mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-15 10:39:13 +01:00
caec42135d
These aren't necessary, since the stdlib provides equivalents.
228 lines
5.0 KiB
C++
228 lines
5.0 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
|
|
namespace MathUtil
|
|
{
|
|
template<class T>
|
|
inline void Clamp(T* val, const T& min, const T& max)
|
|
{
|
|
if (*val < min)
|
|
*val = min;
|
|
else if (*val > max)
|
|
*val = max;
|
|
}
|
|
|
|
template<class T>
|
|
inline T Clamp(const T val, const T& min, const T& max)
|
|
{
|
|
T ret = val;
|
|
Clamp(&ret, min, max);
|
|
return ret;
|
|
}
|
|
|
|
// The most significant bit of the fraction is an is-quiet bit on all architectures we care about.
|
|
|
|
static const u64 DOUBLE_SIGN = 0x8000000000000000ULL,
|
|
DOUBLE_EXP = 0x7FF0000000000000ULL,
|
|
DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL,
|
|
DOUBLE_ZERO = 0x0000000000000000ULL,
|
|
DOUBLE_QBIT = 0x0008000000000000ULL;
|
|
|
|
static const u32 FLOAT_SIGN = 0x80000000,
|
|
FLOAT_EXP = 0x7F800000,
|
|
FLOAT_FRAC = 0x007FFFFF,
|
|
FLOAT_ZERO = 0x00000000;
|
|
|
|
union IntDouble {
|
|
double d;
|
|
u64 i;
|
|
|
|
explicit IntDouble(u64 _i) : i(_i) {}
|
|
explicit IntDouble(double _d) : d(_d) {}
|
|
};
|
|
union IntFloat {
|
|
float f;
|
|
u32 i;
|
|
|
|
explicit IntFloat(u32 _i) : i(_i) {}
|
|
explicit IntFloat(float _f) : f(_f) {}
|
|
};
|
|
|
|
inline bool IsQNAN(double d)
|
|
{
|
|
IntDouble x(d);
|
|
return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
|
|
((x.i & DOUBLE_QBIT) == DOUBLE_QBIT);
|
|
}
|
|
|
|
inline bool IsSNAN(double d)
|
|
{
|
|
IntDouble x(d);
|
|
return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
|
|
((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
|
|
((x.i & DOUBLE_QBIT) == DOUBLE_ZERO);
|
|
}
|
|
|
|
inline float FlushToZero(float f)
|
|
{
|
|
IntFloat x(f);
|
|
if ((x.i & FLOAT_EXP) == 0)
|
|
{
|
|
x.i &= FLOAT_SIGN; // turn into signed zero
|
|
}
|
|
return x.f;
|
|
}
|
|
|
|
inline double FlushToZero(double d)
|
|
{
|
|
IntDouble x(d);
|
|
if ((x.i & DOUBLE_EXP) == 0)
|
|
{
|
|
x.i &= DOUBLE_SIGN; // turn into signed zero
|
|
}
|
|
return x.d;
|
|
}
|
|
|
|
enum PPCFpClass
|
|
{
|
|
PPC_FPCLASS_QNAN = 0x11,
|
|
PPC_FPCLASS_NINF = 0x9,
|
|
PPC_FPCLASS_NN = 0x8,
|
|
PPC_FPCLASS_ND = 0x18,
|
|
PPC_FPCLASS_NZ = 0x12,
|
|
PPC_FPCLASS_PZ = 0x2,
|
|
PPC_FPCLASS_PD = 0x14,
|
|
PPC_FPCLASS_PN = 0x4,
|
|
PPC_FPCLASS_PINF = 0x5,
|
|
};
|
|
|
|
// Uses PowerPC conventions for the return value, so it can be easily
|
|
// used directly in CPU emulation.
|
|
u32 ClassifyDouble(double dvalue);
|
|
// More efficient float version.
