpha test. PC graphics APIs used to provide no way to emulate
// this feature properly until 2012: Depth tests were always done after alpha testing.
// Most importantly, it was not possible to write to the depth buffer without also writing
// a color value (unless color writing was disabled altogether).
// OpenGL 4.2 actually provides two extensions which can force an early z test:
// * ARB_image_load_store has 'layout(early_fragment_tests)' which forces the driver to do z
// and stencil tests early.
// * ARB_conservative_depth has 'layout(depth_unchanged) which signals to the driver that it
// can make optimisations
// which assume the pixel shader won't update the depth buffer.
// early_fragment_tests is the best option, as it requires the driver to do early-z and defines
// early-z exactly as
// we expect, with discard causing the shader to exit with only the depth buffer updated.
// Conservative depth's 'depth_unchanged' only hints to the driver that an early-z optimisation
// can be made and
// doesn't define what will happen if we discard the fragment. But the way modern graphics
// hardware is implemented
// means it is not unreasonable to expect the same behaviour as early_fragment_tests.
// We can also assume that if a driver has gone out of its way to support conservative depth and
// not image_load_store
// as required by OpenGL 4.2 that it will be doing the optimisation.
// If the driver doesn't actually do an early z optimisation, ZCompLoc will be broken and depth
// will only be written
// if the alpha test passes.
// We support Conservative as a fallback, because many drivers based on Mesa haven't implemented
// all of the
// ARB_image_load_store extension yet.
// D3D11 also has a way to force the driver to enable early-z, so we're fine here.
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
{
// This is a #define which signals whatever early-z method the driver supports.
out.Write("FORCE_EARLY_Z; \n");
}
else
{
out.Write("[earlydepthstencil]\n");
}
}
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
{
if (g_ActiveConfig.backend_info.bSupportsDualSourceBlend &&
(!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DUAL_SOURCE_BLENDING) ||
uid_data->dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND))
{
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION))
{
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
out.Write("FRAGMENT_OUTPUT_LOCATION(1) out vec4 ocol1;\n");
}
else
{
out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) out vec4 ocol0;\n");
out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 1) out vec4 ocol1;\n");
}
}
else
{
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
out.Write("vec4 ocol1;\n"); // Consume the output we don't use
}
if (uid_data->per_pixel_depth)
out.Write("#define depth gl_FragDepth\n");
// We need to always use output blocks for Vulkan, but geometry shaders are also optional.
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders || ApiType == APIType::Vulkan)
{
out.Write("VARYING_LOCATION(0) in VertexData {\n");
GenerateVSOutputMembers(
out, ApiType, uid_data->genMode_numtexgens, uid_data->per_pixel_lighting,
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa, true, true));
if (uid_data->stereo)
out.Write("\tflat int layer;\n");
out.Write("};\n");
}
else
{
out.Write("%s in float4 colors_0;\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
out.Write("%s in float4 colors_1;\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
// compute window position if needed because binding semantic WPOS is not widely supported
// Let's set up attributes
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
{
out.Write("%s in float3 uv%d;\n", GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa),
i);
}
out.Write("%s in float4 clipPos;\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
if (uid_data->per_pixel_lighting)
{
out.Write("%s in float3 Normal;\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
out.Write("%s in float3 WorldPos;\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
}
}
out.Write("void main()\n{\n");
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders || ApiType == APIType::Vulkan)
{
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
out.Write("\tfloat3 uv%d = tex%d;\n", i, i);
}
out.Write("\tfloat4 rawpos = gl_FragCoord;\n");
}
else // D3D
{
out.Write("void main(\n");
out.Write(" out float4 ocol0 : SV_Target0,\n"
" out float4 ocol1 : SV_Target1,\n%s"
" in float4 rawpos : SV_Position,\n",
uid_data->per_pixel_depth ? " out float depth : SV_Depth,\n" : "");
out.Write(" in %s float4 colors_0 : COLOR0,\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
out.Write(" in %s float4 colors_1 : COLOR1\n",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa));
// compute window position if needed because binding semantic WPOS is not widely supported
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
out.Write(",\n in %s float3 uv%d : TEXCOORD%d",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa), i, i);
out.Write(",\n in %s float4 clipPos : TEXCOORD%d",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa),
uid_data->genMode_numtexgens);
if (uid_data->per_pixel_lighting)
{
out.Write(",\n in %s float3 Normal : TEXCOORD%d",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa),
uid_data->genMode_numtexgens + 1);
out.Write(",\n in %s float3 WorldPos : TEXCOORD%d",
GetInterpolationQualifier(uid_data->msaa, uid_data->ssaa),
uid_data->genMode_numtexgens + 2);
}
if (uid_data->stereo)
out.Write(",\n in uint layer : SV_RenderTargetArrayIndex\n");
out.Write(" ) {\n");
}
out.Write("\tint4 c0 = " I_COLORS "[1], c1 = " I_COLORS "[2], c2 = " I_COLORS
"[3], prev = " I_COLORS "[0];\n"
"\tint4 rastemp = int4(0, 0, 0, 0), textemp = int4(0, 0, 0, 0), konsttemp = int4(0, 0, "
"0, 0);\n"
"\tint3 comp16 = int3(1, 256, 0), comp24 = int3(1, 256, 256*256);\n"
"\tint alphabump=0;\n"
"\tint3 tevcoord=int3(0, 0, 0);\n"
"\tint2 wrappedcoord=int2(0,0), tempcoord=int2(0,0);\n"
"\tint4 "
"tevin_a=int4(0,0,0,0),tevin_b=int4(0,0,0,0),tevin_c=int4(0,0,0,0),tevin_d=int4(0,0,0,"
"0);\n\n"); // tev combiner inputs
// On GLSL, input variables must not be assigned to.
