Files
dolphin/Source/Core/Core/IOS/IOS.cpp
JMC47 ad3650abfc Merge pull request #13093 from mitaclaw/ranges-modernization-4-projection
Ranges Algorithms Modernization - Projection
2025-03-23 15:56:13 -04:00

1014 lines
33 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/IOS/IOS.h"
#include <algorithm>
#include <array>
#include <deque>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/EnumUtils.h"
#include "Common/Logging/Log.h"
#include "Common/Timer.h"
#include "Core/Boot/AncastTypes.h"
#include "Core/Boot/DolReader.h"
#include "Core/Boot/ElfReader.h"
#include "Core/CommonTitles.h"
#include "Core/Config/MainSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/WII_IPC.h"
#include "Core/IOS/Crypto/AesDevice.h"
#include "Core/IOS/Crypto/Sha.h"
#include "Core/IOS/DI/DI.h"
#include "Core/IOS/Device.h"
#include "Core/IOS/DeviceStub.h"
#include "Core/IOS/DolphinDevice.h"
#include "Core/IOS/ES/ES.h"
#include "Core/IOS/FS/FileSystem.h"
#include "Core/IOS/FS/FileSystemProxy.h"
#include "Core/IOS/MIOS.h"
#include "Core/IOS/Network/IP/Top.h"
#include "Core/IOS/Network/KD/NetKDRequest.h"
#include "Core/IOS/Network/KD/NetKDTime.h"
#include "Core/IOS/Network/NCD/Manage.h"
#include "Core/IOS/Network/SSL.h"
#include "Core/IOS/Network/Socket.h"
#include "Core/IOS/Network/WD/Command.h"
#include "Core/IOS/SDIO/SDIOSlot0.h"
#include "Core/IOS/STM/STM.h"
#include "Core/IOS/USB/Bluetooth/BTEmu.h"
#include "Core/IOS/USB/Bluetooth/BTReal.h"
#include "Core/IOS/USB/OH0/OH0.h"
#include "Core/IOS/USB/OH0/OH0Device.h"
#include "Core/IOS/USB/USB_HID/HIDv4.h"
#include "Core/IOS/USB/USB_HID/HIDv5.h"
#include "Core/IOS/USB/USB_KBD.h"
#include "Core/IOS/USB/USB_VEN/VEN.h"
#include "Core/IOS/VersionInfo.h"
#include "Core/IOS/WFS/WFSI.h"
#include "Core/IOS/WFS/WFSSRV.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "Core/WiiRoot.h"
namespace IOS::HLE
{
constexpr u64 ENQUEUE_REQUEST_FLAG = 0x100000000ULL;
static CoreTiming::EventType* s_event_enqueue;
static CoreTiming::EventType* s_event_finish_ppc_bootstrap;
static CoreTiming::EventType* s_event_finish_ios_boot;
constexpr u32 ADDR_LEGACY_MEM_SIZE = 0x28;
constexpr u32 ADDR_LEGACY_ARENA_LOW = 0x30;
constexpr u32 ADDR_LEGACY_ARENA_HIGH = 0x34;
constexpr u32 ADDR_LEGACY_MEM_SIM_SIZE = 0xf0;
constexpr u32 ADDR_MEM1_SIZE = 0x3100;
constexpr u32 ADDR_MEM1_SIM_SIZE = 0x3104;
constexpr u32 ADDR_MEM1_END = 0x3108;
constexpr u32 ADDR_MEM1_ARENA_BEGIN = 0x310c;
constexpr u32 ADDR_MEM1_ARENA_END = 0x3110;
constexpr u32 ADDR_PH1 = 0x3114;
constexpr u32 ADDR_MEM2_SIZE = 0x3118;
constexpr u32 ADDR_MEM2_SIM_SIZE = 0x311c;
constexpr u32 ADDR_MEM2_END = 0x3120;
constexpr u32 ADDR_MEM2_ARENA_BEGIN = 0x3124;
constexpr u32 ADDR_MEM2_ARENA_END = 0x3128;
constexpr u32 ADDR_PH2 = 0x312c;
constexpr u32 ADDR_IPC_BUFFER_BEGIN = 0x3130;
constexpr u32 ADDR_IPC_BUFFER_END = 0x3134;
constexpr u32 ADDR_HOLLYWOOD_REVISION = 0x3138;
constexpr u32 ADDR_PH3 = 0x313c;
constexpr u32 ADDR_IOS_VERSION = 0x3140;
constexpr u32 ADDR_IOS_DATE = 0x3144;
constexpr u32 ADDR_IOS_RESERVED_BEGIN = 0x3148;
constexpr u32 ADDR_IOS_RESERVED_END = 0x314c;
constexpr u32 ADDR_PH4 = 0x3150;
constexpr u32 ADDR_PH5 = 0x3154;
constexpr u32 ADDR_RAM_VENDOR = 0x3158;
constexpr u32 ADDR_BOOT_FLAG = 0x315c;
constexpr u32 ADDR_APPLOADER_FLAG = 0x315d;
constexpr u32 ADDR_DEVKIT_BOOT_PROGRAM_VERSION = 0x315e;
constexpr u32 ADDR_SYSMENU_SYNC = 0x3160;
constexpr u32 PLACEHOLDER = 0xDEADBEEF;
static bool SetupMemory(Memory::MemoryManager& memory, u64 ios_title_id, MemorySetupType setup_type)
{
auto target_imv = std::ranges::find(GetMemoryValues(), static_cast<u16>(ios_title_id & 0xffff),
&MemoryValues::ios_number);
if (target_imv == GetMemoryValues().end())
{
ERROR_LOG_FMT(IOS, "Unknown IOS version: {:016x}", ios_title_id);
return false;
}
if (setup_type == MemorySetupType::IOSReload)
{
memory.Write_U32(target_imv->ios_version, ADDR_IOS_VERSION);
// These values are written by the IOS kernel as part of its boot process (for IOS28 and newer).
