mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-16 11:09:16 +01:00
c657b80996
This message would be logged, usually multiple times, for EVERY. SINGLE. PIXEL. That's pretty much useless and just makes the log unreadable. Plus, the current support (which acts as RGB8) is close enough that for end-user purposes, it's fine. I don't think the hardware backends support RGB565_Z16 and its antialiasing functionality correctly either, but they don't have similar logspam.
715 lines
18 KiB
C++
715 lines
18 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "VideoBackends/Software/EfbInterface.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
|
|
#include "VideoBackends/Software/CopyRegion.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/LookUpTables.h"
|
|
#include "VideoCommon/PerfQueryBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
|
|
namespace EfbInterface
|
|
{
|
|
static std::array<u8, EFB_WIDTH * EFB_HEIGHT * 6> efb;
|
|
|
|
static std::array<u32, PQ_NUM_MEMBERS> perf_values;
|
|
|
|
static inline u32 GetColorOffset(u16 x, u16 y)
|
|
{
|
|
return (x + y * EFB_WIDTH) * 3;
|
|
}
|
|
|
|
static inline u32 GetDepthOffset(u16 x, u16 y)
|
|
{
|
|
constexpr u32 depth_buffer_start = EFB_WIDTH * EFB_HEIGHT * 3;
|
|
|
|
return (x + y * EFB_WIDTH) * 3 + depth_buffer_start;
|
|
}
|
|
|
|
static void SetPixelAlphaOnly(u32 offset, u8 a)
|
|
{
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
case PixelFormat::RGB565_Z16:
|
|
// do nothing
|
|
break;
|
|
case PixelFormat::RGBA6_Z24:
|
|
{
|
|
u32 a32 = a;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xffffffc0;
|
|
val |= (a32 >> 2) & 0x0000003f;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void SetPixelColorOnly(u32 offset, u8* rgb)
|
|
{
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
u32 src = *(u32*)rgb;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= src >> 8;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
case PixelFormat::RGBA6_Z24:
|
|
{
|
|
u32 src = *(u32*)rgb;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff00003f;
|
|
val |= (src >> 4) & 0x00000fc0; // blue
|
|
val |= (src >> 6) & 0x0003f000; // green
|
|
val |= (src >> 8) & 0x00fc0000; // red
|
|
*dst = val;
|
|
}
|
|
break;
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
// TODO: RGB565_Z16 is not supported correctly yet
|
|
u32 src = *(u32*)rgb;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= src >> 8;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void SetPixelAlphaColor(u32 offset, u8* color)
|
|
{
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
u32 src = *(u32*)color;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= src >> 8;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
case PixelFormat::RGBA6_Z24:
|
|
{
|
|
u32 src = *(u32*)color;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= (src >> 2) & 0x0000003f; // alpha
|
|
val |= (src >> 4) & 0x00000fc0; // blue
|
|
val |= (src >> 6) & 0x0003f000; // green
|
|
val |= (src >> 8) & 0x00fc0000; // red
|
|
*dst = val;
|
|
}
|
|
break;
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