// This is why we declare these variables locally instead.
out.Write("\tfloat4 col0 = colors_0;\n");
out.Write("\tfloat4 col1 = colors_1;\n");
if (uid_data->per_pixel_lighting)
{
out.Write("\tfloat3 _norm0 = normalize(Normal.xyz);\n\n");
out.Write("\tfloat3 pos = WorldPos;\n");
out.Write("\tint4 lacc;\n"
"\tfloat3 ldir, h, cosAttn, distAttn;\n"
"\tfloat dist, dist2, attn;\n");
// TODO: Our current constant usage code isn't able to handle more than one buffer.
// So we can't mark the VS constant as used here. But keep them here as reference.
// out.SetConstantsUsed(C_PLIGHT_COLORS, C_PLIGHT_COLORS+7); // TODO: Can be optimized further
// out.SetConstantsUsed(C_PLIGHTS, C_PLIGHTS+31); // TODO: Can be optimized further
// out.SetConstantsUsed(C_PMATERIALS, C_PMATERIALS+3);
GenerateLightingShaderCode(out, uid_data->lighting, uid_data->components << VB_COL_SHIFT,
uid_data->numColorChans, "colors_", "col");
}
// HACK to handle cases where the tex gen is not enabled
if (uid_data->genMode_numtexgens == 0)
{
out.Write("\tint2 fixpoint_uv0 = int2(0, 0);\n\n");
}
else
{
out.SetConstantsUsed(C_TEXDIMS, C_TEXDIMS + uid_data->genMode_numtexgens - 1);
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
{
out.Write("\tint2 fixpoint_uv%d = itrunc(", i);
out.Write("(uv%d.z == 0.0 ? uv%d.xy : uv%d.xy / uv%d.z)", i, i, i, i);
out.Write(" * " I_TEXDIMS "[%d].zw);\n", i);
// TODO: S24 overflows here?
}
}
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
{
if (uid_data->nIndirectStagesUsed & (1 << i))
{
unsigned int texcoord = uid_data->GetTevindirefCoord(i);
unsigned int texmap = uid_data->GetTevindirefMap(i);
if (texcoord < uid_data->genMode_numtexgens)
{
out.SetConstantsUsed(C_INDTEXSCALE + i / 2, C_INDTEXSCALE + i / 2);
out.Write("\ttempcoord = fixpoint_uv%d >> " I_INDTEXSCALE "[%d].%s;\n", texcoord, i / 2,
(i & 1) ? "zw" : "xy");
}
else
out.Write("\ttempcoord = int2(0, 0);\n");
out.Write("\tint3 iindtex%d = ", i);
SampleTexture(out, "float2(tempcoord)", "abg", texmap, uid_data->stereo, ApiType);
}
}
for (unsigned int i = 0; i < numStages; i++)
WriteStage(out, uid_data, i, ApiType); // build the equation for this stage
{
// The results of the last texenv stage are put onto the screen,
// regardless of the used destination register
TevStageCombiner::ColorCombiner last_cc;
TevStageCombiner::AlphaCombiner last_ac;
last_cc.hex = uid_data->stagehash[uid_data->genMode_numtevstages].cc;
last_ac.hex = uid_data->stagehash[uid_data->genMode_numtevstages].ac;
if (last_cc.dest != 0)
{
out.Write("\tprev.rgb = %s;\n", tevCOutputTable[last_cc.dest]);
}
if (last_ac.dest != 0)
{
out.Write("\tprev.a = %s;\n", tevAOutputTable[last_ac.dest]);
}
}
out.Write("\tprev = prev & 255;\n");
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
// (in this case we need to write a depth value if depth test passes regardless of the alpha
// testing result)
if (uid_data->Pretest == AlphaTest::UNDETERMINED ||
(uid_data->Pretest == AlphaTest::FAIL && uid_data->late_ztest))
WriteAlphaTest(out, uid_data, ApiType, uid_data->per_pixel_depth);
if (uid_data->zfreeze)
{
out.SetConstantsUsed(C_ZSLOPE, C_ZSLOPE);
out.SetConstantsUsed(C_EFBSCALE, C_EFBSCALE);
out.Write("\tfloat2 screenpos = rawpos.xy * " I_EFBSCALE ".xy;\n");
// Opengl has reversed vertical screenspace coordinates
if (ApiType == APIType::OpenGL)
out.Write("\tscreenpos.y = %i.0 - screenpos.y;\n", EFB_HEIGHT);
out.Write("\tint zCoord = int(" I_ZSLOPE ".z + " I_ZSLOPE ".x * screenpos.x + " I_ZSLOPE
".y * screenpos.y);\n");