//
// This works in a slightly different way on a real console: older IOS versions (< IOS28) all
// have the same range (933E0000 - 93400000), thus they don't write it at boot and just inherit
// all values. However, the range has changed since IOS28. To make things work properly
// after a reload, newer IOSes always write the legacy range before loading an IOS kernel;
// the new IOS either updates the range (>= IOS28) or inherits it (< IOS28).
//
// We can skip this convoluted process and just write the correct range directly.
memory.Write_U32(target_imv->mem2_physical_size, ADDR_MEM2_SIZE);
memory.Write_U32(target_imv->mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
memory.Write_U32(target_imv->mem2_end, ADDR_MEM2_END);
memory.Write_U32(target_imv->mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
memory.Write_U32(target_imv->mem2_arena_end, ADDR_MEM2_ARENA_END);
memory.Write_U32(target_imv->ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
memory.Write_U32(target_imv->ipc_buffer_end, ADDR_IPC_BUFFER_END);
memory.Write_U32(target_imv->ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
memory.Write_U32(target_imv->ios_reserved_end, ADDR_IOS_RESERVED_END);
RAMOverrideForIOSMemoryValues(memory, setup_type);
return true;
}
// This region is typically used to store constants (e.g. game ID, console type, ...)
// and system information (see below).
constexpr u32 LOW_MEM1_REGION_START = 0;
constexpr u32 LOW_MEM1_REGION_SIZE = 0x3fff;
memory.Memset(LOW_MEM1_REGION_START, 0, LOW_MEM1_REGION_SIZE);
memory.Write_U32(target_imv->mem1_physical_size, ADDR_MEM1_SIZE);
memory.Write_U32(target_imv->mem1_simulated_size, ADDR_MEM1_SIM_SIZE);
memory.Write_U32(target_imv->mem1_end, ADDR_MEM1_END);
memory.Write_U32(target_imv->mem1_arena_begin, ADDR_MEM1_ARENA_BEGIN);
memory.Write_U32(target_imv->mem1_arena_end, ADDR_MEM1_ARENA_END);
memory.Write_U32(PLACEHOLDER, ADDR_PH1);
memory.Write_U32(target_imv->mem2_physical_size, ADDR_MEM2_SIZE);
memory.Write_U32(target_imv->mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
memory.Write_U32(target_imv->mem2_end, ADDR_MEM2_END);
memory.Write_U32(target_imv->mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
memory.Write_U32(target_imv->mem2_arena_end, ADDR_MEM2_ARENA_END);
memory.Write_U32(PLACEHOLDER, ADDR_PH2);
memory.Write_U32(target_imv->ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
memory.Write_U32(target_imv->ipc_buffer_end, ADDR_IPC_BUFFER_END);
memory.Write_U32(target_imv->hollywood_revision, ADDR_HOLLYWOOD_REVISION);
memory.Write_U32(PLACEHOLDER, ADDR_PH3);
memory.Write_U32(target_imv->ios_version, ADDR_IOS_VERSION);
memory.Write_U32(target_imv->ios_date, ADDR_IOS_DATE);
memory.Write_U32(target_imv->ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
memory.Write_U32(target_imv->ios_reserved_end, ADDR_IOS_RESERVED_END);
memory.Write_U32(PLACEHOLDER, ADDR_PH4);
memory.Write_U32(PLACEHOLDER, ADDR_PH5);
memory.Write_U32(target_imv->ram_vendor, ADDR_RAM_VENDOR);
memory.Write_U8(0xDE, ADDR_BOOT_FLAG);
memory.Write_U8(0xAD, ADDR_APPLOADER_FLAG);
memory.Write_U16(0xBEEF, ADDR_DEVKIT_BOOT_PROGRAM_VERSION);
memory.Write_U32(target_imv->sysmenu_sync, ADDR_SYSMENU_SYNC);
memory.Write_U32(target_imv->mem1_physical_size, ADDR_LEGACY_MEM_SIZE);
memory.Write_U32(target_imv->mem1_arena_begin, ADDR_LEGACY_ARENA_LOW);
memory.Write_U32(target_imv->mem1_arena_end, ADDR_LEGACY_ARENA_HIGH);
memory.Write_U32(target_imv->mem1_simulated_size, ADDR_LEGACY_MEM_SIM_SIZE);
RAMOverrideForIOSMemoryValues(memory, setup_type);
return true;
}
// On a real console, the Starlet resets the PPC and holds it in reset limbo
// by asserting the PPC's HRESET signal (via HW_RESETS).
