421 lines
16 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <array>
#include <memory>
#include <mutex>
#include <string>
#include <string_view>
#include <thread>
#include <tuple>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AsyncShaderCompiler.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FrameDump.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/TextureConfig.h"
class AbstractFramebuffer;
class AbstractPipeline;
class AbstractShader;
class AbstractTexture;
class AbstractStagingTexture;
class NativeVertexFormat;
class NetPlayChatUI;
class PointerWrap;
struct TextureConfig;
struct ComputePipelineConfig;
struct AbstractPipelineConfig;
struct PortableVertexDeclaration;
enum class ShaderStage;
enum class EFBAccessType;
enum class EFBReinterpretType;
enum class StagingTextureType;
enum class AspectMode;
namespace VideoCommon
{
class PostProcessing;
} // namespace VideoCommon
struct EfbPokeData
{
u16 x, y;
u32 data;
};
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale,
AbstractTextureFormat backbuffer_format);
virtual ~Renderer();
using ClearColor = std::array<float, 4>;
virtual bool IsHeadless() const = 0;
virtual bool Initialize();
virtual void Shutdown();
virtual void SetPipeline(const AbstractPipeline* pipeline) {}
virtual void SetScissorRect(const MathUtil::Rectangle<int>& rc) {}
virtual void SetTexture(u32 index, const AbstractTexture* texture) {}
virtual void SetSamplerState(u32 index, const SamplerState& state) {}
virtual void SetComputeImageTexture(AbstractTexture* texture, bool read, bool write) {}
virtual void UnbindTexture(const AbstractTexture* texture) {}
virtual void SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
}
virtual void SetFullscreen(bool enable_fullscreen) {}
virtual bool IsFullscreen() const { return false; }
virtual void BeginUtilityDrawing();
virtual void EndUtilityDrawing();
virtual std::unique_ptr<AbstractTexture> CreateTexture(const TextureConfig& config) = 0;
virtual std::unique_ptr<AbstractStagingTexture>
CreateStagingTexture(StagingTextureType type, const TextureConfig& config) = 0;
virtual std::unique_ptr<AbstractFramebuffer>
CreateFramebuffer(AbstractTexture* color_attachment, AbstractTexture* depth_attachment) = 0;
// Framebuffer operations.
virtual void SetFramebuffer(AbstractFramebuffer* framebuffer);
virtual void SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer);
virtual void SetAndClearFramebuffer(AbstractFramebuffer* framebuffer,
const ClearColor& color_value = {}, float depth_value = 0.0f);
// Drawing with currently-bound pipeline state.
virtual void Draw(u32 base_vertex, u32 num_vertices) {}
virtual void DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) {}
// Dispatching compute shaders with currently-bound state.
virtual void DispatchComputeShader(const AbstractShader* shader, u32 groups_x, u32 groups_y,
u32 groups_z)
{
}
// Binds the backbuffer for rendering. The buffer will be cleared immediately after binding.
// This is where any window size changes are detected, therefore m_backbuffer_width and/or
// m_backbuffer_height may change after this function returns.
virtual void BindBackbuffer(const ClearColor& clear_color = {}) {}
// Presents the backbuffer to the window system, or "swaps buffers".
virtual void PresentBackbuffer() {}
// Shader modules/objects.
virtual std::unique_ptr<AbstractShader> CreateShaderFromSource(ShaderStage stage,
std::string_view source) = 0;
virtual std::unique_ptr<AbstractShader>
CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) = 0;
virtual std::unique_ptr<NativeVertexFormat>
CreateNativeVertexFormat(const PortableVertexDeclaration& vtx_decl) = 0;
virtual std::unique_ptr<AbstractPipeline> CreatePipeline(const AbstractPipelineConfig& config,
const void* cache_data = nullptr,
size_t cache_data_length = 0) = 0;
AbstractFramebuffer* GetCurrentFramebuffer() const { return m_current_framebuffer; }
// Ideal internal resolution - multiple of the native EFB resolution
int GetTargetWidth() const { return m_target_width; }
int GetTargetHeight() const { return m_target_height; }
// Display resolution
int GetBackbufferWidth() const { return m_backbuffer_width; }
int GetBackbufferHeight() const { return m_backbuffer_height; }
float GetBackbufferScale() const { return m_backbuffer_scale; }
void SetWindowSize(int width, int height);
// Sets viewport and scissor to the specified rectangle. rect is assumed to be in framebuffer
// coordinates, i.e. lower-left origin in OpenGL.
void SetViewportAndScissor(const MathUtil::Rectangle<int>& rect, float min_depth = 0.0f,
float max_depth = 1.0f);
// Scales a GPU texture using a copy shader.
virtual void ScaleTexture(AbstractFramebuffer* dst_framebuffer,
const MathUtil::Rectangle<int>& dst_rect,
const AbstractTexture* src_texture,
const MathUtil::Rectangle<int>& src_rect);
// Converts an upper-left to lower-left if required by the backend, optionally
// clamping to the framebuffer size.