}
else if (!uid_data->fast_depth_calc)
{
// FastDepth means to trust the depth generated in perspective division.
// It should be correct, but it seems not to be as accurate as required. TODO: Find out why!
// For disabled FastDepth we just calculate the depth value again.
// The performance impact of this additional calculation doesn't matter, but it prevents
// the host GPU driver from performing any early depth test optimizations.
out.SetConstantsUsed(C_ZBIAS + 1, C_ZBIAS + 1);
// the screen space depth value = far z + (clip z / clip w) * z range
out.Write("\tint zCoord = " I_ZBIAS "[1].x + int((clipPos.z / clipPos.w) * float(" I_ZBIAS
"[1].y));\n");
}
else
{
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
out.Write("\tint zCoord = int((1.0 - rawpos.z) * 16777216.0);\n");
else
out.Write("\tint zCoord = int(rawpos.z * 16777216.0);\n");
}
out.Write("\tzCoord = clamp(zCoord, 0, 0xFFFFFF);\n");
// depth texture can safely be ignored if the result won't be written to the depth buffer
// (early_ztest) and isn't used for fog either
const bool skip_ztexture = !uid_data->per_pixel_depth && !uid_data->fog_fsel;
// Note: z-textures are not written to depth buffer if early depth test is used
if (uid_data->per_pixel_depth && uid_data->early_ztest)
{
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
else
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
}
// Note: depth texture output is only written to depth buffer if late depth test is used
// theoretical final depth value is used for fog calculation, though, so we have to emulate
// ztextures anyway
if (uid_data->ztex_op != ZTEXTURE_DISABLE && !skip_ztexture)
{
// use the texture input of the last texture stage (textemp), hopefully this has been read and
// is in correct format...
out.SetConstantsUsed(C_ZBIAS, C_ZBIAS + 1);
out.Write("\tzCoord = idot(" I_ZBIAS "[0].xyzw, textemp.xyzw) + " I_ZBIAS "[1].w %s;\n",
(uid_data->ztex_op == ZTEXTURE_ADD) ? "+ zCoord" : "");
out.Write("\tzCoord = zCoord & 0xFFFFFF;\n");
}
if (uid_data->per_pixel_depth && uid_data->late_ztest)
{
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
else
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
}
// No dithering for RGB8 mode
if (uid_data->dither)
{
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
// Here the matrix is encoded into the two factor constants
out.Write("\tint2 dither = int2(rawpos.xy) & 1;\n");
out.Write("\tprev.rgb = (prev.rgb - (prev.rgb >> 6)) + abs(dither.y * 3 - dither.x * 2);\n");
}
if (uid_data->dstAlphaMode != DSTALPHA_ALPHA_PASS)
WriteFog(out, uid_data);
// Write the color and alpha values to the framebuffer
WriteColor(out, uid_data);
if (uid_data->bounding_box)
{
const char* atomic_op =
(ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) ? "atomic" : "Interlocked";
out.Write("\tif(bbox_data[0] > int(rawpos.x)) %sMin(bbox_data[0], int(rawpos.x));\n"
"\tif(bbox_data[1] < int(rawpos.x)) %sMax(bbox_data[1], int(rawpos.x));\n"
"\tif(bbox_data[2] > int(rawpos.y)) %sMin(bbox_data[2], int(rawpos.y));\n"
"\tif(bbox_data[3] < int(rawpos.y)) %sMax(bbox_data[3], int(rawpos.y));\n",
atomic_op, atomic_op, atomic_op, atomic_op);
}
out.Write("}\n");
return out;
}
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
APIType ApiType)
{
auto& stage = uid_data->stagehash[n];
out.Write("\n\t// TEV stage %d\n", n);
// HACK to handle cases where the tex gen is not enabled
u32 texcoord = stage.tevorders_texcoord;
bool bHasTexCoord = texcoord < uid_data->genMode_numtexgens;