// We will simulate that by resetting MSR and putting the PPC into an infinite loop.
// The memory write will not be observable since the PPC is not running any code...
static void ResetAndPausePPC(Core::System& system)
{
// This should be cleared when the PPC is released so that the write is not observable.
auto& memory = system.GetMemory();
auto& power_pc = system.GetPowerPC();
memory.Write_U32(0x48000000, 0x00000000); // b 0x0
power_pc.Reset();
power_pc.GetPPCState().pc = 0;
}
static void ReleasePPC(Core::System& system)
{
system.GetMemory().Write_U32(0, 0);
// HLE the bootstub that jumps to 0x3400.
// NAND titles start with address translation off at 0x3400 (via the PPC bootstub)
// The state of other CPU registers (like the BAT registers) doesn't matter much
// because the realmode code at 0x3400 initializes everything itself anyway.
system.GetPPCState().pc = 0x3400;
}
static void ReleasePPCAncast(Core::System& system)
{
system.GetMemory().Write_U32(0, 0);
// On a real console the Espresso verifies and decrypts the Ancast image,
// then jumps to the decrypted ancast body.
// The Ancast loader already did this, so just jump to the decrypted body.
system.GetPPCState().pc = ESPRESSO_ANCAST_LOCATION_VIRT + sizeof(EspressoAncastHeader);
}
void RAMOverrideForIOSMemoryValues(Memory::MemoryManager& memory, MemorySetupType setup_type)
{
// Don't touch anything if the feature isn't enabled.
if (!Config::Get(Config::MAIN_RAM_OVERRIDE_ENABLE))
return;
// Some unstated constants that can be inferred.
const u32 ipc_buffer_size =
memory.Read_U32(ADDR_IPC_BUFFER_END) - memory.Read_U32(ADDR_IPC_BUFFER_BEGIN);
const u32 ios_reserved_size =
memory.Read_U32(ADDR_IOS_RESERVED_END) - memory.Read_U32(ADDR_IOS_RESERVED_BEGIN);
const u32 mem1_physical_size = memory.GetRamSizeReal();
const u32 mem1_simulated_size = memory.GetRamSizeReal();
const u32 mem1_end = Memory::MEM1_BASE_ADDR + mem1_simulated_size;
const u32 mem1_arena_begin = 0;
const u32 mem1_arena_end = mem1_end;
const u32 mem2_physical_size = memory.GetExRamSizeReal();
const u32 mem2_simulated_size = memory.GetExRamSizeReal();
const u32 mem2_end = Memory::MEM2_BASE_ADDR + mem2_simulated_size - ios_reserved_size;
const u32 mem2_arena_begin = Memory::MEM2_BASE_ADDR + 0x800U;
const u32 mem2_arena_end = mem2_end - ipc_buffer_size;
const u32 ipc_buffer_begin = mem2_arena_end;
const u32 ipc_buffer_end = mem2_end;
const u32 ios_reserved_begin = mem2_end;
const u32 ios_reserved_end = Memory::MEM2_BASE_ADDR + mem2_simulated_size;
if (setup_type == MemorySetupType::Full)
{
// Overwriting these after the game's apploader sets them would be bad
memory.Write_U32(mem1_physical_size, ADDR_MEM1_SIZE);
memory.Write_U32(mem1_simulated_size, ADDR_MEM1_SIM_SIZE);
memory.Write_U32(mem1_end, ADDR_MEM1_END);
memory.Write_U32(mem1_arena_begin, ADDR_MEM1_ARENA_BEGIN);
memory.Write_U32(mem1_arena_end, ADDR_MEM1_ARENA_END);
memory.Write_U32(mem1_physical_size, ADDR_LEGACY_MEM_SIZE);
memory.Write_U32(mem1_arena_begin, ADDR_LEGACY_ARENA_LOW);
memory.Write_U32(mem1_arena_end, ADDR_LEGACY_ARENA_HIGH);
memory.Write_U32(mem1_simulated_size, ADDR_LEGACY_MEM_SIM_SIZE);
}
memory.Write_U32(mem2_physical_size, ADDR_MEM2_SIZE);
memory.Write_U32(mem2_simulated_size, ADDR_MEM2_SIM_SIZE);
memory.Write_U32(mem2_end, ADDR_MEM2_END);
memory.Write_U32(mem2_arena_begin, ADDR_MEM2_ARENA_BEGIN);
memory.Write_U32(mem2_arena_end, ADDR_MEM2_ARENA_END);
memory.Write_U32(ipc_buffer_begin, ADDR_IPC_BUFFER_BEGIN);
memory.Write_U32(ipc_buffer_end, ADDR_IPC_BUFFER_END);
memory.Write_U32(ios_reserved_begin, ADDR_IOS_RESERVED_BEGIN);
memory.Write_U32(ios_reserved_end, ADDR_IOS_RESERVED_END);
}
void WriteReturnValue(Memory::MemoryManager& memory, s32 value, u32 address)
{
memory.Write_U32(static_cast<u32>(value), address);
}
Kernel::Kernel(IOSC::ConsoleType console_type) : m_iosc(console_type)
{
// Until the Wii root and NAND path stuff is entirely managed by IOS and made non-static,
// using more than one IOS instance at a time is not supported.