// TODO: RGB565_Z16 is not supported correctly yet
|
|
u32 src = *(u32*)color;
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= src >> 8;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u32 GetPixelColor(u32 offset)
|
|
{
|
|
u32 src;
|
|
std::memcpy(&src, &efb[offset], sizeof(u32));
|
|
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
return 0xff | ((src & 0x00ffffff) << 8);
|
|
|
|
case PixelFormat::RGBA6_Z24:
|
|
return Convert6To8(src & 0x3f) | // Alpha
|
|
Convert6To8((src >> 6) & 0x3f) << 8 | // Blue
|
|
Convert6To8((src >> 12) & 0x3f) << 16 | // Green
|
|
Convert6To8((src >> 18) & 0x3f) << 24; // Red
|
|
|
|
case PixelFormat::RGB565_Z16:
|
|
// TODO: RGB565_Z16 is not supported correctly yet
|
|
return 0xff | ((src & 0x00ffffff) << 8);
|
|
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void SetPixelDepth(u32 offset, u32 depth)
|
|
{
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::RGBA6_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= depth & 0x00ffffff;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
// TODO: RGB565_Z16 is not supported correctly yet
|
|
u32* dst = (u32*)&efb[offset];
|
|
u32 val = *dst & 0xff000000;
|
|
val |= depth & 0x00ffffff;
|
|
*dst = val;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u32 GetPixelDepth(u32 offset)
|
|
{
|
|
u32 depth = 0;
|
|
|
|
switch (bpmem.zcontrol.pixel_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::RGBA6_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
|
|
}
|
|
break;
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
// TODO: RGB565_Z16 is not supported correctly yet
|
|
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
|
|
break;
|
|
}
|
|
|
|
return depth;
|
|
}
|
|
|
|
static u32 GetSourceFactor(u8* srcClr, u8* dstClr, SrcBlendFactor mode)
|
|
{
|
|
switch (mode)
|
|
{
|
|
case SrcBlendFactor::Zero:
|
|
return 0;
|
|
case SrcBlendFactor::One:
|
|
return 0xffffffff;
|
|
case SrcBlendFactor::DstClr:
|
|
return *(u32*)dstClr;
|
|
case SrcBlendFactor::InvDstClr:
|
|
return 0xffffffff - *(u32*)dstClr;
|
|
case SrcBlendFactor::SrcAlpha:
|
|
{
|
|
u8 alpha = srcClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case SrcBlendFactor::InvSrcAlpha:
|
|
{
|
|
u8 alpha = 0xff - srcClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case SrcBlendFactor::DstAlpha:
|
|
{
|
|
u8 alpha = dstClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case SrcBlendFactor::InvDstAlpha:
|
|
{
|
|
u8 alpha = 0xff - dstClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 GetDestinationFactor(u8* srcClr, u8* dstClr, DstBlendFactor mode)
|
|
{
|
|
switch (mode)
|
|
{
|
|
case DstBlendFactor::Zero:
|
|
return 0;
|
|
case DstBlendFactor::One:
|
|
return 0xffffffff;
|
|
case DstBlendFactor::SrcClr:
|
|
return *(u32*)srcClr;
|
|
case DstBlendFactor::InvSrcClr:
|
|
return 0xffffffff - *(u32*)srcClr;
|
|
case DstBlendFactor::SrcAlpha:
|
|
{
|
|
u8 alpha = srcClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case DstBlendFactor::InvSrcAlpha:
|
|
{
|
|
u8 alpha = 0xff - srcClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case DstBlendFactor::DstAlpha:
|
