829 lines
29 KiB
C++

// Copyright (C) 2003-2009 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "Tev.h"
#include "EfbInterface.h"
#include "TextureSampler.h"
#include "SWStatistics.h"
#include "SWVideoConfig.h"
#include "DebugUtil.h"
#include <math.h>
#ifdef _DEBUG
#define ALLOW_TEV_DUMPS 1
#else
#define ALLOW_TEV_DUMPS 0
#endif
void Tev::Init()
{
FixedConstants[0] = 0;
FixedConstants[1] = 31;
FixedConstants[2] = 63;
FixedConstants[3] = 95;
FixedConstants[4] = 127;
FixedConstants[5] = 159;
FixedConstants[6] = 191;
FixedConstants[7] = 223;
FixedConstants[8] = 255;
for (int i = 0; i < 4; i++)
Zero16[i] = 0;
m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C]; m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C]; m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C]; // prev.rgb
m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C]; // prev.aaa
m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C]; m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C]; m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C]; // c0.rgb
m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C]; // c0.aaa
m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C]; m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C]; m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C]; // c1.rgb
m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C]; // c1.aaa
m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C]; m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C]; m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C]; // c2.rgb
m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C]; // c2.aaa
m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C]; m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C]; m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C]; // tex.rgb
m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C]; // tex.aaa
m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C]; m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C]; m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C]; // ras.rgb
m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C]; // ras.rgb
m_ColorInputLUT[12][RED_INP] = &FixedConstants[8]; m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8]; m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8]; // one
m_ColorInputLUT[13][RED_INP] = &FixedConstants[4]; m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4]; m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4]; // half
m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C]; m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C]; m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C]; // konst
m_ColorInputLUT[15][RED_INP] = &FixedConstants[0]; m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0]; m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0]; // zero
m_AlphaInputLUT[0] = Reg[0]; // prev
m_AlphaInputLUT[1] = Reg[1]; // c0
m_AlphaInputLUT[2] = Reg[2]; // c1
m_AlphaInputLUT[3] = Reg[3]; // c2
m_AlphaInputLUT[4] = TexColor; // tex
m_AlphaInputLUT[5] = RasColor; // ras
m_AlphaInputLUT[6] = StageKonst; // konst
m_AlphaInputLUT[7] = Zero16; // zero
for (int comp = 0; comp < 4; comp++)
{
m_KonstLUT[0][comp] = &FixedConstants[8];
m_KonstLUT[1][comp] = &FixedConstants[7];
m_KonstLUT[2][comp] = &FixedConstants[6];
m_KonstLUT[3][comp] = &FixedConstants[5];
m_KonstLUT[4][comp] = &FixedConstants[4];
m_KonstLUT[5][comp] = &FixedConstants[3];
m_KonstLUT[6][comp] = &FixedConstants[2];
m_KonstLUT[7][comp] = &FixedConstants[1];
m_KonstLUT[12][comp] = &KonstantColors[0][comp];
m_KonstLUT[13][comp] = &KonstantColors[1][comp];
m_KonstLUT[14][comp] = &KonstantColors[2][comp];
m_KonstLUT[15][comp] = &KonstantColors[3][comp];
m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
}
m_BiasLUT[0] = 0;
m_BiasLUT[1] = 128;
m_BiasLUT[2] = -128;