if (!bHasTexCoord)
texcoord = 0;
if (stage.hasindstage)
{
TevStageIndirect tevind;
tevind.hex = stage.tevind;
out.Write("\t// indirect op\n");
// perform the indirect op on the incoming regular coordinates using iindtex%d as the offset
// coords
if (tevind.bs != ITBA_OFF)
{
const char* tevIndAlphaSel[] = {"", "x", "y", "z"};
const char* tevIndAlphaMask[] = {"248", "224", "240",
"248"}; // 0b11111000, 0b11100000, 0b11110000, 0b11111000
out.Write("alphabump = iindtex%d.%s & %s;\n", tevind.bt, tevIndAlphaSel[tevind.bs],
tevIndAlphaMask[tevind.fmt]);
}
else
{
// TODO: Should we reset alphabump to 0 here?
}
if (tevind.mid != 0)
{
// format
const char* tevIndFmtMask[] = {"255", "31", "15", "7"};
out.Write("\tint3 iindtevcrd%d = iindtex%d & %s;\n", n, tevind.bt, tevIndFmtMask[tevind.fmt]);
// bias - TODO: Check if this needs to be this complicated..
const char* tevIndBiasField[] = {"", "x", "y", "xy",
"z", "xz", "yz", "xyz"}; // indexed by bias
const char* tevIndBiasAdd[] = {"-128", "1", "1", "1"}; // indexed by fmt
if (tevind.bias == ITB_S || tevind.bias == ITB_T || tevind.bias == ITB_U)
out.Write("\tiindtevcrd%d.%s += int(%s);\n", n, tevIndBiasField[tevind.bias],
tevIndBiasAdd[tevind.fmt]);
else if (tevind.bias == ITB_ST || tevind.bias == ITB_SU || tevind.bias == ITB_TU)
out.Write("\tiindtevcrd%d.%s += int2(%s, %s);\n", n, tevIndBiasField[tevind.bias],
tevIndBiasAdd[tevind.fmt], tevIndBiasAdd[tevind.fmt]);
else if (tevind.bias == ITB_STU)
out.Write("\tiindtevcrd%d.%s += int3(%s, %s, %s);\n", n, tevIndBiasField[tevind.bias],
tevIndBiasAdd[tevind.fmt], tevIndBiasAdd[tevind.fmt], tevIndBiasAdd[tevind.fmt]);
// multiply by offset matrix and scale - calculations are likely to overflow badly,
// yet it works out since we only care about the lower 23 bits (+1 sign bit) of the result
if (tevind.mid <= 3)
{
int mtxidx = 2 * (tevind.mid - 1);
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans%d = int2(idot(" I_INDTEXMTX
"[%d].xyz, iindtevcrd%d), idot(" I_INDTEXMTX "[%d].xyz, iindtevcrd%d)) >> 3;\n",
n, mtxidx, n, mtxidx + 1, n);
// TODO: should use a shader uid branch for this for better performance
out.Write("\tif (" I_INDTEXMTX "[%d].w >= 0) indtevtrans%d >>= " I_INDTEXMTX "[%d].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans%d <<= (-" I_INDTEXMTX "[%d].w);\n", n, mtxidx);
}
else if (tevind.mid <= 7 && bHasTexCoord)
{ // s matrix
_assert_(tevind.mid >= 5);
int mtxidx = 2 * (tevind.mid - 5);
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans%d = int2(fixpoint_uv%d * iindtevcrd%d.xx) >> 8;\n", n,
texcoord, n);
out.Write("\tif (" I_INDTEXMTX "[%d].w >= 0) indtevtrans%d >>= " I_INDTEXMTX "[%d].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans%d <<= (-" I_INDTEXMTX "[%d].w);\n", n, mtxidx);
}
else if (tevind.mid <= 11 && bHasTexCoord)
{ // t matrix
_assert_(tevind.mid >= 9);
int mtxidx = 2 * (tevind.mid - 9);
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans%d = int2(fixpoint_uv%d * iindtevcrd%d.yy) >> 8;\n", n,
texcoord, n);
out.Write("\tif (" I_INDTEXMTX "[%d].w >= 0) indtevtrans%d >>= " I_INDTEXMTX "[%d].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans%d <<= (-" I_INDTEXMTX "[%d].w);\n", n, mtxidx);
}
else
{
out.Write("\tint2 indtevtrans%d = int2(0, 0);\n", n);
}
}
else
{
out.Write("\tint2 indtevtrans%d = int2(0, 0);\n", n);
}
// ---------
// Wrapping
// ---------
const char* tevIndWrapStart[] = {
"0", "(256<<7)", "(128<<7)", "(64<<7)",
"(32<<7)", "(16<<7)", "1"}; // TODO: Should the last one be 1 or (1<<7)?