|
{
|
|
u8 alpha = dstClr[ALP_C] & 0xff;
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
case DstBlendFactor::InvDstAlpha:
|
|
{
|
|
u8 alpha = 0xff - dstClr[ALP_C];
|
|
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
|
|
return factor;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void BlendColor(u8* srcClr, u8* dstClr)
|
|
{
|
|
u32 srcFactor = GetSourceFactor(srcClr, dstClr, bpmem.blendmode.srcfactor);
|
|
u32 dstFactor = GetDestinationFactor(srcClr, dstClr, bpmem.blendmode.dstfactor);
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
// add MSB of factors to make their range 0 -> 256
|
|
u32 sf = (srcFactor & 0xff);
|
|
sf += sf >> 7;
|
|
|
|
u32 df = (dstFactor & 0xff);
|
|
df += df >> 7;
|
|
|
|
u32 color = (srcClr[i] * sf + dstClr[i] * df) >> 8;
|
|
dstClr[i] = (color > 255) ? 255 : color;
|
|
|
|
dstFactor >>= 8;
|
|
srcFactor >>= 8;
|
|
}
|
|
}
|
|
|
|
static void LogicBlend(u32 srcClr, u32* dstClr, LogicOp op)
|
|
{
|
|
switch (op)
|
|
{
|
|
case LogicOp::Clear:
|
|
*dstClr = 0;
|
|
break;
|
|
case LogicOp::And:
|
|
*dstClr = srcClr & *dstClr;
|
|
break;
|
|
case LogicOp::AndReverse:
|
|
*dstClr = srcClr & (~*dstClr);
|
|
break;
|
|
case LogicOp::Copy:
|
|
*dstClr = srcClr;
|
|
break;
|
|
case LogicOp::AndInverted:
|
|
*dstClr = (~srcClr) & *dstClr;
|
|
break;
|
|
case LogicOp::NoOp:
|
|
// Do nothing
|
|
break;
|
|
case LogicOp::Xor:
|
|
*dstClr = srcClr ^ *dstClr;
|
|
break;
|
|
case LogicOp::Or:
|
|
*dstClr = srcClr | *dstClr;
|
|
break;
|
|
case LogicOp::Nor:
|
|
*dstClr = ~(srcClr | *dstClr);
|
|
break;
|
|
case LogicOp::Equiv:
|
|
*dstClr = ~(srcClr ^ *dstClr);
|
|
break;
|
|
case LogicOp::Invert:
|
|
*dstClr = ~*dstClr;
|
|
break;
|
|
case LogicOp::OrReverse:
|
|
*dstClr = srcClr | (~*dstClr);
|
|
break;
|
|
case LogicOp::CopyInverted:
|
|
*dstClr = ~srcClr;
|
|
break;
|
|
case LogicOp::OrInverted:
|
|
*dstClr = (~srcClr) | *dstClr;
|
|
break;
|
|
case LogicOp::Nand:
|
|
*dstClr = ~(srcClr & *dstClr);
|
|
break;
|
|
case LogicOp::Set:
|
|
*dstClr = 0xffffffff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void SubtractBlend(u8* srcClr, u8* dstClr)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
int c = (int)dstClr[i] - (int)srcClr[i];
|
|
dstClr[i] = (c < 0) ? 0 : c;
|
|
}
|
|
}
|
|
|
|
static void Dither(u16 x, u16 y, u8* color)
|
|
{
|
|
// No blending for RGB8 mode
|
|
if (!bpmem.blendmode.dither || bpmem.zcontrol.pixel_format != PixelFormat::RGBA6_Z24)
|
|
return;
|
|
|
|
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
|
|
static const u8 dither[2][2] = {{0, 2}, {3, 1}};
|
|
|
|
// Only the color channels are dithered?
|
|
for (int i = BLU_C; i <= RED_C; i++)
|
|
color[i] = ((color[i] - (color[i] >> 6)) + dither[y & 1][x & 1]) & 0xfc;
|
|
}
|
|
|
|
void BlendTev(u16 x, u16 y, u8* color)
|
|
{
|
|
const u32 offset = GetColorOffset(x, y);
|
|
u32 dstClr = GetPixelColor(offset);
|
|
|
|
u8* dstClrPtr = (u8*)&dstClr;
|
|
|
|
if (bpmem.blendmode.blendenable)
|
|
{
|
|
if (bpmem.blendmode.subtract)
|
|
SubtractBlend(color, dstClrPtr);
|
|
else
|
|
BlendColor(color, dstClrPtr);
|
|
}
|
|
