969 lines
43 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Vulkan/TextureCache.h"
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/PaletteTextureConverter.h"
#include "VideoBackends/Vulkan/Renderer.h"
#include "VideoBackends/Vulkan/StagingTexture2D.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/Texture2D.h"
#include "VideoBackends/Vulkan/TextureEncoder.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/ImageWrite.h"
namespace Vulkan
{
TextureCache::TextureCache()
{
}
TextureCache::~TextureCache()
{
if (m_initialize_render_pass != VK_NULL_HANDLE)
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_initialize_render_pass, nullptr);
if (m_update_render_pass != VK_NULL_HANDLE)
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_update_render_pass, nullptr);
TextureCache::DeleteShaders();
}
TextureCache* TextureCache::GetInstance()
{
return static_cast<TextureCache*>(g_texture_cache.get());
}
bool TextureCache::Initialize()
{
m_texture_upload_buffer =
StreamBuffer::Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, INITIAL_TEXTURE_UPLOAD_BUFFER_SIZE,
MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE);
if (!m_texture_upload_buffer)
{
PanicAlert("Failed to create texture upload buffer");
return false;
}
if (!CreateRenderPasses())
{
PanicAlert("Failed to create copy render pass");
return false;
}
m_texture_encoder = std::make_unique<TextureEncoder>();
if (!m_texture_encoder->Initialize())
{
PanicAlert("Failed to initialize texture encoder.");
return false;
}
m_palette_texture_converter = std::make_unique<PaletteTextureConverter>();
if (!m_palette_texture_converter->Initialize())
{
PanicAlert("Failed to initialize palette texture converter");
return false;
}
if (!CompileShaders())
{
PanicAlert("Failed to compile one or more shaders");
return false;
}
return true;
}
void TextureCache::ConvertTexture(TCacheEntryBase* base_entry, TCacheEntryBase* base_unconverted,
void* palette, TlutFormat format)
{
TCacheEntry* entry = static_cast<TCacheEntry*>(base_entry);
TCacheEntry* unconverted = static_cast<TCacheEntry*>(base_unconverted);
_assert_(entry->config.rendertarget);
// EFB copies can be used as paletted textures as well. For these, we can't assume them to be
// contain the correct data before the frame begins (when the init command buffer is executed),
// so we must convert them at the appropriate time, during the drawing command buffer.
VkCommandBuffer command_buffer;
if (unconverted->IsEfbCopy())
{
command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
}
else
{
// Use initialization command buffer and perform conversion before the drawing commands.
command_buffer = g_command_buffer_mgr->GetCurrentInitCommandBuffer();
}
m_palette_texture_converter->ConvertTexture(
command_buffer, GetRenderPassForTextureUpdate(entry->GetTexture()), entry->GetFramebuffer(),
unconverted->GetTexture(), entry->config.width, entry->config.height, palette, format,
unconverted->format);
// Render pass transitions to SHADER_READ_ONLY.
entry->GetTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
static bool IsDepthCopyFormat(PEControl::PixelFormat format)
{
return format == PEControl::Z24;
}
void TextureCache::CopyEFB(u8* dst, u32 format, u32 native_width, u32 bytes_per_row,
u32 num_blocks_y, u32 memory_stride, PEControl::PixelFormat src_format,
const EFBRectangle& src_rect, bool is_intensity, bool scale_by_half)
{
// Flush EFB pokes first, as they're expected to be included.
FramebufferManager::GetInstance()->FlushEFBPokes();
// MSAA case where we need to resolve first.
// TODO: Do in one pass.
TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top},
{static_cast<u32>(scaled_src_rect.GetWidth()),
static_cast<u32>(scaled_src_rect.GetHeight())}};
Texture2D* src_texture;
if (IsDepthCopyFormat(src_format))
src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region);
else
src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region);
// End render pass before barrier (since we have no self-dependencies).