// wrap S
if (tevind.sw == ITW_OFF)
out.Write("\twrappedcoord.x = fixpoint_uv%d.x;\n", texcoord);
else if (tevind.sw == ITW_0)
out.Write("\twrappedcoord.x = 0;\n");
else
out.Write("\twrappedcoord.x = fixpoint_uv%d.x & (%s - 1);\n", texcoord,
tevIndWrapStart[tevind.sw]);
// wrap T
if (tevind.tw == ITW_OFF)
out.Write("\twrappedcoord.y = fixpoint_uv%d.y;\n", texcoord);
else if (tevind.tw == ITW_0)
out.Write("\twrappedcoord.y = 0;\n");
else
out.Write("\twrappedcoord.y = fixpoint_uv%d.y & (%s - 1);\n", texcoord,
tevIndWrapStart[tevind.tw]);
if (tevind.fb_addprev) // add previous tevcoord
out.Write("\ttevcoord.xy += wrappedcoord + indtevtrans%d;\n", n);
else
out.Write("\ttevcoord.xy = wrappedcoord + indtevtrans%d;\n", n);
// Emulate s24 overflows
out.Write("\ttevcoord.xy = (tevcoord.xy << 8) >> 8;\n");
}
TevStageCombiner::ColorCombiner cc;
TevStageCombiner::AlphaCombiner ac;
cc.hex = stage.cc;
ac.hex = stage.ac;
if (cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC || cc.b == TEVCOLORARG_RASA ||
cc.b == TEVCOLORARG_RASC || cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC ||
cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC || ac.a == TEVALPHAARG_RASA ||
ac.b == TEVALPHAARG_RASA || ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
// Generate swizzle string to represent the Ras color channel swapping
char rasswap[5] = {"rgba"[stage.tevksel_swap1a], "rgba"[stage.tevksel_swap2a],
"rgba"[stage.tevksel_swap1b], "rgba"[stage.tevksel_swap2b], '\0'};
out.Write("\trastemp = %s.%s;\n", tevRasTable[stage.tevorders_colorchan], rasswap);
}
if (stage.tevorders_enable)
{
// Generate swizzle string to represent the texture color channel swapping
char texswap[5] = {"rgba"[stage.tevksel_swap1c], "rgba"[stage.tevksel_swap2c],
"rgba"[stage.tevksel_swap1d], "rgba"[stage.tevksel_swap2d], '\0'};
if (!stage.hasindstage)
{
// calc tevcord
if (bHasTexCoord)
out.Write("\ttevcoord.xy = fixpoint_uv%d;\n", texcoord);
else
out.Write("\ttevcoord.xy = int2(0, 0);\n");
}
out.Write("\ttextemp = ");
SampleTexture(out, "float2(tevcoord.xy)", texswap, stage.tevorders_texmap, uid_data->stereo,
ApiType);
}
else
{
out.Write("\ttextemp = int4(255, 255, 255, 255);\n");
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST || cc.c == TEVCOLORARG_KONST ||
cc.d == TEVCOLORARG_KONST || ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST ||
ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
out.Write("\tkonsttemp = int4(%s, %s);\n", tevKSelTableC[stage.tevksel_kc],
tevKSelTableA[stage.tevksel_ka]);
if (stage.tevksel_kc > 7)
out.SetConstantsUsed(C_KCOLORS + ((stage.tevksel_kc - 0xc) % 4),
C_KCOLORS + ((stage.tevksel_kc - 0xc) % 4));
if (stage.tevksel_ka > 7)
out.SetConstantsUsed(C_KCOLORS + ((stage.tevksel_ka - 0xc) % 4),
C_KCOLORS + ((stage.tevksel_ka - 0xc) % 4));
}
if (cc.d == TEVCOLORARG_C0 || cc.d == TEVCOLORARG_A0 || ac.d == TEVALPHAARG_A0)
out.SetConstantsUsed(C_COLORS + 1, C_COLORS + 1);
if (cc.d == TEVCOLORARG_C1 || cc.d == TEVCOLORARG_A1 || ac.d == TEVALPHAARG_A1)
out.SetConstantsUsed(C_COLORS + 2, C_COLORS + 2);
if (cc.d == TEVCOLORARG_C2 || cc.d == TEVCOLORARG_A2 || ac.d == TEVALPHAARG_A2)
out.SetConstantsUsed(C_COLORS + 3, C_COLORS + 3);
if (cc.dest >= GX_TEVREG0)
out.SetConstantsUsed(C_COLORS + cc.dest, C_COLORS + cc.dest);