else if (bpmem.blendmode.logicopenable)
|
|
{
|
|
LogicBlend(*((u32*)color), &dstClr, bpmem.blendmode.logicmode);
|
|
}
|
|
else
|
|
{
|
|
dstClrPtr = color;
|
|
}
|
|
|
|
if (bpmem.dstalpha.enable)
|
|
dstClrPtr[ALP_C] = bpmem.dstalpha.alpha;
|
|
|
|
if (bpmem.blendmode.colorupdate)
|
|
{
|
|
Dither(x, y, dstClrPtr);
|
|
if (bpmem.blendmode.alphaupdate)
|
|
SetPixelAlphaColor(offset, dstClrPtr);
|
|
else
|
|
SetPixelColorOnly(offset, dstClrPtr);
|
|
}
|
|
else if (bpmem.blendmode.alphaupdate)
|
|
{
|
|
SetPixelAlphaOnly(offset, dstClrPtr[ALP_C]);
|
|
}
|
|
}
|
|
|
|
void SetColor(u16 x, u16 y, u8* color)
|
|
{
|
|
u32 offset = GetColorOffset(x, y);
|
|
if (bpmem.blendmode.colorupdate)
|
|
{
|
|
if (bpmem.blendmode.alphaupdate)
|
|
SetPixelAlphaColor(offset, color);
|
|
else
|
|
SetPixelColorOnly(offset, color);
|
|
}
|
|
else if (bpmem.blendmode.alphaupdate)
|
|
{
|
|
SetPixelAlphaOnly(offset, color[ALP_C]);
|
|
}
|
|
}
|
|
|
|
void SetDepth(u16 x, u16 y, u32 depth)
|
|
{
|
|
if (bpmem.zmode.updateenable)
|
|
SetPixelDepth(GetDepthOffset(x, y), depth);
|
|
}
|
|
|
|
u32 GetColor(u16 x, u16 y)
|
|
{
|
|
u32 offset = GetColorOffset(x, y);
|
|
return GetPixelColor(offset);
|
|
}
|
|
|
|
static u32 VerticalFilter(const std::array<u32, 3>& colors,
|
|
const std::array<u8, 7>& filterCoefficients)
|
|
{
|
|
u8 in_colors[3][4];
|
|
std::memcpy(&in_colors, colors.data(), sizeof(in_colors));
|
|
|
|
// Alpha channel is not used
|
|
u8 out_color[4];
|
|
out_color[ALP_C] = 0;
|
|
|
|
// All Coefficients should sum to 64, otherwise the total brightness will change, which many games
|
|
// do on purpose to implement a brightness filter across the whole copy.
|
|
for (int i = BLU_C; i <= RED_C; i++)
|
|
{
|
|
// TODO: implement support for multisampling.
|
|
// In non-multisampling mode:
|
|
// * Coefficients 2, 3 and 4 sample from the current pixel.
|
|
// * Coefficients 0 and 1 sample from the pixel above this one
|
|
// * Coefficients 5 and 6 sample from the pixel below this one
|
|
int sum =
|
|
in_colors[0][i] * (filterCoefficients[0] + filterCoefficients[1]) +
|
|
in_colors[1][i] * (filterCoefficients[2] + filterCoefficients[3] + filterCoefficients[4]) +
|
|
in_colors[2][i] * (filterCoefficients[5] + filterCoefficients[6]);
|
|
|
|
// TODO: this clamping behavior appears to be correct, but isn't confirmed on hardware.
|
|
out_color[i] = std::min(255, sum >> 6); // clamp larger values to 255
|
|
}
|
|
|
|
u32 out_color32;
|
|
std::memcpy(&out_color32, out_color, sizeof(out_color32));
|
|
return out_color32;
|
|
}
|
|
|
|
static u32 GammaCorrection(u32 color, const float gamma_rcp)
|
|
{
|
|
u8 in_colors[4];
|
|
std::memcpy(&in_colors, &color, sizeof(in_colors));
|
|
|
|
u8 out_color[4];
|
|
for (int i = BLU_C; i <= RED_C; i++)
|
|
{
|
|
out_color[i] = static_cast<u8>(
|
|
std::clamp(std::pow(in_colors[i] / 255.0f, gamma_rcp) * 255.0f, 0.0f, 255.0f));
|
|
}
|
|
|
|
u32 out_color32;
|
|
std::memcpy(&out_color32, out_color, sizeof(out_color32));
|
|
return out_color32;
|
|
}
|
|
|
|
// For internal used only, return a non-normalized value, which saves work later.