ASSERT(Core::System::GetInstance().GetIOS() == nullptr);
m_is_responsible_for_nand_root = !Core::WiiRootIsInitialized();
if (m_is_responsible_for_nand_root)
Core::InitializeWiiRoot(false);
m_fs = FS::MakeFileSystem(IOS::HLE::FS::Location::Session, Core::GetActiveNandRedirects());
ASSERT(m_fs);
m_fs_core = std::make_unique<FSCore>(*this);
m_es_core = std::make_unique<ESCore>(*this);
}
Kernel::~Kernel()
{
if (m_is_responsible_for_nand_root)
Core::ShutdownWiiRoot();
}
Kernel::Kernel(u64 title_id) : m_title_id(title_id)
{
}
EmulationKernel::EmulationKernel(Core::System& system, u64 title_id)
: Kernel(title_id), m_system(system)
{
INFO_LOG_FMT(IOS, "Starting IOS {:016x}", title_id);
if (!SetupMemory(m_system.GetMemory(), title_id, MemorySetupType::IOSReload))
WARN_LOG_FMT(IOS, "No information about this IOS -- cannot set up memory values");
if (title_id == Titles::MIOS)
{
MIOS::Load(m_system);
return;
}
m_fs = FS::MakeFileSystem(IOS::HLE::FS::Location::Session, Core::GetActiveNandRedirects());
ASSERT(m_fs);
AddDevice(std::make_unique<AesDevice>(*this, "/dev/aes"));
AddDevice(std::make_unique<ShaDevice>(*this, "/dev/sha"));
m_fs_core = std::make_unique<FSCore>(*this);
AddDevice(std::make_unique<FSDevice>(*this, *m_fs_core, "/dev/fs"));
m_es_core = std::make_unique<ESCore>(*this);
AddDevice(std::make_unique<ESDevice>(*this, *m_es_core, "/dev/es"));
AddStaticDevices();
}
EmulationKernel::~EmulationKernel()
{
m_system.GetCoreTiming().RemoveAllEvents(s_event_enqueue);
m_device_map.clear();
m_socket_manager.reset();
}
// The title ID is a u64 where the first 32 bits are used for the title type.
// For IOS title IDs, the type will always be 00000001 (system), and the lower 32 bits
// are used for the IOS major version -- which is what we want here.
u32 Kernel::GetVersion() const
{
return static_cast<u32>(m_title_id);
}
std::shared_ptr<FS::FileSystem> Kernel::GetFS()
{
return m_fs;
}
FSCore& Kernel::GetFSCore()
{
return *m_fs_core;
}
std::shared_ptr<FSDevice> EmulationKernel::GetFSDevice()
{
return std::static_pointer_cast<FSDevice>(m_device_map.at("/dev/fs"));
}
ESCore& Kernel::GetESCore()
{
return *m_es_core;
}
std::shared_ptr<ESDevice> EmulationKernel::GetESDevice()
{
return std::static_pointer_cast<ESDevice>(m_device_map.at("/dev/es"));
}
std::shared_ptr<WiiSockMan> EmulationKernel::GetSocketManager()
{
return m_socket_manager;
}
// Since we don't have actual processes, we keep track of only the PPC's UID/GID.
// These functions roughly correspond to syscalls 0x2b, 0x2c, 0x2d, 0x2e (though only for the PPC).
void EmulationKernel::SetUidForPPC(u32 uid)
{
m_ppc_uid = uid;
}
u32 EmulationKernel::GetUidForPPC() const
{
return m_ppc_uid;
}
void EmulationKernel::SetGidForPPC(u16 gid)
{
m_ppc_gid = gid;
}
u16 EmulationKernel::GetGidForPPC() const
{
return m_ppc_gid;
}
static std::vector<u8> ReadBootContent(FSCore& fs, const std::string& path, size_t max_size,
Ticks ticks = {})
{
const auto fd = fs.Open(0, 0, path, FS::Mode::Read, {}, ticks);
if (fd.Get() < 0)
return {};
const size_t file_size = fs.GetFileStatus(fd.Get(), ticks)->size;
if (max_size != 0 && file_size > max_size)
return {};
std::vector<u8> buffer(file_size);
if (!fs.Read(fd.Get(), buffer.data(), buffer.size(), ticks))
return {};
return buffer;
}
// This corresponds to syscall 0x41, which loads a binary from the NAND and bootstraps the PPC.
// Unlike 0x42, IOS will set up some constants in memory before booting the PPC.
bool EmulationKernel::BootstrapPPC(const std::string& boot_content_path)
{
// Seeking and processing overhead is ignored as most time is spent reading from the NAND.
u64 ticks = 0;
const DolReader dol{ReadBootContent(GetFSCore(), boot_content_path, 0, &ticks)};
if (!dol.IsValid())
return false;
if (!SetupMemory(m_system.GetMemory(), m_title_id, MemorySetupType::Full))
return false;
// Reset the PPC and pause its execution until we're ready.