if (ac.dest >= GX_TEVREG0)
out.SetConstantsUsed(C_COLORS + ac.dest, C_COLORS + ac.dest);
out.Write("\ttevin_a = int4(%s, %s)&int4(255, 255, 255, 255);\n", tevCInputTable[cc.a],
tevAInputTable[ac.a]);
out.Write("\ttevin_b = int4(%s, %s)&int4(255, 255, 255, 255);\n", tevCInputTable[cc.b],
tevAInputTable[ac.b]);
out.Write("\ttevin_c = int4(%s, %s)&int4(255, 255, 255, 255);\n", tevCInputTable[cc.c],
tevAInputTable[ac.c]);
out.Write("\ttevin_d = int4(%s, %s);\n", tevCInputTable[cc.d], tevAInputTable[ac.d]);
out.Write("\t// color combine\n");
out.Write("\t%s = clamp(", tevCOutputTable[cc.dest]);
if (cc.bias != TEVBIAS_COMPARE)
{
WriteTevRegular(out, "rgb", cc.bias, cc.op, cc.clamp, cc.shift);
}
else
{
const char* function_table[] = {
"((tevin_a.r > tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // TEVCMP_R8_GT
"((tevin_a.r == tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // TEVCMP_R8_EQ
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.rgb : "
"int3(0,0,0))", // TEVCMP_GR16_GT
"((idot(tevin_a.rgb, comp16) == idot(tevin_b.rgb, comp16)) ? tevin_c.rgb : "
"int3(0,0,0))", // TEVCMP_GR16_EQ
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.rgb : "
"int3(0,0,0))", // TEVCMP_BGR24_GT
"((idot(tevin_a.rgb, comp24) == idot(tevin_b.rgb, comp24)) ? tevin_c.rgb : "
"int3(0,0,0))", // TEVCMP_BGR24_EQ
"(max(sign(tevin_a.rgb - tevin_b.rgb), int3(0,0,0)) * tevin_c.rgb)", // TEVCMP_RGB8_GT
"((int3(1,1,1) - sign(abs(tevin_a.rgb - tevin_b.rgb))) * tevin_c.rgb)" // TEVCMP_RGB8_EQ
};
int mode = (cc.shift << 1) | cc.op;
out.Write(" tevin_d.rgb + ");
out.Write("%s", function_table[mode]);
}
if (cc.clamp)
out.Write(", int3(0,0,0), int3(255,255,255))");
else
out.Write(", int3(-1024,-1024,-1024), int3(1023,1023,1023))");
out.Write(";\n");
out.Write("\t// alpha combine\n");
out.Write("\t%s = clamp(", tevAOutputTable[ac.dest]);
if (ac.bias != TEVBIAS_COMPARE)
{
WriteTevRegular(out, "a", ac.bias, ac.op, ac.clamp, ac.shift);
}
else
{
const char* function_table[] = {
"((tevin_a.r > tevin_b.r) ? tevin_c.a : 0)", // TEVCMP_R8_GT
"((tevin_a.r == tevin_b.r) ? tevin_c.a : 0)", // TEVCMP_R8_EQ
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // TEVCMP_GR16_GT
"((idot(tevin_a.rgb, comp16) == idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // TEVCMP_GR16_EQ
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // TEVCMP_BGR24_GT
"((idot(tevin_a.rgb, comp24) == idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // TEVCMP_BGR24_EQ
"((tevin_a.a > tevin_b.a) ? tevin_c.a : 0)", // TEVCMP_A8_GT
"((tevin_a.a == tevin_b.a) ? tevin_c.a : 0)" // TEVCMP_A8_EQ
};
int mode = (ac.shift << 1) | ac.op;
out.Write(" tevin_d.a + ");
out.Write("%s", function_table[mode]);
}
if (ac.clamp)
out.Write(", 0, 255)");
else
out.Write(", -1024, 1023)");
out.Write(";\n");
}
static void WriteTevRegular(ShaderCode& out, const char* components, int bias, int op, int clamp,
int shift)
{
const char* tevScaleTableLeft[] = {
"", // SCALE_1
" << 1", // SCALE_2
" << 2", // SCALE_4
"", // DIVIDE_2
};
const char* tevScaleTableRight[] = {
"", // SCALE_1
"", // SCALE_2
"", // SCALE_4
" >> 1", // DIVIDE_2
};
const char* tevLerpBias[] = // indexed by 2*op+(shift==3)
{
"", " + 128", "", " + 127",
};
const char* tevBiasTable[] = {
"", // ZERO,
" + 128", // ADDHALF,
" - 128", // SUBHALF,
"",
};