// The barrier has to happen after the render pass, not inside it, as we are going to be
// reading from the texture immediately afterwards.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->OnReadback();
// Transition to shader resource before reading.
VkImageLayout original_layout = src_texture->GetLayout();
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_texture_encoder->EncodeTextureToRam(src_texture->GetView(), dst, format, native_width,
bytes_per_row, num_blocks_y, memory_stride, src_format,
is_intensity, scale_by_half, src_rect);
// Transition back to original state
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), original_layout);
}
void TextureCache::CopyRectangleFromTexture(TCacheEntry* dst_texture,
const MathUtil::Rectangle<int>& dst_rect,
Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
// Fast path when not scaling the image.
if (src_rect.GetWidth() == dst_rect.GetWidth() && src_rect.GetHeight() == dst_rect.GetHeight())
CopyTextureRectangle(dst_texture, dst_rect, src_texture, src_rect);
else
ScaleTextureRectangle(dst_texture, dst_rect, src_texture, src_rect);
}
void TextureCache::CopyTextureRectangle(TCacheEntry* dst_texture,
const MathUtil::Rectangle<int>& dst_rect,
Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
_assert_msg_(VIDEO, static_cast<u32>(src_rect.GetWidth()) <= src_texture->GetWidth() &&
static_cast<u32>(src_rect.GetHeight()) <= src_texture->GetHeight(),
"Source rect is too large for CopyRectangleFromTexture");
_assert_msg_(VIDEO, static_cast<u32>(dst_rect.GetWidth()) <= dst_texture->config.width &&
static_cast<u32>(dst_rect.GetHeight()) <= dst_texture->config.height,
"Dest rect is too large for CopyRectangleFromTexture");
VkImageCopy image_copy = {
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0,
src_texture->GetLayers()}, // VkImageSubresourceLayers srcSubresource
{src_rect.left, src_rect.top, 0}, // VkOffset3D srcOffset
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, // VkImageSubresourceLayers dstSubresource
dst_texture->config.layers},
{dst_rect.left, dst_rect.top, 0}, // VkOffset3D dstOffset
{static_cast<uint32_t>(src_rect.GetWidth()), static_cast<uint32_t>(src_rect.GetHeight()),
1} // VkExtent3D extent
};
// Must be called outside of a render pass.
StateTracker::GetInstance()->EndRenderPass();
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
dst_texture->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_texture->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_texture->GetTexture()->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
}
void TextureCache::ScaleTextureRectangle(TCacheEntry* dst_texture,
const MathUtil::Rectangle<int>& dst_rect,
Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
// Can't do this within a game render pass.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
// Can't render to a non-rendertarget (no framebuffer).
_assert_msg_(VIDEO, dst_texture->config.rendertarget,
"Destination texture for partial copy is not a rendertarget");
// Render pass expects dst_texture to be in SHADER_READ_ONLY state.
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
dst_texture->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
GetRenderPassForTextureUpdate(dst_texture->GetTexture()),
g_object_cache->GetPassthroughVertexShader(),
g_object_cache->GetPassthroughGeometryShader(), m_copy_shader);
VkRect2D region = {
{dst_rect.left, dst_rect.top},
{static_cast<u32>(dst_rect.GetWidth()), static_cast<u32>(dst_rect.GetHeight())}};
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
draw.DrawQuad(dst_rect.left, dst_rect.top, dst_rect.GetWidth(), dst_rect.GetHeight(),
src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
static_cast<int>(src_texture->GetWidth()),
static_cast<int>(src_texture->GetHeight()));
draw.EndRenderPass();
// Render pass transitions destination texture to SHADER_READ_ONLY.
dst_texture->GetTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
TextureCacheBase::TCacheEntryBase* TextureCache::CreateTexture(const TCacheEntryConfig& config)
{
// Determine image usage, we need to flag as an attachment if it can be used as a rendertarget.