|
|
static yuv444 ConvertColorToYUV(u32 color)
|
|
{
|
|
const u8 red = static_cast<u8>(color >> 24);
|
|
const u8 green = static_cast<u8>(color >> 16);
|
|
const u8 blue = static_cast<u8>(color >> 8);
|
|
|
|
// GameCube/Wii uses the BT.601 standard algorithm for converting to YCbCr; see
|
|
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
|
|
return {static_cast<u8>(0.257f * red + 0.504f * green + 0.098f * blue),
|
|
static_cast<s8>(-0.148f * red + -0.291f * green + 0.439f * blue),
|
|
static_cast<s8>(0.439f * red + -0.368f * green + -0.071f * blue)};
|
|
}
|
|
|
|
u32 GetDepth(u16 x, u16 y)
|
|
{
|
|
u32 offset = GetDepthOffset(x, y);
|
|
return GetPixelDepth(offset);
|
|
}
|
|
|
|
u8* GetPixelPointer(u16 x, u16 y, bool depth)
|
|
{
|
|
if (depth)
|
|
return &efb[GetDepthOffset(x, y)];
|
|
return &efb[GetColorOffset(x, y)];
|
|
}
|
|
|
|
void EncodeXFB(u8* xfb_in_ram, u32 memory_stride, const MathUtil::Rectangle<int>& source_rect,
|
|
float y_scale, float gamma)
|
|
{
|
|
if (!xfb_in_ram)
|
|
{
|
|
WARN_LOG_FMT(VIDEO, "Tried to copy to invalid XFB address");
|
|
return;
|
|
}
|
|
|
|
const int left = source_rect.left;
|
|
const int right = source_rect.right;
|
|
const bool clamp_top = bpmem.triggerEFBCopy.clamp_top;
|
|
const bool clamp_bottom = bpmem.triggerEFBCopy.clamp_bottom;
|
|
const float gamma_rcp = 1.0f / gamma;
|
|
const auto filter_coefficients = bpmem.copyfilter.GetCoefficients();
|
|
|
|
// this assumes copies will always start on an even (YU) pixel and the
|
|
// copy always has an even width, which might not be true.
|
|
if (left & 1 || right & 1)
|
|
{
|
|
WARN_LOG_FMT(VIDEO, "Trying to copy XFB to from unaligned EFB source");
|
|
// this will show up as wrongly encoded
|
|
}
|
|
|
|
// Scanline buffer, leave room for borders
|
|
yuv444 scanline[EFB_WIDTH + 2];
|
|
|
|
static std::vector<yuv422_packed> source;
|
|
source.resize(EFB_WIDTH * EFB_HEIGHT);
|
|
yuv422_packed* src_ptr = &source[0];
|
|
|
|
for (int y = source_rect.top; y < source_rect.bottom; y++)
|
|
{
|
|
// Clamping behavior
|
|
// NOTE: when the clamp bits aren't set, the hardware will happily read beyond the EFB,
|
|
// which returns random garbage from the empty bus (confirmed by hardware tests).
|
|
//
|
|
// In our implementation, the garbage just so happens to be the top or bottom row.
|
|
// Statistically, that could happen.
|
|
const u16 y_prev = static_cast<u16>(std::max(clamp_top ? source_rect.top : 0, y - 1));
|
|
const u16 y_next = static_cast<u16>(
|
|
std::min<int>((clamp_bottom ? source_rect.bottom : EFB_HEIGHT) - 1, y + 1));
|
|
|
|
// Get a scanline of YUV pixels in 4:4:4 format
|
|
for (int i = 1, x = left; x < right; i++, x++)
|
|
{
|
|
// Get RGB colors
|
|
std::array<u32, 3> colors = {{GetColor(x, y_prev), GetColor(x, y), GetColor(x, y_next)}};
|
|
|
|
// Vertical Filter (Multisampling resolve, deflicker, brightness)
|
|
u32 filtered = VerticalFilter(colors, filter_coefficients);
|
|
|
|
// Gamma correction happens here.