m_BiasLUT[3] = 0;
m_ScaleLShiftLUT[0] = 0;
m_ScaleLShiftLUT[1] = 1;
m_ScaleLShiftLUT[2] = 2;
m_ScaleLShiftLUT[3] = 0;
m_ScaleRShiftLUT[0] = 0;
m_ScaleRShiftLUT[1] = 0;
m_ScaleRShiftLUT[2] = 0;
m_ScaleRShiftLUT[3] = 1;
}
inline s16 Clamp255(s16 in)
{
return in>255?255:(in<0?0:in);
}
inline s16 Clamp1024(s16 in)
{
return in>1023?1023:(in<-1024?-1024:in);
}
void Tev::SetRasColor(int colorChan, int swaptable)
{
switch(colorChan)
{
case 0: // Color0
{
u8 *color = Color[0];
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
swaptable++;
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
}
break;
case 1: // Color1
{
u8 *color = Color[1];
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
swaptable++;
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
}
break;
case 5: // alpha bump
{
for(int i = 0; i < 4; i++)
RasColor[i] = AlphaBump;
}
break;
case 6: // alpha bump normalized
{
u8 normalized = AlphaBump | AlphaBump >> 5;
for(int i = 0; i < 4; i++)
RasColor[i] = normalized;
}
break;
default: // zero
{
for(int i = 0; i < 4; i++)
RasColor[i] = 0;
}
break;
}
}
void Tev::DrawColorRegular(TevStageCombiner::ColorCombiner &cc)
{
InputRegType InputReg;
for (int i = 0; i < 3; i++)
{
InputReg.a = *m_ColorInputLUT[cc.a][i];
InputReg.b = *m_ColorInputLUT[cc.b][i];
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
u16 c = InputReg.c + (InputReg.c >> 7);
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
temp = cc.op?(-temp >> 8):(temp >> 8);
s32 result = InputReg.d + temp + m_BiasLUT[cc.bias];
result = result << m_ScaleLShiftLUT[cc.shift];
result = result >> m_ScaleRShiftLUT[cc.shift];
Reg[cc.dest][BLU_C + i] = result;
}
}
void Tev::DrawColorCompare(TevStageCombiner::ColorCombiner &cc)
{
int cmp = (cc.shift<<1)|cc.op|8; // comparemode stored here
u32 a;
u32 b;
InputRegType InputReg;
switch(cmp) {
case TEVCMP_R8_GT:
{
a = *m_ColorInputLUT[cc.a][RED_INP] & 0xff;
b = *m_ColorInputLUT[cc.b][RED_INP] & 0xff;
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_R8_EQ:
{
a = *m_ColorInputLUT[cc.a][RED_INP] & 0xff;
b = *m_ColorInputLUT[cc.b][RED_INP] & 0xff;
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_GR16_GT:
{
a = ((*m_ColorInputLUT[cc.a][GRN_INP] & 0xff) << 8) | (*m_ColorInputLUT[cc.a][RED_INP] & 0xff);
b = ((*m_ColorInputLUT[cc.b][GRN_INP] & 0xff) << 8) | (*m_ColorInputLUT[cc.b][RED_INP] & 0xff);
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_GR16_EQ:
{
a = ((*m_ColorInputLUT[cc.a][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.a][RED_INP] & 0xff);
b = ((*m_ColorInputLUT[cc.b][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.b][RED_INP] & 0xff);
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_BGR24_GT:
{
a = ((*m_ColorInputLUT[cc.a][BLU_C] & 0xff) << 16) | ((*m_ColorInputLUT[cc.a][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.a][RED_INP] & 0xff);
b = ((*m_ColorInputLUT[cc.b][BLU_C] & 0xff) << 16) | ((*m_ColorInputLUT[cc.b][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.b][RED_INP] & 0xff);
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_BGR24_EQ:
{
a = ((*m_ColorInputLUT[cc.a][BLU_C] & 0xff) << 16) | ((*m_ColorInputLUT[cc.a][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.a][RED_INP] & 0xff);
b = ((*m_ColorInputLUT[cc.b][BLU_C] & 0xff) << 16) | ((*m_ColorInputLUT[cc.b][GRN_C] & 0xff) << 8) | (*m_ColorInputLUT[cc.b][RED_INP] & 0xff);
for (int i = 0; i < 3; i++)
{
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
}
break;
case TEVCMP_RGB8_GT:
for (int i = 0; i < 3; i++)
{
InputReg.a = *m_ColorInputLUT[cc.a][i];
InputReg.b = *m_ColorInputLUT[cc.b][i];
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((InputReg.a > InputReg.b) ? InputReg.c : 0);
}
break;
case TEVCMP_RGB8_EQ:
for (int i = 0; i < 3; i++)
{
InputReg.a = *m_ColorInputLUT[cc.a][i];
InputReg.b = *m_ColorInputLUT[cc.b][i];