|
|
u32 ClassifyFloat(float fvalue);
|
|
|
|
extern const int frsqrte_expected_base[];
|
|
extern const int frsqrte_expected_dec[];
|
|
extern const int fres_expected_base[];
|
|
extern const int fres_expected_dec[];
|
|
|
|
// PowerPC approximation algorithms
|
|
double ApproximateReciprocalSquareRoot(double val);
|
|
double ApproximateReciprocal(double val);
|
|
|
|
template<class T>
|
|
struct Rectangle
|
|
{
|
|
T left;
|
|
T top;
|
|
T right;
|
|
T bottom;
|
|
|
|
Rectangle()
|
|
{ }
|
|
|
|
Rectangle(T theLeft, T theTop, T theRight, T theBottom)
|
|
: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
|
|
{ }
|
|
|
|
bool operator==(const Rectangle& r) { return left==r.left && top==r.top && right==r.right && bottom==r.bottom; }
|
|
|
|
T GetWidth() const { return abs(right - left); }
|
|
T GetHeight() const { return abs(bottom - top); }
|
|
|
|
// If the rectangle is in a coordinate system with a lower-left origin, use
|
|
// this Clamp.
|
|
void ClampLL(T x1, T y1, T x2, T y2)
|
|
{
|
|
Clamp(&left, x1, x2);
|
|
Clamp(&right, x1, x2);
|
|
Clamp(&top, y2, y1);
|
|
Clamp(&bottom, y2, y1);
|
|
}
|
|
|
|
// If the rectangle is in a coordinate system with an upper-left origin,
|
|
// use this Clamp.
|
|
void ClampUL(T x1, T y1, T x2, T y2)
|
|
{
|
|
Clamp(&left, x1, x2);
|
|
Clamp(&right, x1, x2);
|
|
Clamp(&top, y1, y2);
|
|
Clamp(&bottom, y1, y2);
|
|
}
|
|
};
|
|
|
|
} // namespace MathUtil
|
|
|
|
float MathFloatVectorSum(const std::vector<float>&);
|
|
|
|
#define ROUND_UP(x, a) (((x) + (a) - 1) & ~((a) - 1))
|
|
#define ROUND_DOWN(x, a) ((x) & ~((a) - 1))
|
|
|
|
inline bool IsPow2(u32 imm) {return (imm & (imm - 1)) == 0;}
|
|
|
|
// Rounds down. 0 -> undefined
|
|
inline int IntLog2(u64 val)
|
|
{
|
|
#if defined(__GNUC__)
|
|
return 63 - __builtin_clzll(val);
|
|
|
|
#elif defined(_MSC_VER)
|
|
unsigned long result = -1;
|
|
_BitScanReverse64(&result, val);
|
|
return result;
|
|
|
|
#else
|
|
int result = -1;
|
|
while (val != 0)
|
|
{
|
|
val >>= 1;
|
|
++result;
|
|
}
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
// Tiny matrix/vector library.
|
|
// Used for things like Free-Look in the gfx backend.
|
|
|
|
class Matrix33
|
|
{
|
|
public:
|
|
static void LoadIdentity(Matrix33 &mtx);
|
|
|
|
// set mtx to be a rotation matrix around the x axis
|
|
static void RotateX(Matrix33 &mtx, float rad);
|
|
// set mtx to be a rotation matrix around the y axis
|
|
static void RotateY(Matrix33 &mtx, float rad);
|
|
|
|
// set result = a x b
|
|
static void Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result);
|
|
static void Multiply(const Matrix33 &a, const float vec[3], float result[3]);
|
|
|
|
float data[9];
|
|
};
|
|
|
|
class Matrix44
|
|
{
|
|
public:
|
|
static void LoadIdentity(Matrix44 &mtx);
|
|
static void LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33);
|
|
static void Set(Matrix44 &mtx, const float mtxArray[16]);
|
|
|
|
static void Translate(Matrix44 &mtx, const float vec[3]);
|
|
static void Shear(Matrix44 &mtx, const float a, const float b = 0);
|
|
|
|
static void Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result);
|
|
|
|
float data[16];
|
|
};
|