const char* tevOpTable[] = {
"+", // TEVOP_ADD = 0,
"-", // TEVOP_SUB = 1,
};
// Regular TEV stage: (d + bias + lerp(a,b,c)) * scale
// The GameCube/Wii GPU uses a very sophisticated algorithm for scale-lerping:
// - c is scaled from 0..255 to 0..256, which allows dividing the result by 256 instead of 255
// - if scale is bigger than one, it is moved inside the lerp calculation for increased accuracy
// - a rounding bias is added before dividing by 256
out.Write("(((tevin_d.%s%s)%s)", components, tevBiasTable[bias], tevScaleTableLeft[shift]);
out.Write(" %s ", tevOpTable[op]);
out.Write("(((((tevin_a.%s<<8) + (tevin_b.%s-tevin_a.%s)*(tevin_c.%s+(tevin_c.%s>>7)))%s)%s)>>8)",
components, components, components, components, components, tevScaleTableLeft[shift],
tevLerpBias[2 * op + (shift != 3)]);
out.Write(")%s", tevScaleTableRight[shift]);
}
static void SampleTexture(ShaderCode& out, const char* texcoords, const char* texswap, int texmap,
bool stereo, APIType ApiType)
{
out.SetConstantsUsed(C_TEXDIMS + texmap, C_TEXDIMS + texmap);
if (ApiType == APIType::D3D)
{
out.Write("iround(255.0 * Tex[%d].Sample(samp[%d], float3(%s.xy * " I_TEXDIMS
"[%d].xy, %s))).%s;\n",
texmap, texmap, texcoords, texmap, stereo ? "layer" : "0.0", texswap);
}
else if (ApiType == APIType::Vulkan)
{
out.Write("iround(255.0 * texture(samp%d, float3(%s.xy * " I_TEXDIMS "[%d].xy, %s))).%s;\n",
texmap, texcoords, texmap, stereo ? "layer" : "0.0", texswap);
}
else
{
out.Write("iround(255.0 * texture(samp[%d], float3(%s.xy * " I_TEXDIMS "[%d].xy, %s))).%s;\n",
texmap, texcoords, texmap, stereo ? "layer" : "0.0", texswap);
}
}
static const char* tevAlphaFuncsTable[] = {
"(false)", // NEVER
"(prev.a < %s)", // LESS
"(prev.a == %s)", // EQUAL
"(prev.a <= %s)", // LEQUAL
"(prev.a > %s)", // GREATER
"(prev.a != %s)", // NEQUAL
"(prev.a >= %s)", // GEQUAL
"(true)" // ALWAYS
};
static const char* tevAlphaFunclogicTable[] = {
" && ", // and
" || ", // or
" != ", // xor
" == " // xnor
};
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType ApiType,
bool per_pixel_depth)
{
static const char* alphaRef[2] = {I_ALPHA ".r", I_ALPHA ".g"};
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKENNEGATEDBOOLEAN))
out.Write("\tif(( ");
else
out.Write("\tif(!( ");
// Lookup the first component from the alpha function table
int compindex = uid_data->alpha_test_comp0;
out.Write(tevAlphaFuncsTable[compindex], alphaRef[0]);
out.Write("%s", tevAlphaFunclogicTable[uid_data->alpha_test_logic]); // lookup the logic op
// Lookup the second component from the alpha function table
compindex = uid_data->alpha_test_comp1;
out.Write(tevAlphaFuncsTable[compindex], alphaRef[1]);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKENNEGATEDBOOLEAN))
out.Write(") == false) {\n");
else
out.Write(")) {\n");
out.Write("\t\tocol0 = float4(0.0, 0.0, 0.0, 0.0);\n");
out.Write("\t\tocol1 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (per_pixel_depth)
{
out.Write("\t\tdepth = %s;\n",
(ApiType == APIType::D3D || ApiType == APIType::Vulkan) ? "0.0" : "1.0");
}
// ZCOMPLOC HACK:
if (!uid_data->alpha_test_use_zcomploc_hack)
{
out.Write("\t\tdiscard;\n");
if (ApiType != APIType::D3D)
out.Write("\t\treturn;\n");
}
out.Write("\t}\n");
}
static const char* tevFogFuncsTable[] = {
"", // No Fog
"", // ?