InputReg.c = *m_ColorInputLUT[cc.c][i];
InputReg.d = *m_ColorInputLUT[cc.d][i];
Reg[cc.dest][BLU_C + i] = InputReg.d + ((InputReg.a == InputReg.b) ? InputReg.c : 0);
}
break;
}
}
void Tev::DrawAlphaRegular(TevStageCombiner::AlphaCombiner &ac)
{
InputRegType InputReg;
InputReg.a = m_AlphaInputLUT[ac.a][ALP_C];
InputReg.b = m_AlphaInputLUT[ac.b][ALP_C];
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
u16 c = InputReg.c + (InputReg.c >> 7);
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
temp = ac.op?(-temp >> 8):(temp >> 8);
s32 result = InputReg.d + temp + m_BiasLUT[ac.bias];
result = result << m_ScaleLShiftLUT[ac.shift];
result = result >> m_ScaleRShiftLUT[ac.shift];
Reg[ac.dest][ALP_C] = result;
}
void Tev::DrawAlphaCompare(TevStageCombiner::AlphaCombiner &ac)
{
int cmp = (ac.shift<<1)|ac.op|8; // comparemode stored here
u32 a;
u32 b;
InputRegType InputReg;
switch(cmp) {
case TEVCMP_R8_GT:
{
a = m_AlphaInputLUT[ac.a][RED_C] & 0xff;
b = m_AlphaInputLUT[ac.b][RED_C] & 0xff;
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
break;
case TEVCMP_R8_EQ:
{
a = m_AlphaInputLUT[ac.a][RED_C] & 0xff;
b = m_AlphaInputLUT[ac.b][RED_C] & 0xff;
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
break;
case TEVCMP_GR16_GT:
{
a = ((m_AlphaInputLUT[ac.a][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.a][RED_C] & 0xff);
b = ((m_AlphaInputLUT[ac.b][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.b][RED_C] & 0xff);
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
break;
case TEVCMP_GR16_EQ:
{
a = ((m_AlphaInputLUT[ac.a][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.a][RED_C] & 0xff);
b = ((m_AlphaInputLUT[ac.b][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.b][RED_C] & 0xff);
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
break;
case TEVCMP_BGR24_GT:
{
a = ((m_AlphaInputLUT[ac.a][BLU_C] & 0xff) << 16) | ((m_AlphaInputLUT[ac.a][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.a][RED_C] & 0xff);
b = ((m_AlphaInputLUT[ac.b][BLU_C] & 0xff) << 16) | ((m_AlphaInputLUT[ac.b][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.b][RED_C] & 0xff);
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a > b) ? InputReg.c : 0);
}
break;
case TEVCMP_BGR24_EQ:
{
a = ((m_AlphaInputLUT[ac.a][BLU_C] & 0xff) << 16) | ((m_AlphaInputLUT[ac.a][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.a][RED_C] & 0xff);
b = ((m_AlphaInputLUT[ac.b][BLU_C] & 0xff) << 16) | ((m_AlphaInputLUT[ac.b][GRN_C] & 0xff) << 8) | (m_AlphaInputLUT[ac.b][RED_C] & 0xff);
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((a == b) ? InputReg.c : 0);
}
break;
case TEVCMP_A8_GT:
{
InputReg.a = m_AlphaInputLUT[ac.a][ALP_C];
InputReg.b = m_AlphaInputLUT[ac.b][ALP_C];
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((InputReg.a > InputReg.b) ? InputReg.c : 0);
}
break;
case TEVCMP_A8_EQ:
{
InputReg.a = m_AlphaInputLUT[ac.a][ALP_C];
InputReg.b = m_AlphaInputLUT[ac.b][ALP_C];
InputReg.c = m_AlphaInputLUT[ac.c][ALP_C];
InputReg.d = m_AlphaInputLUT[ac.d][ALP_C];
Reg[ac.dest][ALP_C] = InputReg.d + ((InputReg.a == InputReg.b) ? InputReg.c : 0);
}
break;
}
}
static bool AlphaCompare(int alpha, int ref, int comp)
{
switch(comp) {
case ALPHACMP_ALWAYS: return true;
case ALPHACMP_NEVER: return false;
case ALPHACMP_LEQUAL: return alpha <= ref;
case ALPHACMP_LESS: return alpha < ref;
case ALPHACMP_GEQUAL: return alpha >= ref;
case ALPHACMP_GREATER: return alpha > ref;
case ALPHACMP_EQUAL: return alpha == ref;
case ALPHACMP_NEQUAL: return alpha != ref;
}
return true;
}
static bool AlphaTest(int alpha)
{
bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);
switch (bpmem.alpha_test.logic) {
case 0: return comp0 && comp1; // and
case 1: return comp0 || comp1; // or
case 2: return comp0 ^ comp1; // xor
case 3: return !(comp0 ^ comp1); // xnor
}
return true;
}
inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
{
switch (wrapMode) {
case ITW_OFF:
return coord;
case ITW_256:
return (coord % (256 << 7));
case ITW_128:
return (coord % (128 << 7));
case ITW_64:
return (coord % (64 << 7));
case ITW_32:
return (coord % (32 << 7));
case ITW_16:
return (coord % (16 << 7));
case ITW_0:
return 0;
}
return 0;
}
void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
{
TevStageIndirect &indirect = bpmem.tevind[stageNum];
u8 *indmap = IndirectTex[indirect.bt];
s32 indcoord[3];
// alpha bump select
switch (indirect.bs) {
case ITBA_OFF:
AlphaBump = 0;
break;
case ITBA_S:
AlphaBump = indmap[TextureSampler::ALP_SMP];
break;
case ITBA_T:
AlphaBump = indmap[TextureSampler::BLU_SMP];
break;
case ITBA_U:
AlphaBump = indmap[TextureSampler::GRN_SMP];
break;
}
// bias select
s16 biasValue = indirect.fmt==ITF_8?-128:1;
s16 bias[3];
bias[0] = indirect.bias&1?biasValue:0;
bias[1] = indirect.bias&2?biasValue:0;
bias[2] = indirect.bias&4?biasValue:0;
// format
switch(indirect.fmt) {
case ITF_8:
indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
AlphaBump = AlphaBump & 0xf8;
break;
case ITF_5:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
AlphaBump = AlphaBump & 0xe0;
break;
case ITF_4:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
AlphaBump = AlphaBump & 0xf0;
break;
case ITF_3:
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
AlphaBump = AlphaBump & 0xf8;
break;
default:
PanicAlert("Tev::Indirect");
return;
}
s64 indtevtrans[2] = { 0,0 };
// matrix multiply
int indmtxid = indirect.mid & 3;
if (indmtxid)
{
IND_MTX &indmtx = bpmem.indmtx[indmtxid - 1];
int scale = ((u32)indmtx.col0.s0 << 0) |
((u32)indmtx.col1.s1 << 2) |
((u32)indmtx.col2.s2 << 4);
int shift;
switch (indirect.mid & 12) {
case 0:
shift = 3 + (17 - scale);
indtevtrans[0] = indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] + indmtx.col2.me * indcoord[2];
indtevtrans[1] = indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] + indmtx.col2.mf * indcoord[2];
break;
case 4: // s matrix
shift = 8 + (17 - scale);
indtevtrans[0] = s * indcoord[0];
indtevtrans[1] = t * indcoord[0];
break;
case 8: // t matrix
shift = 8 + (17 - scale);
indtevtrans[0] = s * indcoord[1];
indtevtrans[1] = t * indcoord[1];
break;
default:
return;
}
indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
}
if (indirect.fb_addprev)
{
TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
}
else
{
TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
}
}
void Tev::Draw()
{
_assert_(Position[0] >= 0 && Position[0] < EFB_WIDTH);
_assert_(Position[1] >= 0 && Position[1] < EFB_HEIGHT);
INCSTAT(swstats.thisFrame.tevPixelsIn);
for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
{
int stageNum2 = stageNum >> 1;
int stageOdd = stageNum&1;
u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
u32 texmap = bpmem.tevindref.getTexMap(stageNum);
const TEXSCALE& texscale = bpmem.texscale[stageNum2];
s32 scaleS = stageOdd ? texscale.ss1:texscale.ss0;
s32 scaleT = stageOdd ? texscale.ts1:texscale.ts0;
TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
IndirectLod[stageNum], IndirectLinear[stageNum], texmap, IndirectTex[stageNum]);
#if ALLOW_TEV_DUMPS
if (g_SWVideoConfig.bDumpTevStages)
{
u8 stage[4] = { IndirectTex[stageNum][TextureSampler::ALP_SMP],
IndirectTex[stageNum][TextureSampler::BLU_SMP],
IndirectTex[stageNum][TextureSampler::GRN_SMP],
255};
DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
}
#endif
}
for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
{
int stageNum2 = stageNum >> 1;
int stageOdd = stageNum&1;
TwoTevStageOrders &order = bpmem.tevorders[stageNum2];
TevKSel &kSel = bpmem.tevksel[stageNum2];
// stage combiners
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[stageNum].colorC;
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[stageNum].alphaC;