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT;
if (config.rendertarget)
usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// Allocate texture object
std::unique_ptr<Texture2D> texture = Texture2D::Create(
config.width, config.height, config.levels, config.layers, TEXTURECACHE_TEXTURE_FORMAT,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL, usage);
if (!texture)
return nullptr;
// If this is a render target (for efb copies), allocate a framebuffer
VkFramebuffer framebuffer = VK_NULL_HANDLE;
if (config.rendertarget)
{
VkImageView framebuffer_attachments[] = {texture->GetView()};
VkFramebufferCreateInfo framebuffer_info = {
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
m_initialize_render_pass,
static_cast<u32>(ArraySize(framebuffer_attachments)),
framebuffer_attachments,
texture->GetWidth(),
texture->GetHeight(),
texture->GetLayers()};
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
&framebuffer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
return nullptr;
}
// Clear render targets before use to prevent reading uninitialized memory.
VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}};
VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, config.levels, 0,
config.layers};
texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), texture->GetImage(),
texture->GetLayout(), &clear_value, 1, &clear_range);
}
return new TCacheEntry(config, std::move(texture), framebuffer);
}
bool TextureCache::CreateRenderPasses()
{
static constexpr VkAttachmentDescription initialize_attachment = {
0,
TEXTURECACHE_TEXTURE_FORMAT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
static constexpr VkAttachmentDescription update_attachment = {
0,
TEXTURECACHE_TEXTURE_FORMAT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
static constexpr VkAttachmentReference color_attachment_reference = {
0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
static constexpr VkSubpassDescription subpass_description = {
0, VK_PIPELINE_BIND_POINT_GRAPHICS,
0, nullptr,
1, &color_attachment_reference,
nullptr, nullptr,
0, nullptr};
static constexpr VkSubpassDependency initialize_dependancies[] = {
{VK_SUBPASS_EXTERNAL, 0, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT},
{0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT, VK_DEPENDENCY_BY_REGION_BIT}};
static constexpr VkSubpassDependency update_dependancies[] = {
{VK_SUBPASS_EXTERNAL, 0, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT},
{0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT, VK_DEPENDENCY_BY_REGION_BIT}};
VkRenderPassCreateInfo initialize_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
1,
&initialize_attachment,
1,
&subpass_description,
static_cast<u32>(ArraySize(initialize_dependancies)),
initialize_dependancies};
VkRenderPassCreateInfo update_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
1,
&update_attachment,
1,
&subpass_description,
static_cast<u32>(ArraySize(update_dependancies)),
update_dependancies};
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &initialize_info, nullptr,
&m_initialize_render_pass);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (initialize) failed: ");
return false;
}
res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &update_info, nullptr,
&m_update_render_pass);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (update) failed: ");
return false;
}
return true;
}
VkRenderPass TextureCache::GetRenderPassForTextureUpdate(const Texture2D* texture) const
{
// EFB copies can be re-used as part of the texture pool. If this is the case, we need to insert
// a pipeline barrier to ensure that all reads from the texture expecting the old data have
// completed before overwriting the texture's contents. New textures will be in TRANSFER_DST
// due to the clear after creation.
// These two render passes are compatible, so even though the framebuffer was created with
// the initialize render pass it's still allowed.
if (texture->GetLayout() == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
return m_initialize_render_pass;
else
return m_update_render_pass;
}
TextureCache::TCacheEntry::TCacheEntry(const TCacheEntryConfig& config_,
std::unique_ptr<Texture2D> texture,
VkFramebuffer framebuffer)
: TCacheEntryBase(config_), m_texture(std::move(texture)), m_framebuffer(framebuffer)
{
}
TextureCache::TCacheEntry::~TCacheEntry()
{
// Texture is automatically cleaned up, however, we don't want to leave it bound.