ResetAndPausePPC(m_system);
if (dol.IsAncast())
INFO_LOG_FMT(IOS, "BootstrapPPC: Loading ancast image");
if (!dol.LoadIntoMemory(m_system))
return false;
INFO_LOG_FMT(IOS, "BootstrapPPC: {}", boot_content_path);
m_system.GetCoreTiming().ScheduleEvent(ticks, s_event_finish_ppc_bootstrap, dol.IsAncast());
return true;
}
struct ARMBinary final
{
explicit ARMBinary(std::vector<u8>&& bytes) : m_bytes(std::move(bytes)) {}
bool IsValid() const
{
// The header is at least 0x10.
if (m_bytes.size() < 0x10)
return false;
return m_bytes.size() >= (GetHeaderSize() + GetElfOffset() + GetElfSize());
}
std::vector<u8> GetElf() const
{
const auto iterator = m_bytes.cbegin() + GetHeaderSize() + GetElfOffset();
return std::vector<u8>(iterator, iterator + GetElfSize());
}
u32 GetHeaderSize() const { return Common::swap32(m_bytes.data()); }
u32 GetElfOffset() const { return Common::swap32(m_bytes.data() + 0x4); }
u32 GetElfSize() const { return Common::swap32(m_bytes.data() + 0x8); }
private:
std::vector<u8> m_bytes;
};
static void FinishIOSBoot(Core::System& system, u64 ios_title_id)
{
// Shut down the active IOS first before switching to the new one.
system.SetIOS(nullptr);
system.SetIOS(std::make_unique<EmulationKernel>(system, ios_title_id));
}
static constexpr SystemTimers::TimeBaseTick GetIOSBootTicks(u32 version)
{
// Older IOS versions are monolithic so the main ELF is much larger and takes longer to load.
if (version < 28)
return 16'000'000_tbticks;
return 2'600'000_tbticks;
}
// Similar to syscall 0x42 (ios_boot); this is used to change the current active IOS.
// IOS writes the new version to 0x3140 before restarting, but it does *not* poke any
// of the other constants to the memory. Warning: this resets the kernel instance.
//
// Passing a boot content path is optional because we do not require IOSes
// to be installed at the moment. If one is passed, the boot binary must exist
// on the NAND, or the call will fail like on a Wii.
bool EmulationKernel::BootIOS(const u64 ios_title_id, HangPPC hang_ppc,
const std::string& boot_content_path)
{
// IOS suspends regular PPC<->ARM IPC before loading a new IOS.
// IPC is not resumed if the boot fails for any reason.
m_ipc_paused = true;
if (!boot_content_path.empty())
{
// Load the ARM binary to memory (if possible).
// Because we do not actually emulate the Starlet, only load the sections that are in MEM1.
ARMBinary binary{ReadBootContent(GetFSCore(), boot_content_path, 0xB00000)};
if (!binary.IsValid())
return false;
ElfReader elf{binary.GetElf()};
if (!elf.LoadIntoMemory(m_system, true))
return false;
}
if (hang_ppc == HangPPC::Yes)
ResetAndPausePPC(m_system);
if (Core::IsRunning(m_system))
{
m_system.GetCoreTiming().ScheduleEvent(GetIOSBootTicks(GetVersion()), s_event_finish_ios_boot,
ios_title_id);
}
else
{
FinishIOSBoot(m_system, ios_title_id);
}
return true;
}
void EmulationKernel::InitIPC()
{
if (Core::IsUninitialized(m_system))
return;
INFO_LOG_FMT(IOS, "IPC initialised.");
m_system.GetWiiIPC().GenerateAck(0);
}
void EmulationKernel::AddDevice(std::unique_ptr<Device> device)
{
ASSERT(device->GetDeviceType() == Device::DeviceType::Static);
m_device_map.insert_or_assign(device->GetDeviceName(), std::move(device));
}
void EmulationKernel::AddStaticDevices()
{
const Feature features = GetFeatures(GetVersion());
// Dolphin-specific device for letting homebrew access and alter emulator state.