int texcoordSel = order.getTexCoord(stageOdd);
int texmap = order.getTexMap(stageOdd);
Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);
// sample texture
if (order.getEnable(stageOdd))
{
// RGBA
u8 texel[4];
TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum], texmap, texel);
#if ALLOW_TEV_DUMPS
if (g_SWVideoConfig.bDumpTevTextureFetches)
DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
#endif
int swaptable = ac.tswap * 2;
TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
swaptable++;
TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
}
// set konst for this stage
int kc = kSel.getKC(stageOdd);
int ka = kSel.getKA(stageOdd);
StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);
// set color
SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);
// combine inputs
if (cc.bias != 3)
DrawColorRegular(cc);
else
DrawColorCompare(cc);
if (cc.clamp)
{
Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
}
else
{
Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
}
if (ac.bias != 3)
DrawAlphaRegular(ac);
else
DrawAlphaCompare(ac);
if (ac.clamp)
Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
else
Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);
#if ALLOW_TEV_DUMPS
if (g_SWVideoConfig.bDumpTevStages)
{
u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
}
#endif
}
// convert to 8 bits per component
u8 output[4] = {(u8)Reg[0][ALP_C], (u8)Reg[0][BLU_C], (u8)Reg[0][GRN_C], (u8)Reg[0][RED_C]};
if (!AlphaTest(output[ALP_C]))
return;
// z texture
if (bpmem.ztex2.op)
{
u32 ztex = bpmem.ztex1.bias;
switch (bpmem.ztex2.type) {
case 0: // 8 bit
ztex += TexColor[ALP_C];
break;
case 1: // 16 bit
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
break;
case 2: // 24 bit
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
break;
}
if (bpmem.ztex2.op == ZTEXTURE_ADD)
ztex += Position[2];
Position[2] = ztex & 0x00ffffff;
}
// fog
if (bpmem.fog.c_proj_fsel.fsel)
{
float ze;
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF))
s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
//in addition downscale magnitude and zs to 0.24 bits
ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
}
else
{
// orthographic
// ze = a*Zs
//in addition downscale zs to 0.24 bits
ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
}
// stuff to do!
// here, where we'll have to add/handle x range adjustment (if related BP register it's enabled)
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
ze -= bpmem.fog.c_proj_fsel.GetC();
// clamp 0 to 1
float fog = (ze<0.0f) ? 0.0f : ((ze>1.0f) ? 1.0f : ze);
switch (bpmem.fog.c_proj_fsel.fsel)
{
case 4: // exp
fog = 1.0f - pow(2.0f, -8.0f * fog);
break;
case 5: // exp2
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
break;
case 6: // backward exp
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog);
break;
case 7: // backward exp2
fog = 1.0f - fog;
fog = pow(2.0f, -8.0f * fog * fog);
break;
}
// lerp from output to fog color
u32 fogInt = (u32)(fog * 256);
u32 invFog = 256 - fogInt;
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
}
if (!bpmem.zcontrol.early_ztest && bpmem.zmode.testenable)
{
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
return;
}
#if ALLOW_TEV_DUMPS
if (g_SWVideoConfig.bDumpTevStages)
{
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
}
if (g_SWVideoConfig.bDumpTevTextureFetches)
{
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
{
TwoTevStageOrders &order = bpmem.tevorders[i >> 1];
if (order.getEnable(i & 1))
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
}
}
#endif
INCSTAT(swstats.thisFrame.tevPixelsOut);
EfbInterface::BlendTev(Position[0], Position[1], output);
}
void Tev::SetRegColor(int reg, int comp, bool konst, s16 color)
{
if (konst)
{
KonstantColors[reg][comp] = color;
}
else
{
Reg[reg][comp] = color;
}
}