StateTracker::GetInstance()->UnbindTexture(m_texture->GetView());
if (m_framebuffer != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferFramebufferDestruction(m_framebuffer);
}
void TextureCache::TCacheEntry::Load(unsigned int width, unsigned int height,
unsigned int expanded_width, unsigned int level)
{
// Can't copy data larger than the texture extents.
width = std::max(1u, std::min(width, m_texture->GetWidth() >> level));
height = std::max(1u, std::min(height, m_texture->GetHeight() >> level));
// We don't care about the existing contents of the texture, so we set the image layout to
// VK_IMAGE_LAYOUT_UNDEFINED here. However, if this texture is being re-used from the texture
// pool, it may still be in use. We assume that it's not, as non-efb-copy textures are only
// returned to the pool when the frame number is different, furthermore, we're doing this
// on the initialize command buffer, so a texture being re-used mid-frame would have undesirable
// effects regardless.
VkImageMemoryBarrier barrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType sType
nullptr, // const void* pNext
0, // VkAccessFlags srcAccessMask
VK_ACCESS_TRANSFER_WRITE_BIT, // VkAccessFlags dstAccessMask
VK_IMAGE_LAYOUT_UNDEFINED, // VkImageLayout oldLayout
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // VkImageLayout newLayout
VK_QUEUE_FAMILY_IGNORED, // uint32_t srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // uint32_t dstQueueFamilyIndex
m_texture->GetImage(), // VkImage image
{VK_IMAGE_ASPECT_COLOR_BIT, level, 1, 0, 1}, // VkImageSubresourceRange subresourceRange
};
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
// Does this texture data fit within the streaming buffer?
u32 upload_width = width;
u32 upload_pitch = upload_width * sizeof(u32);
u32 upload_size = upload_pitch * height;
u32 upload_alignment = static_cast<u32>(g_vulkan_context->GetBufferImageGranularity());
u32 source_pitch = expanded_width * 4;
if ((upload_size + upload_alignment) <= STAGING_TEXTURE_UPLOAD_THRESHOLD &&
(upload_size + upload_alignment) <= MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE)
{
// Assume tightly packed rows, with no padding as the buffer source.
StreamBuffer* upload_buffer = TextureCache::GetInstance()->m_texture_upload_buffer.get();
// Allocate memory from the streaming buffer for the texture data.
if (!upload_buffer->ReserveMemory(upload_size, g_vulkan_context->GetBufferImageGranularity()))
{
// Execute the command buffer first.
WARN_LOG(VIDEO, "Executing command list while waiting for space in texture upload buffer");
Util::ExecuteCurrentCommandsAndRestoreState(false);
// Try allocating again. This may cause a fence wait.
if (!upload_buffer->ReserveMemory(upload_size, g_vulkan_context->GetBufferImageGranularity()))
PanicAlert("Failed to allocate space in texture upload buffer");
}
// Grab buffer pointers
VkBuffer image_upload_buffer = upload_buffer->GetBuffer();
VkDeviceSize image_upload_buffer_offset = upload_buffer->GetCurrentOffset();
u8* image_upload_buffer_pointer = upload_buffer->GetCurrentHostPointer();
// Copy to the buffer using the stride from the subresource layout
const u8* source_ptr = TextureCache::temp;
if (upload_pitch != source_pitch)
{
VkDeviceSize copy_pitch = std::min(source_pitch, upload_pitch);
for (unsigned int row = 0; row < height; row++)
{
memcpy(image_upload_buffer_pointer + row * upload_pitch, source_ptr + row * source_pitch,
copy_pitch);
}
}
else
{
// Can copy the whole thing in one block, the pitch matches
memcpy(image_upload_buffer_pointer, source_ptr, upload_size);
}
// Flush buffer memory if necessary
upload_buffer->CommitMemory(upload_size);
// Copy from the streaming buffer to the actual image.