AddDevice(std::make_unique<DolphinDevice>(*this, "/dev/dolphin"));
// OH1 (Bluetooth)
AddDevice(std::make_unique<DeviceStub>(*this, "/dev/usb/oh1"));
if (!Config::Get(Config::MAIN_BLUETOOTH_PASSTHROUGH_ENABLED))
AddDevice(std::make_unique<BluetoothEmuDevice>(*this, "/dev/usb/oh1/57e/305"));
else
AddDevice(std::make_unique<BluetoothRealDevice>(*this, "/dev/usb/oh1/57e/305"));
// Other core modules
AddDevice(std::make_unique<STMImmediateDevice>(*this, "/dev/stm/immediate"));
AddDevice(std::make_unique<STMEventHookDevice>(*this, "/dev/stm/eventhook"));
AddDevice(std::make_unique<DIDevice>(*this, "/dev/di"));
AddDevice(std::make_unique<SDIOSlot0Device>(*this, "/dev/sdio/slot0"));
AddDevice(std::make_unique<DeviceStub>(*this, "/dev/sdio/slot1"));
// Network modules
if (HasFeature(features, Feature::KD) || HasFeature(features, Feature::SO) ||
HasFeature(features, Feature::SSL))
{
m_socket_manager = std::make_shared<IOS::HLE::WiiSockMan>(*this);
}
if (HasFeature(features, Feature::KD))
{
constexpr auto time_device_name = "/dev/net/kd/time";
AddDevice(std::make_unique<NetKDTimeDevice>(*this, time_device_name));
const auto time_device =
std::static_pointer_cast<NetKDTimeDevice>(GetDeviceByName(time_device_name));
AddDevice(std::make_unique<NetKDRequestDevice>(*this, "/dev/net/kd/request", time_device));
}
if (HasFeature(features, Feature::NCD))
{
AddDevice(std::make_unique<NetNCDManageDevice>(*this, "/dev/net/ncd/manage"));
}
if (HasFeature(features, Feature::WiFi))
{
AddDevice(std::make_unique<NetWDCommandDevice>(*this, "/dev/net/wd/command"));
}
if (HasFeature(features, Feature::SO))
{
AddDevice(std::make_unique<NetIPTopDevice>(*this, "/dev/net/ip/top"));
}
if (HasFeature(features, Feature::SSL))
{
AddDevice(std::make_unique<NetSSLDevice>(*this, "/dev/net/ssl"));
}
// USB modules
// OH0 is unconditionally added because this device path is registered in all cases.
AddDevice(std::make_unique<OH0>(*this, "/dev/usb/oh0"));
if (HasFeature(features, Feature::NewUSB))
{
AddDevice(std::make_unique<USB_HIDv5>(*this, "/dev/usb/hid"));
AddDevice(std::make_unique<USB_VEN>(*this, "/dev/usb/ven"));
// TODO(IOS): register /dev/usb/usb, /dev/usb/msc, /dev/usb/hub and /dev/usb/ehc
// as stubs that return IPC_EACCES.
}
else
{
if (HasFeature(features, Feature::USB_HIDv4))
AddDevice(std::make_unique<USB_HIDv4>(*this, "/dev/usb/hid"));
if (HasFeature(features, Feature::USB_KBD))
AddDevice(std::make_unique<USB_KBD>(*this, "/dev/usb/kbd"));
}
if (HasFeature(features, Feature::WFS))
{
AddDevice(std::make_unique<WFSSRVDevice>(*this, "/dev/usb/wfssrv"));
AddDevice(std::make_unique<WFSIDevice>(*this, "/dev/wfsi"));
}
}
s32 EmulationKernel::GetFreeDeviceID()
{
for (u32 i = 0; i < IPC_MAX_FDS; i++)
{
if (m_fdmap[i] == nullptr)
{
return i;
}
}
return -1;
}
std::shared_ptr<Device> EmulationKernel::GetDeviceByName(std::string_view device_name)
{
const auto iterator = m_device_map.find(device_name);
return iterator != m_device_map.end() ? iterator->second : nullptr;
}
std::shared_ptr<Device> EmulationKernel::GetDeviceByFileDescriptor(const u32 fd)
{
if (fd < IPC_MAX_FDS)
return m_fdmap[fd];
switch (fd)
{
case 0x10000:
return GetDeviceByName("/dev/aes");
case 0x10001:
return GetDeviceByName("/dev/sha");
default:
return nullptr;
}
}
// Returns the FD for the newly opened device (on success) or an error code.
std::optional<IPCReply> EmulationKernel::OpenDevice(OpenRequest& request)
{
const s32 new_fd = GetFreeDeviceID();
INFO_LOG_FMT(IOS, "Opening {} (mode {}, fd {})", request.path,
Common::ToUnderlying(request.flags), new_fd);
if (new_fd < 0 || new_fd >= IPC_MAX_FDS)
{
ERROR_LOG_FMT(IOS, "Couldn't get a free fd, too many open files");
return IPCReply{IPC_EMAX, 5000_tbticks};
}
request.fd = new_fd;
std::shared_ptr<Device> device;
if (request.path.starts_with("/dev/usb/oh0/") && !GetDeviceByName(request.path) &&
!HasFeature(GetVersion(), Feature::NewUSB))
{
device = std::make_shared<OH0Device>(*this, request.path);
}