MathUtil::Rectangle<int> ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
u32 fb_width, u32 fb_height) const;
MathUtil::Rectangle<int>
ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
const AbstractFramebuffer* framebuffer) const;
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
MathUtil::Rectangle<int> ConvertEFBRectangle(const MathUtil::Rectangle<int>& rc) const;
const MathUtil::Rectangle<int>& GetTargetRectangle() const { return m_target_rectangle; }
float CalculateDrawAspectRatio() const;
// Crops the target rectangle to the framebuffer dimensions, reducing the size of the source
// rectangle if it is greater. Works even if the source and target rectangles don't have a
// 1:1 pixel mapping, scaling as appropriate.
void AdjustRectanglesToFitBounds(MathUtil::Rectangle<int>* target_rect,
MathUtil::Rectangle<int>* source_rect, int fb_width,
int fb_height);
std::tuple<float, float> ScaleToDisplayAspectRatio(int width, int height) const;
void UpdateDrawRectangle();
std::tuple<float, float> ApplyStandardAspectCrop(float width, float height) const;
// Use this to convert a single target rectangle to two stereo rectangles
std::tuple<MathUtil::Rectangle<int>, MathUtil::Rectangle<int>>
ConvertStereoRectangle(const MathUtil::Rectangle<int>& rc) const;
unsigned int GetEFBScale() const;
// Use this to upscale native EFB coordinates to IDEAL internal resolution
int EFBToScaledX(int x) const;
int EFBToScaledY(int y) const;
// Floating point versions of the above - only use them if really necessary
float EFBToScaledXf(float x) const;
float EFBToScaledYf(float y) const;
// Random utilities
void SaveScreenshot(std::string filename);
void DrawDebugText();
virtual void ClearScreen(const MathUtil::Rectangle<int>& rc, bool colorEnable, bool alphaEnable,
bool zEnable, u32 color, u32 z);
virtual void ReinterpretPixelData(EFBReinterpretType convtype);
void RenderToXFB(u32 xfbAddr, const MathUtil::Rectangle<int>& sourceRc, u32 fbStride,
u32 fbHeight, float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data);
virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points);
virtual u16 BBoxRead(int index) = 0;
virtual void BBoxWrite(int index, u16 value) = 0;
virtual void BBoxFlush() {}
virtual void Flush() {}
virtual void WaitForGPUIdle() {}
// Finish up the current frame, print some stats
void Swap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks);
void UpdateWidescreenHeuristic();
// Draws the specified XFB buffer to the screen, performing any post-processing.
// Assumes that the backbuffer has already been bound and cleared.
virtual void RenderXFBToScreen(const MathUtil::Rectangle<int>& target_rc,
const AbstractTexture* source_texture,
const MathUtil::Rectangle<int>& source_rc);
// Called when the configuration changes, and backend structures need to be updated.
virtual void OnConfigChanged(u32 bits) {}
PEControl::PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; }
void StorePixelFormat(PEControl::PixelFormat new_format) { m_prev_efb_format = new_format; }
bool EFBHasAlphaChannel() const;
VideoCommon::PostProcessing* GetPostProcessor() const { return m_post_processor.get(); }
// Final surface changing
// This is called when the surface is resized (WX) or the window changes (Android).
void ChangeSurface(void* new_surface_handle);
void ResizeSurface();
bool UseVertexDepthRange() const;
void DoState(PointerWrap& p);
virtual std::unique_ptr<VideoCommon::AsyncShaderCompiler> CreateAsyncShaderCompiler();
// Returns true if a layer-expanding geometry shader should be used when rendering the user
// interface and final XFB.
bool UseGeometryShaderForUI() const;
// Returns a lock for the ImGui mutex, enabling data structures to be modified from outside.
// Use with care, only non-drawing functions should be called from outside the video thread,
// as the drawing is tied to a "frame".
std::unique_lock<std::mutex> GetImGuiLock();
// Begins/presents a "UI frame". UI frames do not draw any of the console XFB, but this could
// change in the future.
void BeginUIFrame();
void EndUIFrame();
// Will forcibly reload all textures on the next swap
void ForceReloadTextures();
protected:
// Bitmask containing information about which configuration has changed for the backend.
enum ConfigChangeBits : u32
{
CONFIG_CHANGE_BIT_HOST_CONFIG = (1 << 0),
CONFIG_CHANGE_BIT_MULTISAMPLES = (1 << 1),
CONFIG_CHANGE_BIT_STEREO_MODE = (1 << 2),
CONFIG_CHANGE_BIT_TARGET_SIZE = (1 << 3),
CONFIG_CHANGE_BIT_ANISOTROPY = (1 << 4),
CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING = (1 << 5),
CONFIG_CHANGE_BIT_VSYNC = (1 << 6),
CONFIG_CHANGE_BIT_BBOX = (1 << 7)
};
std::tuple<int, int> CalculateTargetScale(int x, int y) const;
bool CalculateTargetSize();
void CheckForConfigChanges();
void CheckFifoRecording();
void RecordVideoMemory();
// ImGui initialization depends on being able to create textures and pipelines, so do it last.
bool InitializeImGui();
// Recompiles ImGui pipeline - call when stereo mode changes.
bool RecompileImGuiPipeline();
// Sets up ImGui state for the next frame.