"", // Linear
"", // ?
"\tfog = 1.0 - exp2(-8.0 * fog);\n", // exp
"\tfog = 1.0 - exp2(-8.0 * fog * fog);\n", // exp2
"\tfog = exp2(-8.0 * (1.0 - fog));\n", // backward exp
"\tfog = 1.0 - fog;\n fog = exp2(-8.0 * fog * fog);\n" // backward exp2
};
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data)
{
if (uid_data->fog_fsel == 0)
return; // no Fog
out.SetConstantsUsed(C_FOGCOLOR, C_FOGCOLOR);
out.SetConstantsUsed(C_FOGI, C_FOGI);
out.SetConstantsUsed(C_FOGF, C_FOGF + 1);
if (uid_data->fog_proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF)
// TODO: Verify that we want to drop lower bits here! (currently taken over from software
// renderer)
// Maybe we want to use "ze = (A << B_SHF)/((B << B_SHF) - Zs)" instead?
// That's equivalent, but keeps the lower bits of Zs.
out.Write("\tfloat ze = (" I_FOGF "[1].x * 16777216.0) / float(" I_FOGI
".y - (zCoord >> " I_FOGI ".w));\n");
}
else
{
// orthographic
// ze = a*Zs (here, no B_SHF)
out.Write("\tfloat ze = " I_FOGF "[1].x * float(zCoord) / 16777216.0;\n");
}
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
// TODO Instead of this theoretical calculation, we should use the
// coefficient table given in the fog range BP registers!
if (uid_data->fog_RangeBaseEnabled)
{
out.SetConstantsUsed(C_FOGF, C_FOGF);
out.Write("\tfloat x_adjust = (2.0 * (rawpos.x / " I_FOGF "[0].y)) - 1.0 - " I_FOGF "[0].x;\n");
out.Write("\tx_adjust = sqrt(x_adjust * x_adjust + " I_FOGF "[0].z * " I_FOGF "[0].z) / " I_FOGF
"[0].z;\n");
out.Write("\tze *= x_adjust;\n");
}
out.Write("\tfloat fog = clamp(ze - " I_FOGF "[1].z, 0.0, 1.0);\n");
if (uid_data->fog_fsel > 3)
{
out.Write("%s", tevFogFuncsTable[uid_data->fog_fsel]);
}
else
{
if (uid_data->fog_fsel != 2)
WARN_LOG(VIDEO, "Unknown Fog Type! %08x", uid_data->fog_fsel);
}
out.Write("\tint ifog = iround(fog * 256.0);\n");
out.Write("\tprev.rgb = (prev.rgb * (256 - ifog) + " I_FOGCOLOR ".rgb * ifog) >> 8;\n");
}
static void WriteColor(ShaderCode& out, const pixel_shader_uid_data* uid_data)
{
if (uid_data->rgba6_format)
out.Write("\tocol0.rgb = float3(prev.rgb >> 2) / 63.0;\n");
else
out.Write("\tocol0.rgb = float3(prev.rgb) / 255.0;\n");
// Colors will be blended against the 8-bit alpha from ocol1 and
// the 6-bit alpha from ocol0 will be written to the framebuffer
if (uid_data->dstAlphaMode == DSTALPHA_NONE)
{
out.Write("\tocol0.a = float(prev.a >> 2) / 63.0;\n");
out.Write("\tocol1.a = float(prev.a) / 255.0;\n");
}
else
{
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
out.Write("\tocol0.a = float(" I_ALPHA ".a >> 2) / 63.0;\n");
// Use dual-source color blending to perform dst alpha in a single pass
if (uid_data->dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
out.Write("\tocol1.a = float(prev.a) / 255.0;\n");
else
out.Write("\tocol1.a = float(" I_ALPHA ".a) / 255.0;\n");
}
}