mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-24 15:01:16 +01:00
136 lines
3.7 KiB
C++
136 lines
3.7 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <bit>
|
|
|
|
#include "Common/BitUtils.h"
|
|
#include "Common/CommonTypes.h"
|
|
|
|
#include "VideoCommon/BPMemory.h"
|
|
|
|
// These are accurate (disregarding AA modes).
|
|
constexpr u32 EFB_WIDTH = 640u;
|
|
constexpr u32 EFB_HEIGHT = 528u;
|
|
|
|
// Max XFB width is 720. You can only copy out 640 wide areas of efb to XFB
|
|
// so you need multiple copies to do the full width.
|
|
// The VI can do horizontal scaling (TODO: emulate).
|
|
constexpr u32 MAX_XFB_WIDTH = 720u;
|
|
|
|
// Although EFB height is 528, 576-line XFB's can be created either with
|
|
// vertical scaling by the EFB copy operation or copying to multiple XFB's
|
|
// that are next to each other in memory (TODO: handle that situation).
|
|
constexpr u32 MAX_XFB_HEIGHT = 576u;
|
|
|
|
#define PRIM_LOG(t, ...) DEBUG_LOG_FMT(VIDEO, t __VA_OPT__(, ) __VA_ARGS__)
|
|
|
|
// warning: mapping buffer should be disabled to use this
|
|
// #define LOG_VTX() DEBUG_LOG_FMT(VIDEO, "vtx: {} {} {}, ",
|
|
// ((float*)g_vertex_manager_write_ptr)[-3],
|
|
// ((float*)g_vertex_manager_write_ptr)[-2],
|
|
// ((float*)g_vertex_manager_write_ptr)[-1]);
|
|
|
|
#define LOG_VTX()
|
|
|
|
enum class APIType
|
|
{
|
|
OpenGL,
|
|
D3D,
|
|
Vulkan,
|
|
Metal,
|
|
Nothing
|
|
};
|
|
|
|
inline u32 RGBA8ToRGBA6ToRGBA8(u32 src)
|
|
{
|
|
u32 color = src;
|
|
color &= 0xFCFCFCFC;
|
|
color |= (color >> 6) & 0x03030303;
|
|
return color;
|
|
}
|
|
|
|
inline u32 RGBA8ToRGB565ToRGBA8(u32 src)
|
|
{
|
|
u32 color = (src & 0xF8FCF8);
|
|
color |= (color >> 5) & 0x070007;
|
|
color |= (color >> 6) & 0x000300;
|
|
color |= 0xFF000000;
|
|
return color;
|
|
}
|
|
|
|
inline u32 Z24ToZ16ToZ24(u32 src)
|
|
{
|
|
return (src & 0xFFFF00) | (src >> 16);
|
|
}
|
|
|
|
inline u32 CompressZ16(u32 z24depth, DepthFormat format)
|
|
{
|
|
// Flipper offers a number of choices for 16bit Z formats that adjust
|
|
// where the bulk of the precision lies.
|
|
|
|
if (format == DepthFormat::ZLINEAR)
|
|
{
|
|
// This is just a linear depth buffer with 16 bits of precision
|
|
return z24depth >> 8;
|
|
}
|
|
|
|
// ZNEAR/ZMID/ZFAR are custom floating point formats with 2/3/4 bits of exponent
|
|
// The exponent is simply the number of leading ones that have been removed
|
|
// The first zero bit is skipped and not stored. The mantissa contains the next 14/13/12 bits
|
|
// If exponent is at the MAX (3, 7, or 12) then the next bit might still be a one, and can't
|
|
// be skipped, so the mantissa simply contains the next 14/13/12 bits
|
|
|
|
u32 leading_ones = static_cast<u32>(std::countl_one(z24depth << 8));
|
|
bool next_bit_is_one = false; // AKA: Did we clamp leading_ones?
|
|
u32 exp_bits;
|
|
|
|
switch (format)
|
|
{
|
|
case DepthFormat::ZNEAR:
|
|
exp_bits = 2;
|
|
if (leading_ones >= 3u)
|
|
{
|
|
leading_ones = 3u;
|
|
next_bit_is_one = true;
|
|
}
|
|
break;
|
|
case DepthFormat::ZMID:
|
|
exp_bits = 3;
|
|
if (leading_ones >= 7u)
|
|
{
|
|
leading_ones = 7u;
|
|
next_bit_is_one = true;
|
|
}
|
|
break;
|
|
case DepthFormat::ZFAR:
|
|
exp_bits = 4;
|
|
if (leading_ones >= 12u)
|
|
{
|
|
// The hardware implementation only uses values 0 to 12 in the exponent
|
|
leading_ones = 12u;
|
|
next_bit_is_one = true;
|
|
}
|
|
break;
|
|
default:
|
|
return z24depth >> 8;
|
|
}
|
|
|
|
u32 mantissa_bits = 16 - exp_bits;
|
|
|
|
// Calculate which bits we need to extract from z24depth for our mantissa
|
|
u32 top = std::max<u32>(24 - leading_ones, mantissa_bits);
|
|
if (!next_bit_is_one)
|
|
{
|
|
top -= 1; // We know the next bit is zero, so we don't need to include it.
|
|
}
|
|
u32 bottom = top - mantissa_bits;
|
|
|
|
u32 exponent = leading_ones << mantissa_bits; // Upper bits contain exponent
|
|
u32 mantissa = Common::ExtractBits(z24depth, bottom, top - 1);
|
|
|
|
return exponent | mantissa;
|
|
}
|