// This function itself acquires the ImGui lock, so it should not be held.
void BeginImGuiFrame();
// Destroys all ImGui GPU resources, must do before shutdown.
void ShutdownImGui();
// Renders ImGui windows to the currently-bound framebuffer.
// Should be called with the ImGui lock held.
void DrawImGui();
AbstractFramebuffer* m_current_framebuffer = nullptr;
const AbstractPipeline* m_current_pipeline = nullptr;
Common::Flag m_screenshot_request;
Common::Event m_screenshot_completed;
std::mutex m_screenshot_lock;
std::string m_screenshot_name;
bool m_is_game_widescreen = false;
bool m_was_orthographically_anamorphic = false;
// The framebuffer size
int m_target_width = 1;
int m_target_height = 1;
// Backbuffer (window) size and render area
int m_backbuffer_width = 0;
int m_backbuffer_height = 0;
float m_backbuffer_scale = 1.0f;
AbstractTextureFormat m_backbuffer_format = AbstractTextureFormat::Undefined;
MathUtil::Rectangle<int> m_target_rectangle = {};
int m_frame_count = 0;
FPSCounter m_fps_counter;
std::unique_ptr<VideoCommon::PostProcessing> m_post_processor;
void* m_new_surface_handle = nullptr;
Common::Flag m_surface_changed;
Common::Flag m_surface_resized;
std::mutex m_swap_mutex;
// ImGui resources.
std::unique_ptr<NativeVertexFormat> m_imgui_vertex_format;
std::vector<std::unique_ptr<AbstractTexture>> m_imgui_textures;
std::unique_ptr<AbstractPipeline> m_imgui_pipeline;
std::mutex m_imgui_mutex;
u64 m_imgui_last_frame_time;
private:
void RunFrameDumps();
std::tuple<int, int> CalculateOutputDimensions(int width, int height) const;
PEControl::PixelFormat m_prev_efb_format = PEControl::INVALID_FMT;
unsigned int m_efb_scale = 1;
// These will be set on the first call to SetWindowSize.
int m_last_window_request_width = 0;
int m_last_window_request_height = 0;
// frame dumping
std::thread m_frame_dump_thread;
Common::Event m_frame_dump_start;
Common::Event m_frame_dump_done;
Common::Flag m_frame_dump_thread_running;
u32 m_frame_dump_image_counter = 0;
bool m_frame_dump_frame_running = false;
struct FrameDumpConfig
{
const u8* data;
int width;
int height;
int stride;
FrameDump::Frame state;
} m_frame_dump_config;
// Texture used for screenshot/frame dumping
std::unique_ptr<AbstractTexture> m_frame_dump_render_texture;
std::unique_ptr<AbstractFramebuffer> m_frame_dump_render_framebuffer;
std::array<std::unique_ptr<AbstractStagingTexture>, 2> m_frame_dump_readback_textures;
FrameDump::Frame m_last_frame_state;
bool m_last_frame_exported = false;
// Tracking of XFB textures so we don't render duplicate frames.
u64 m_last_xfb_id = std::numeric_limits<u64>::max();
u64 m_last_xfb_ticks = 0;
u32 m_last_xfb_addr = 0;
u32 m_last_xfb_width = 0;
u32 m_last_xfb_stride = 0;
u32 m_last_xfb_height = 0;
// NOTE: The methods below are called on the framedumping thread.
bool StartFrameDumpToFFMPEG(const FrameDumpConfig& config);
void DumpFrameToFFMPEG(const FrameDumpConfig& config);
void StopFrameDumpToFFMPEG();
std::string GetFrameDumpNextImageFileName() const;
bool StartFrameDumpToImage(const FrameDumpConfig& config);
void DumpFrameToImage(const FrameDumpConfig& config);
void ShutdownFrameDumping();
bool IsFrameDumping() const;
// Checks that the frame dump render texture exists and is the correct size.
bool CheckFrameDumpRenderTexture(u32 target_width, u32 target_height);
// Checks that the frame dump readback texture exists and is the correct size.
bool CheckFrameDumpReadbackTexture(u32 target_width, u32 target_height);
// Fills the frame dump staging texture with the current XFB texture.
void DumpCurrentFrame(const AbstractTexture* src_texture,
const MathUtil::Rectangle<int>& src_rect, u64 ticks);
// Asynchronously encodes the specified pointer of frame data to the frame dump.
void DumpFrameData(const u8* data, int w, int h, int stride, const FrameDump::Frame& state);
// Ensures all rendered frames are queued for encoding.
void FlushFrameDump();
// Ensures all encoded frames have been written to the output file.
void FinishFrameData();
std::unique_ptr<NetPlayChatUI> m_netplay_chat_ui;
Common::Flag m_force_reload_textures;
};
extern std::unique_ptr<Renderer> g_renderer;