VkBufferImageCopy image_copy = {
image_upload_buffer_offset, // VkDeviceSize bufferOffset
0, // uint32_t bufferRowLength
0, // uint32_t bufferImageHeight
{VK_IMAGE_ASPECT_COLOR_BIT, level, 0, 1}, // VkImageSubresourceLayers imageSubresource
{0, 0, 0}, // VkOffset3D imageOffset
{width, height, 1} // VkExtent3D imageExtent
};
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), image_upload_buffer,
m_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&image_copy);
}
else
{
// Slow path. The data for the image is too large to fit in the streaming buffer, so we need
// to allocate a temporary texture to store the data in, then copy to the real texture.
std::unique_ptr<StagingTexture2D> staging_texture = StagingTexture2D::Create(
STAGING_BUFFER_TYPE_UPLOAD, width, height, TEXTURECACHE_TEXTURE_FORMAT);
if (!staging_texture || !staging_texture->Map())
{
PanicAlert("Failed to allocate staging texture for large texture upload.");
return;
}
// Copy data to staging texture first, then to the "real" texture.
staging_texture->WriteTexels(0, 0, width, height, TextureCache::temp, source_pitch);
staging_texture->CopyToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
m_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, width,
height, level, 0);
}
// Transition to shader read only.
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
m_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void TextureCache::TCacheEntry::FromRenderTarget(u8* dst, PEControl::PixelFormat src_format,
const EFBRectangle& src_rect, bool scale_by_half,
unsigned int cbufid, const float* colmat)
{
// A better way of doing this would be nice.
FramebufferManager* framebuffer_mgr =
static_cast<FramebufferManager*>(g_framebuffer_manager.get());
TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
bool is_depth_copy = IsDepthCopyFormat(src_format);
// Flush EFB pokes first, as they're expected to be included.
framebuffer_mgr->FlushEFBPokes();
// Has to be flagged as a render target.
_assert_(m_framebuffer != VK_NULL_HANDLE);
// Can't be done in a render pass, since we're doing our own render pass!
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
StateTracker::GetInstance()->EndRenderPass();
// Transition EFB to shader resource before binding
VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top},
{static_cast<u32>(scaled_src_rect.GetWidth()),
static_cast<u32>(scaled_src_rect.GetHeight())}};
Texture2D* src_texture;
if (is_depth_copy)
src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region);
else
src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region);
VkSampler src_sampler =
scale_by_half ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler();
VkImageLayout original_layout = src_texture->GetLayout();
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
UtilityShaderDraw draw(
command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_PUSH_CONSTANT),
TextureCache::GetInstance()->GetRenderPassForTextureUpdate(m_texture.get()),
g_object_cache->GetPassthroughVertexShader(), g_object_cache->GetPassthroughGeometryShader(),
is_depth_copy ? TextureCache::GetInstance()->m_efb_depth_to_tex_shader :
TextureCache::GetInstance()->m_efb_color_to_tex_shader);
draw.SetPushConstants(colmat, (is_depth_copy ? sizeof(float) * 20 : sizeof(float) * 28));
draw.SetPSSampler(0, src_texture->GetView(), src_sampler);
VkRect2D dest_region = {{0, 0}, {m_texture->GetWidth(), m_texture->GetHeight()}};
draw.BeginRenderPass(m_framebuffer, dest_region);
draw.DrawQuad(0, 0, config.width, config.height, scaled_src_rect.left, scaled_src_rect.top, 0,
scaled_src_rect.GetWidth(), scaled_src_rect.GetHeight(),
framebuffer_mgr->GetEFBWidth(), framebuffer_mgr->GetEFBHeight());
draw.EndRenderPass();
// We touched everything, so put it back.
StateTracker::GetInstance()->SetPendingRebind();
// Transition the EFB back to its original layout.
src_texture->TransitionToLayout(command_buffer, original_layout);
// Render pass transitions texture to SHADER_READ_ONLY.
m_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void TextureCache::TCacheEntry::CopyRectangleFromTexture(const TCacheEntryBase* source,
const MathUtil::Rectangle<int>& src_rect,
const MathUtil::Rectangle<int>& dst_rect)
{
const TCacheEntry* source_vk = static_cast<const TCacheEntry*>(source);
TextureCache::GetInstance()->CopyRectangleFromTexture(this, dst_rect, source_vk->GetTexture(),
src_rect);
// Ensure textures are ready for use again.