else if (request.path.starts_with("/dev/"))
{
device = GetDeviceByName(request.path);
}
else if (request.path.starts_with('/'))
{
device = GetDeviceByName("/dev/fs");
}
if (!device)
{
constexpr std::string_view cios_devices[] = {"/dev/flash", "/dev/mload", "/dev/sdio/sdhc",
"/dev/usb123", "/dev/usb2"};
static_assert(std::ranges::is_sorted(cios_devices));
if (std::ranges::binary_search(cios_devices, request.path))
WARN_LOG_FMT(IOS, "Possible anti-piracy check for cIOS device {}", request.path);
else
ERROR_LOG_FMT(IOS, "Unknown device: {}", request.path);
return IPCReply{IPC_ENOENT, 3700_tbticks};
}
std::optional<IPCReply> result = device->Open(request);
if (result && result->return_value >= IPC_SUCCESS)
{
m_fdmap[new_fd] = device;
result->return_value = new_fd;
}
return result;
}
std::optional<IPCReply> EmulationKernel::HandleIPCCommand(const Request& request)
{
if (request.command < IPC_CMD_OPEN || request.command > IPC_CMD_IOCTLV)
return IPCReply{IPC_EINVAL, 978_tbticks};
if (request.command == IPC_CMD_OPEN)
{
OpenRequest open_request{GetSystem(), request.address};
return OpenDevice(open_request);
}
const auto device = GetDeviceByFileDescriptor(request.fd);
if (!device)
return IPCReply{IPC_EINVAL, 550_tbticks};
std::optional<IPCReply> ret;
const u64 wall_time_before = Common::Timer::NowUs();
switch (request.command)
{
case IPC_CMD_CLOSE:
// if the fd is not a special IOS FD, we need to reset it too
if (request.fd < IPC_MAX_FDS)
m_fdmap[request.fd].reset();
ret = device->Close(request.fd);
break;
case IPC_CMD_READ:
ret = device->Read(ReadWriteRequest{GetSystem(), request.address});
break;
case IPC_CMD_WRITE:
ret = device->Write(ReadWriteRequest{GetSystem(), request.address});
break;
case IPC_CMD_SEEK:
ret = device->Seek(SeekRequest{GetSystem(), request.address});
break;
case IPC_CMD_IOCTL:
ret = device->IOCtl(IOCtlRequest{GetSystem(), request.address});
break;
case IPC_CMD_IOCTLV:
ret = device->IOCtlV(IOCtlVRequest{GetSystem(), request.address});
break;
default:
ASSERT_MSG(IOS, false, "Unexpected command: {:#x}", Common::ToUnderlying(request.command));
ret = IPCReply{IPC_EINVAL, 978_tbticks};
break;
}
const u64 wall_time_after = Common::Timer::NowUs();
constexpr u64 BLOCKING_IPC_COMMAND_THRESHOLD_US = 2000;
if (wall_time_after - wall_time_before > BLOCKING_IPC_COMMAND_THRESHOLD_US)
{
WARN_LOG_FMT(IOS, "Previous request to device {} blocked emulation for {} microseconds.",
device->GetDeviceName(), wall_time_after - wall_time_before);
}
return ret;
}
void EmulationKernel::ExecuteIPCCommand(const u32 address)
{
Request request{GetSystem(), address};
std::optional<IPCReply> result = HandleIPCCommand(request);
if (!result)
return;
// Ensure replies happen in order
auto& core_timing = GetSystem().GetCoreTiming();
const s64 ticks_until_last_reply = m_last_reply_time - core_timing.GetTicks();
if (ticks_until_last_reply > 0)
result->reply_delay_ticks += ticks_until_last_reply;
m_last_reply_time = core_timing.GetTicks() + result->reply_delay_ticks;
EnqueueIPCReply(request, result->return_value, result->reply_delay_ticks);
}
// Happens AS SOON AS IPC gets a new pointer!
void EmulationKernel::EnqueueIPCRequest(u32 address)
{
// Based on hardware tests, IOS takes between 5µs and 10µs to acknowledge an IPC request.
// Console 1: 456 TB ticks before ACK
// Console 2: 658 TB ticks before ACK
GetSystem().GetCoreTiming().ScheduleEvent(500_tbticks, s_event_enqueue,
address | ENQUEUE_REQUEST_FLAG);
}
// Called to send a reply to an IOS syscall
void EmulationKernel::EnqueueIPCReply(const Request& request, const s32 return_value,
s64 cycles_in_future, CoreTiming::FromThread from)
{
auto& system = GetSystem();
auto& memory = system.GetMemory();
memory.Write_U32(static_cast<u32>(return_value), request.address + 4);
// IOS writes back the command that was responded to in the FD field.
memory.Write_U32(request.command, request.address + 8);
// IOS also overwrites the command type with the reply type.
