2017-03-15 17:41:33 -07:00

149 lines
5.4 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <utility>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/GL/GLUtil.h"
#include "VideoBackends/OGL/ProgramShaderCache.h"
#include "VideoBackends/OGL/Render.h"
#include "VideoCommon/FramebufferManagerBase.h"
// On the GameCube, the game sends a request for the graphics processor to
// transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM
// called the XFB (External Framebuffer). The size and location of the XFB is
// decided at the time of the copy, and the format is always YUYV. The video
// interface is given a pointer to the XFB, which will be decoded and
// displayed on the TV.
//
// There are two ways for Dolphin to emulate this:
//
// Real XFB mode:
//
// Dolphin will behave like the GameCube and encode the EFB to
// a portion of GameCube RAM. The emulated video interface will decode the data
// for output to the screen.
//
// Advantages: Behaves exactly like the GameCube.
// Disadvantages: Resolution will be limited.
//
// Virtual XFB mode:
//
// When a request is made to copy the EFB to an XFB, Dolphin
// will remember the RAM location and size of the XFB in a Virtual XFB list.
// The video interface will look up the XFB in the list and use the enhanced
// data stored there, if available.
//
// Advantages: Enables high resolution graphics, better than real hardware.
// Disadvantages: If the GameCube CPU writes directly to the XFB (which is
// possible but uncommon), the Virtual XFB will not capture this information.
// There may be multiple XFBs in GameCube RAM. This is the maximum number to
// virtualize.
namespace OGL
{
struct XFBSource : public XFBSourceBase
{
XFBSource(GLuint tex, int layers) : texture(tex), m_layers(layers) {}
~XFBSource();
void CopyEFB(float Gamma) override;
void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight) override;
const GLuint texture;
const int m_layers;
};
class FramebufferManager : public FramebufferManagerBase
{
public:
FramebufferManager(int targetWidth, int targetHeight, int msaaSamples,
bool enable_stencil_buffer);
~FramebufferManager();
// To get the EFB in texture form, these functions may have to transfer
// the EFB to a resolved texture first.
static GLuint GetEFBColorTexture(const EFBRectangle& sourceRc);
static GLuint GetEFBDepthTexture(const EFBRectangle& sourceRc);
static void ResolveEFBStencilTexture();
static GLuint GetEFBFramebuffer(unsigned int layer = 0)
{
return (layer < m_EFBLayers) ? m_efbFramebuffer[layer] : m_efbFramebuffer.back();
}
static GLuint GetXFBFramebuffer() { return m_xfbFramebuffer; }
// Resolved framebuffer is only used in MSAA mode.
static GLuint GetResolvedFramebuffer();
static void SetFramebuffer(GLuint fb);
static void FramebufferTexture(GLenum target, GLenum attachment, GLenum textarget, GLuint texture,
GLint level);
// If in MSAA mode, this will perform a resolve of the specified rectangle, and return the resolve
// target as a texture ID.
// Thus, this call may be expensive. Don't repeat it unnecessarily.
// If not in MSAA mode, will just return the render target texture ID.
// After calling this, before you render anything else, you MUST bind the framebuffer you want to
// draw to.
static GLuint ResolveAndGetRenderTarget(const EFBRectangle& rect);
// Same as above but for the depth Target.
// After calling this, before you render anything else, you MUST bind the framebuffer you want to
// draw to.
static GLuint ResolveAndGetDepthTarget(const EFBRectangle& rect);
// Convert EFB content on pixel format change.
// convtype=0 -> rgb8->rgba6, convtype=2 -> rgba6->rgb8
static void ReinterpretPixelData(unsigned int convtype);
static void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points);
static bool HasStencilBuffer();
private:
GLuint CreateTexture(GLenum texture_type, GLenum internal_format, GLenum pixel_format,
GLenum data_type);
void BindLayeredTexture(GLuint texture, const std::vector<GLuint>& framebuffers,
GLenum attachment, GLenum texture_type);
std::unique_ptr<XFBSourceBase> CreateXFBSource(unsigned int target_width,
unsigned int target_height,
unsigned int layers) override;
std::pair<u32, u32> GetTargetSize() const override;
void CopyToRealXFB(u32 xfbAddr, u32 fbStride, u32 fbHeight, const EFBRectangle& sourceRc,
float Gamma) override;
static int m_targetWidth;
static int m_targetHeight;
static int m_msaaSamples;
static GLenum m_textureType;
static std::vector<GLuint> m_efbFramebuffer;
static GLuint m_xfbFramebuffer;
static GLuint m_efbColor;
static GLuint m_efbDepth;
static GLuint
m_efbColorSwap; // will be hot swapped with m_efbColor when reinterpreting EFB pixel formats
static bool m_enable_stencil_buffer;
// Only used in MSAA mode, TODO: try to avoid them
static std::vector<GLuint> m_resolvedFramebuffer;
static GLuint m_resolvedColorTexture;
static GLuint m_resolvedDepthTexture;
// For pixel format draw
static SHADER m_pixel_format_shaders[2];
// For EFB pokes
static GLuint m_EfbPokes_VBO;
static GLuint m_EfbPokes_VAO;
static SHADER m_EfbPokes;
};
} // namespace OGL