|
|
filtered = GammaCorrection(filtered, gamma_rcp);
|
|
|
|
scanline[i] = ConvertColorToYUV(filtered);
|
|
}
|
|
|
|
// Flipper clamps the border colors
|
|
scanline[0] = scanline[1];
|
|
scanline[right + 1] = scanline[right];
|
|
|
|
// And Downsample them to 4:2:2
|
|
for (int i = 1, x = left; x < right; i += 2, x += 2)
|
|
{
|
|
// YU pixel
|
|
src_ptr[x].Y = scanline[i].Y + 16;
|
|
// we mix our color differences in 10 bit space so it will round more accurately
|
|
// U[i] = 1/4 * U[i-1] + 1/2 * U[i] + 1/4 * U[i+1]
|
|
src_ptr[x].UV = 128 + ((scanline[i - 1].U + (scanline[i].U << 1) + scanline[i + 1].U) >> 2);
|
|
|
|
// YV pixel
|
|
src_ptr[x + 1].Y = scanline[i + 1].Y + 16;
|
|
// V[i] = 1/4 * V[i-1] + 1/2 * V[i] + 1/4 * V[i+1]
|
|
src_ptr[x + 1].UV =
|
|
128 + ((scanline[i - 1].V + (scanline[i].V << 1) + scanline[i + 1].V) >> 2);
|
|
}
|
|
src_ptr += memory_stride;
|
|
}
|
|
|
|
const int src_width = source_rect.GetWidth();
|
|
const int src_height = source_rect.GetHeight();
|
|
const int dst_width = src_width;
|
|
const int dst_height = src_height * y_scale;
|
|
|
|
SW::CopyRegion(source.data(), src_width, src_height, reinterpret_cast<yuv422_packed*>(xfb_in_ram),
|
|
dst_width, dst_height);
|
|
}
|
|
|
|
bool ZCompare(u16 x, u16 y, u32 z)
|
|
{
|
|
u32 offset = GetDepthOffset(x, y);
|
|
u32 depth = GetPixelDepth(offset);
|
|
|
|
bool pass;
|
|
|
|
switch (bpmem.zmode.func)
|
|
{
|
|
case CompareMode::Never:
|
|
pass = false;
|
|
break;
|
|
case CompareMode::Less:
|
|
pass = z < depth;
|
|
break;
|
|
case CompareMode::Equal:
|
|
pass = z == depth;
|
|
break;
|
|
case CompareMode::LEqual:
|
|
pass = z <= depth;
|
|
break;
|
|
case CompareMode::Greater:
|
|
pass = z > depth;
|
|
break;
|
|
case CompareMode::NEqual:
|
|
pass = z != depth;
|
|
break;
|
|
case CompareMode::GEqual:
|
|
pass = z >= depth;
|
|
break;
|
|
case CompareMode::Always:
|
|
pass = true;
|
|
break;
|
|
default:
|
|
pass = false;
|
|
ERROR_LOG_FMT(VIDEO, "Bad Z compare mode {}", bpmem.zmode.func);
|
|
break;
|
|
}
|
|
|
|
if (pass && bpmem.zmode.updateenable)
|
|
{
|
|
SetPixelDepth(offset, z);
|
|
}
|
|
|
|
return pass;
|
|
}
|
|
|
|
u32 GetPerfQueryResult(PerfQueryType type)
|
|
{
|
|
return perf_values[type];
|
|
}
|
|
|
|
void ResetPerfQuery()
|
|
{
|
|
perf_values = {};
|
|
}
|
|
|
|
void IncPerfCounterQuadCount(PerfQueryType type)
|
|
{
|
|
// NOTE: hardware doesn't process individual pixels but quads instead.
|
|
// Current software renderer architecture works on pixels though, so
|
|
// we have this "quad" hack here to only increment the registers on
|
|
// every fourth rendered pixel
|
|
static u32 quad[PQ_NUM_MEMBERS];
|
|
if (++quad[type] != 3)
|
|
return;
|
|
quad[type] = 0;
|
|
++perf_values[type];
|
|
}
|
|
} // namespace EfbInterface
|