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
source_vk->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void TextureCache::TCacheEntry::Bind(unsigned int stage)
{
StateTracker::GetInstance()->SetTexture(stage, m_texture->GetView());
}
bool TextureCache::TCacheEntry::Save(const std::string& filename, unsigned int level)
{
_assert_(level < config.levels);
// Determine dimensions of image we want to save.
u32 level_width = std::max(1u, config.width >> level);
u32 level_height = std::max(1u, config.height >> level);
// Use a temporary staging texture for the download. Certainly not optimal,
// but since we have to idle the GPU anyway it doesn't really matter.
std::unique_ptr<StagingTexture2D> staging_texture = StagingTexture2D::Create(
STAGING_BUFFER_TYPE_READBACK, level_width, level_height, TEXTURECACHE_TEXTURE_FORMAT);
// Transition image to transfer source, and invalidate the current state,
// since we'll be executing the command buffer.
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
StateTracker::GetInstance()->EndRenderPass();
// Copy to download buffer.
staging_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
m_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0,
level_width, level_height, level, 0);
// Restore original state of texture.
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Block until the GPU has finished copying to the staging texture.
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
// Map the staging texture so we can copy the contents out.
if (staging_texture->Map())
{
PanicAlert("Failed to map staging texture");
return false;
}
// Write texture out to file.
// It's okay to throw this texture away immediately, since we're done with it, and
// we blocked until the copy completed on the GPU anyway.
bool result = TextureToPng(reinterpret_cast<u8*>(staging_texture->GetMapPointer()),
staging_texture->GetRowStride(), filename, level_width, level_height);
staging_texture->Unmap();
return result;
}
bool TextureCache::CompileShaders()
{
static const char COPY_SHADER_SOURCE[] = R"(
layout(set = 1, binding = 0) uniform sampler2DArray samp0;
layout(location = 0) in float3 uv0;
layout(location = 1) in float4 col0;
layout(location = 0) out float4 ocol0;
void main()
{
ocol0 = texture(samp0, uv0);
}
)";
static const char EFB_COLOR_TO_TEX_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
layout(std140, push_constant) uniform PSBlock
{
vec4 colmat[7];
} C;
layout(location = 0) in vec3 uv0;
layout(location = 1) in vec4 col0;
layout(location = 0) out vec4 ocol0;
void main()
{
float4 texcol = texture(samp0, uv0);
texcol = round(texcol * C.colmat[5]) * C.colmat[6];
ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4];
}
)";
static const char EFB_DEPTH_TO_TEX_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
layout(std140, push_constant) uniform PSBlock
{
vec4 colmat[5];
} C;
layout(location = 0) in vec3 uv0;
layout(location = 1) in vec4 col0;
layout(location = 0) out vec4 ocol0;
void main()
{
#if MONO_DEPTH
vec4 texcol = texture(samp0, vec3(uv0.xy, 0.0f));
#else
vec4 texcol = texture(samp0, uv0);
#endif
int depth = int((1.0 - texcol.x) * 16777216.0);
// Convert to Z24 format
ivec4 workspace;
workspace.r = (depth >> 16) & 255;
workspace.g = (depth >> 8) & 255;
workspace.b = depth & 255;
// Convert to Z4 format
workspace.a = (depth >> 16) & 0xF0;
// Normalize components to [0.0..1.0]
texcol = vec4(workspace) / 255.0;
ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4];
}
)";
static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2DArray source;
layout(location = 0) in vec3 uv0;
layout(location = 0) out vec4 ocol0;
const vec3 y_const = vec3(0.257,0.504,0.098);
const vec3 u_const = vec3(-0.148,-0.291,0.439);
const vec3 v_const = vec3(0.439,-0.368,-0.071);
const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);
void main()
{
vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c01 = (c0 + c1) * 0.5;
ocol0 = vec4(dot(c1, y_const),
dot(c01,u_const),
dot(c0,y_const),
dot(c01, v_const)) + const3;
}
)";
static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2D source;
layout(location = 0) in vec3 uv0;
layout(location = 0) out vec4 ocol0;
void main()
{
ivec2 uv = ivec2(gl_FragCoord.xy);
vec4 c0 = texelFetch(source, ivec2(uv.x / 2, uv.y), 0);
// The texture used to stage the upload is in BGRA order.