memory.Write_U32(IPC_REPLY, request.address);
system.GetCoreTiming().ScheduleEvent(cycles_in_future, s_event_enqueue, request.address, from);
}
void EmulationKernel::HandleIPCEvent(u64 userdata)
{
if (userdata & ENQUEUE_REQUEST_FLAG)
m_request_queue.push_back(static_cast<u32>(userdata));
else
m_reply_queue.push_back(static_cast<u32>(userdata));
UpdateIPC();
}
void EmulationKernel::UpdateIPC()
{
auto& wii_ipc = m_system.GetWiiIPC();
if (m_ipc_paused || !wii_ipc.IsReady())
return;
if (!m_request_queue.empty())
{
wii_ipc.ClearX1();
wii_ipc.GenerateAck(m_request_queue.front());
u32 command = m_request_queue.front();
m_request_queue.pop_front();
ExecuteIPCCommand(command);
return;
}
if (!m_reply_queue.empty())
{
wii_ipc.GenerateReply(m_reply_queue.front());
DEBUG_LOG_FMT(IOS, "<<-- Reply to IPC Request @ {:#010x}", m_reply_queue.front());
m_reply_queue.pop_front();
return;
}
}
void EmulationKernel::UpdateDevices()
{
// Check if a hardware device must be updated
for (const auto& entry : m_device_map)
{
if (entry.second->IsOpened())
{
entry.second->Update();
}
}
}
void EmulationKernel::UpdateWantDeterminism(const bool new_want_determinism)
{
if (m_socket_manager)
m_socket_manager->UpdateWantDeterminism(new_want_determinism);
for (const auto& device : m_device_map)
device.second->UpdateWantDeterminism(new_want_determinism);
}
void EmulationKernel::DoState(PointerWrap& p)
{
p.Do(m_request_queue);
p.Do(m_reply_queue);
p.Do(m_last_reply_time);
p.Do(m_ipc_paused);
p.Do(m_title_id);
p.Do(m_ppc_uid);
p.Do(m_ppc_gid);
m_iosc.DoState(p);
m_fs->DoState(p);
if (m_title_id == Titles::MIOS)
return;
if (m_socket_manager)
m_socket_manager->DoState(p);
for (const auto& entry : m_device_map)
entry.second->DoState(p);
if (p.IsReadMode())
{
for (u32 i = 0; i < IPC_MAX_FDS; i++)
{
u32 exists = 0;
p.Do(exists);
if (exists)
{
auto device_type = Device::DeviceType::Static;
p.Do(device_type);
switch (device_type)
{
case Device::DeviceType::Static:
{
std::string device_name;
p.Do(device_name);
m_fdmap[i] = GetDeviceByName(device_name);
break;
}
case Device::DeviceType::OH0:
m_fdmap[i] = std::make_shared<OH0Device>(*this, "");
m_fdmap[i]->DoState(p);
break;
}
}
}
}
else
{
for (auto& descriptor : m_fdmap)
{
u32 exists = descriptor ? 1 : 0;
p.Do(exists);
if (exists)
{
auto device_type = descriptor->GetDeviceType();
p.Do(device_type);
if (device_type == Device::Device::DeviceType::Static)
{
std::string device_name = descriptor->GetDeviceName();
p.Do(device_name);
}
else
{
descriptor->DoState(p);
}
}
}
}
}
IOSC& Kernel::GetIOSC()
{
return m_iosc;
}
static void FinishPPCBootstrap(Core::System& system, u64 userdata, s64 cycles_late)
{
// See Kernel::BootstrapPPC
const bool is_ancast = userdata == 1;
if (is_ancast)
ReleasePPCAncast(system);
else
ReleasePPC(system);
ASSERT(Core::IsCPUThread());
Core::CPUThreadGuard guard(system);
SConfig::OnTitleDirectlyBooted(guard);
INFO_LOG_FMT(IOS, "Bootstrapping done.");
}
void Init(Core::System& system)
{
auto& core_timing = system.GetCoreTiming();
s_event_enqueue =
core_timing.RegisterEvent("IPCEvent", [](Core::System& system_, u64 userdata, s64) {
auto* ios = system_.GetIOS();
if (ios)
ios->HandleIPCEvent(userdata);
});
ESDevice::InitializeEmulationState(core_timing);
s_event_finish_ppc_bootstrap =
core_timing.RegisterEvent("IOSFinishPPCBootstrap", FinishPPCBootstrap);
s_event_finish_ios_boot = core_timing.RegisterEvent(
"IOSFinishIOSBoot",
[](Core::System& system_, u64 ios_title_id, s64) { FinishIOSBoot(system_, ios_title_id); });
DIDevice::s_finish_executing_di_command =
core_timing.RegisterEvent("FinishDICommand", DIDevice::FinishDICommandCallback);
// Start with IOS80 to simulate part of the Wii boot process.
system.SetIOS(std::make_unique<EmulationKernel>(system, Titles::SYSTEM_MENU_IOS));
// On a Wii, boot2 launches the system menu IOS, which then launches the system menu
// (which bootstraps the PPC). Bootstrapping the PPC results in memory values being set up.
// This means that the constants in the 0x3100 region are always set up by the time
// a game is launched. This is necessary because booting games from the game list skips
// a significant part of a Wii's boot process.
SetupMemory(system.GetMemory(), Titles::SYSTEM_MENU_IOS, MemorySetupType::Full);
}
void Shutdown(Core::System& system)
{
system.SetIOS(nullptr);
ESDevice::FinalizeEmulationState();
}
// Based on a hardware test, a device takes at least ~2700 ticks to reply to an IPC request.
// Depending on how much work a command performs, this can take much longer (10000+)
// especially if the NAND filesystem is accessed.
//
// Because we currently don't emulate timing very accurately, we should not return
// the minimum possible reply time (~960 ticks from the kernel or ~2700 from devices)
// but an average value, otherwise we are going to be much too fast in most cases.
IPCReply::IPCReply(s32 return_value_) : IPCReply(return_value_, 4000_tbticks)
{
}
IPCReply::IPCReply(s32 return_value_, u64 reply_delay_ticks_)
: return_value(return_value_), reply_delay_ticks(reply_delay_ticks_)
{
}
} // namespace IOS::HLE