c0 = c0.zyxw;
float y = mix(c0.r, c0.b, (uv.x & 1) == 1);
float yComp = 1.164 * (y - 0.0625);
float uComp = c0.g - 0.5;
float vComp = c0.a - 0.5;
ocol0 = vec4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
1.0);
}
)";
std::string header = g_object_cache->GetUtilityShaderHeader();
std::string source;
source = header + COPY_SHADER_SOURCE;
m_copy_shader = Util::CompileAndCreateFragmentShader(source);
source = header + EFB_COLOR_TO_TEX_SOURCE;
m_efb_color_to_tex_shader = Util::CompileAndCreateFragmentShader(source);
if (g_ActiveConfig.bStereoEFBMonoDepth)
source = header + "#define MONO_DEPTH 1\n" + EFB_DEPTH_TO_TEX_SOURCE;
else
source = header + EFB_DEPTH_TO_TEX_SOURCE;
m_efb_depth_to_tex_shader = Util::CompileAndCreateFragmentShader(source);
source = header + RGB_TO_YUYV_SHADER_SOURCE;
m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source);
source = header + YUYV_TO_RGB_SHADER_SOURCE;
m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source);
return (m_copy_shader != VK_NULL_HANDLE && m_efb_color_to_tex_shader != VK_NULL_HANDLE &&
m_efb_depth_to_tex_shader != VK_NULL_HANDLE && m_rgb_to_yuyv_shader != VK_NULL_HANDLE &&
m_yuyv_to_rgb_shader != VK_NULL_HANDLE);
}
void TextureCache::DeleteShaders()
{
// It is safe to destroy shader modules after they are consumed by creating a pipeline.
// Therefore, no matter where this function is called from, it won't cause an issue due to
// pending commands, although at the time of writing should only be called at the end of
// a frame. See Vulkan spec, section 2.3.1. Object Lifetime.
if (m_copy_shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_copy_shader, nullptr);
m_copy_shader = VK_NULL_HANDLE;
}
if (m_efb_color_to_tex_shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_color_to_tex_shader, nullptr);
m_efb_color_to_tex_shader = VK_NULL_HANDLE;
}
if (m_efb_depth_to_tex_shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_depth_to_tex_shader, nullptr);
m_efb_depth_to_tex_shader = VK_NULL_HANDLE;
}
if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr);
m_rgb_to_yuyv_shader = VK_NULL_HANDLE;
}
if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr);
m_yuyv_to_rgb_shader = VK_NULL_HANDLE;
}
}
void TextureCache::EncodeYUYVTextureToMemory(void* dst_ptr, u32 dst_width, u32 dst_stride,
u32 dst_height, Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
StateTracker::GetInstance()->EndRenderPass();
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Borrow framebuffer from EFB2RAM encoder.
Texture2D* encoding_texture = m_texture_encoder->GetEncodingTexture();
StagingTexture2D* download_texture = m_texture_encoder->GetDownloadTexture();
encoding_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Use fragment shader to convert RGBA to YUYV.
// Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in
// the order the guest is expecting and we don't have to swap it at readback time. The width
// is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel.
u32 output_width = dst_width / 2;
UtilityShaderDraw draw(
command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
m_texture_encoder->GetEncodingRenderPass(), g_object_cache->GetPassthroughVertexShader(),
VK_NULL_HANDLE, m_rgb_to_yuyv_shader);
VkRect2D region = {{0, 0}, {output_width, dst_height}};
draw.BeginRenderPass(m_texture_encoder->GetEncodingTextureFramebuffer(), region);
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
draw.DrawQuad(0, 0, static_cast<int>(output_width), static_cast<int>(dst_height), src_rect.left,
src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
static_cast<int>(src_texture->GetWidth()),
static_cast<int>(src_texture->GetHeight()));
draw.EndRenderPass();
// Render pass transitions to TRANSFER_SRC.
encoding_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Copy from encoding texture to download buffer.
download_texture->CopyFromImage(command_buffer, encoding_texture->GetImage(),
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, output_width, dst_height, 0, 0);
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
// Finally, copy to guest memory. This may have a different stride.
download_texture->ReadTexels(0, 0, output_width, dst_height, dst_ptr, dst_stride);
}
void TextureCache::DecodeYUYVTextureFromMemory(TCacheEntry* dst_texture, const void* src_ptr,
u32 src_width, u32 src_stride, u32 src_height)
{
// Copies (and our decoding step) cannot be done inside a render pass.
StateTracker::GetInstance()->EndRenderPass();
// We share the upload buffer with normal textures here, since the XFB buffers aren't very large.
u32 upload_size = src_stride * src_height;
if (!m_texture_upload_buffer->ReserveMemory(upload_size,
g_vulkan_context->GetBufferImageGranularity()))
{
// Execute the command buffer first.
WARN_LOG(VIDEO, "Executing command list while waiting for space in texture upload buffer");
Util::ExecuteCurrentCommandsAndRestoreState(false);
if (!m_texture_upload_buffer->ReserveMemory(upload_size,
g_vulkan_context->GetBufferImageGranularity()))
PanicAlert("Failed to allocate space in texture upload buffer");
}
// Assume that each source row is not padded.
_assert_(src_stride == (src_width * sizeof(u16)));
VkDeviceSize image_upload_buffer_offset = m_texture_upload_buffer->GetCurrentOffset();
std::memcpy(m_texture_upload_buffer->GetCurrentHostPointer(), src_ptr, upload_size);
m_texture_upload_buffer->CommitMemory(upload_size);
// Copy from the upload buffer to the intermediate texture. We borrow this from the encoder.
// The width is specified as half here because we have two pixels packed in each RGBA texel.
// In the future this could be skipped by reading the upload buffer as a uniform texel buffer.
VkBufferImageCopy image_copy = {
image_upload_buffer_offset, // VkDeviceSize bufferOffset
0, // uint32_t bufferRowLength
0, // uint32_t bufferImageHeight
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, // VkImageSubresourceLayers imageSubresource
{0, 0, 0}, // VkOffset3D imageOffset
{src_width / 2, src_height, 1} // VkExtent3D imageExtent
};
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
Texture2D* intermediate_texture = m_texture_encoder->GetEncodingTexture();
intermediate_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(command_buffer, m_texture_upload_buffer->GetBuffer(),
intermediate_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&image_copy);
intermediate_texture->TransitionToLayout(command_buffer,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
dst_texture->GetTexture()->TransitionToLayout(command_buffer,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Convert from the YUYV data now in the intermediate texture to RGBA in the destination.
UtilityShaderDraw draw(
command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
m_texture_encoder->GetEncodingRenderPass(), g_object_cache->GetScreenQuadVertexShader(),
VK_NULL_HANDLE, m_yuyv_to_rgb_shader);
VkRect2D region = {{0, 0}, {src_width, src_height}};
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
draw.SetViewportAndScissor(0, 0, static_cast<int>(src_width), static_cast<int>(src_height));
draw.SetPSSampler(0, intermediate_texture->GetView(), g_object_cache->GetPointSampler());
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
draw.EndRenderPass();
}
} // namespace Vulkan