tmator 03c45646b4 fiw nowx build
git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@4749 8ced0084-cf51-0410-be5f-012b33b47a6e
2009-12-29 18:00:41 +00:00

665 lines
19 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <vector>
#include <string>
#include "../../../Core/InputCommon/Src/SDL.h" // Core
#include "../../../Core/InputCommon/Src/XInput.h"
#include "Common.h" // Common
#include "MathUtil.h"
#include "StringUtil.h" // for ArrayToString()
#include "IniFile.h"
#include "pluginspecs_wiimote.h"
#include "EmuDefinitions.h" // Local
#include "main.h"
#include "wiimote_hid.h"
#include "EmuSubroutines.h"
#include "EmuMain.h"
#include "Encryption.h" // for extension encryption
#include "Config.h" // for g_Config
namespace WiiMoteEmu
{
//******************************************************************************
// Accelerometer functions
//******************************************************************************
// Wiimote accelerometer
/* The accelerometer x, y and z values range from 0x00 to 0xff with the default
netural values being [y = 0x84, x = 0x84, z = 0x9f] according to a
source. The extremes are 0x00 for (-) and 0xff for (+). It's important that
all values are not 0x80, the mouse pointer can disappear from the screen
permanently then, until z is adjusted back. This is because the game detects
a steep pitch of the Wiimote then.
Wiimote Accelerometer Axes
+ (- -- X -- +)
| ___
| | |\ -
| | + || \
| . || \
Y |. .|| Z
| . || \
| | . || \
| |___|| +
- ---
*/
// Single shake step of all three directions
void ShakeToAccelerometer(int &_x, int &_y, int &_z, STiltData &_TiltData)
{
switch(_TiltData.Shake)
{
case 0:
_TiltData.Shake = -1;
break;
case 1:
case 3:
_x = g_wm.cal_zero.x / 2;
_y = g_wm.cal_zero.y / 2;
_z = g_wm.cal_zero.z / 2;
break;
case 5:
case 7:
_x = (0xFF - g_wm.cal_zero.x ) / 2;
_y = (0xFF - g_wm.cal_zero.y ) / 2;
_z = (0xFF - g_wm.cal_zero.z ) / 2;
break;
case 2:
_x = 0x00;
_y = 0x00;
_z = 0x00;
break;
case 6:
_x = 0xFF;
_y = 0xFF;
_z = 0xFF;
break;
case 4:
_x = 0x80;
_y = 0x80;
_z = 0x80;
break;
default:
_TiltData.Shake = -1;
break;
}
_TiltData.Shake++;
if (_TiltData.Shake != 0)
{
DEBUG_LOG(WIIMOTE, "Shake: %i - 0x%02x, 0x%02x, 0x%02x", _TiltData.Shake, _x, _y, _z);
}
}
/* Tilting by gamepad. We can guess that the game will calculate
roll and pitch and use them as measures of the tilting. We are
interested in this tilting range 90 to -90*/
void TiltByGamepad(STiltData &_TiltData, int Type)
{
// Return if we have no pads
if (NumGoodPads == 0) return;
/* Adjust the pad state values, including a downscaling from the original
0x8000 size values to 0x80. The only reason we do this is that the code
below crrently assume that the range is 0 to 255 for all axes. If we
lose any precision by doing this we could consider not doing this
adjustment. And instead for example upsize the XInput trigger from 0x80
to 0x8000. */
int Lx = WiiMapping[g_ID].AxisState.Lx;
int Ly = WiiMapping[g_ID].AxisState.Ly;
int Rx = WiiMapping[g_ID].AxisState.Rx;
int Ry = WiiMapping[g_ID].AxisState.Ry;
int Tl = WiiMapping[g_ID].AxisState.Tl;
int Tr = WiiMapping[g_ID].AxisState.Tr;
// Save the Range in degrees, 45 and 90 are good values in some games
int RollRange = WiiMapping[g_ID].Tilt.RollRange;
int PitchRange = WiiMapping[g_ID].Tilt.PitchRange;
// The trigger currently only controls pitch, no roll, no free swing
if (Type == FROM_TRIGGER)
{
// Make the range the same dimension as the analog stick
Tl = Tl / 2;
Tr = Tr / 2;
// Invert
if (WiiMapping[g_ID].Tilt.PitchInvert) { Tl = -Tl; Tr = -Tr; }
// The final value
_TiltData.Pitch = (int)((float)PitchRange * ((float)(Tl - Tr) / 128.0f));
}
/* For the analog stick roll is by default set to the X-axis, pitch is by
default set to the Y-axis. By changing the axis mapping and the invert
options this can be altered in any way */
else if (Type == FROM_ANALOG1)
{
// Adjust the trigger to go between negative and positive values
Lx = Lx - 0x80;
Ly = Ly - 0x80;
// Invert
if (WiiMapping[g_ID].Tilt.RollInvert) Lx = -Lx; // else Tr = -Tr;
if (WiiMapping[g_ID].Tilt.PitchInvert) Ly = -Ly; // else Tr = -Tr;
// Produce the final value
_TiltData.Roll = (int)((RollRange) ? (float)RollRange * ((float)Lx / 128.0f) : Lx);
_TiltData.Pitch = (int)((PitchRange) ? (float)PitchRange * ((float)Ly / 128.0f) : Ly);
}
// Otherwise we are using ANALOG2
else
{
// Adjust the trigger to go between negative and positive values
Rx = Rx - 0x80;
Ry = Ry - 0x80;
// Invert
if (WiiMapping[g_ID].Tilt.RollInvert) Rx = -Rx; // else Tr = -Tr;
if (WiiMapping[g_ID].Tilt.PitchInvert) Ry = -Ry; // else Tr = -Tr;
// Produce the final value
_TiltData.Roll = (int)((RollRange) ? (float)RollRange * ((float)Rx / 128.0f) : Rx);
_TiltData.Pitch = (int)((PitchRange) ? (float)PitchRange * ((float)Ry / 128.0f) : Ry);
}
}
// Tilting by keyboard
void TiltByKeyboard(STiltData &_TiltData, int Type)
{
int _ROLL_LEFT_ = (Type) ? ENC_ROLL_L : EWM_ROLL_L;
int _ROLL_RIGHT_ = (Type) ? ENC_ROLL_R : EWM_ROLL_R;
int _PITCH_UP_ = (Type) ? ENC_PITCH_U : EWM_PITCH_U;
int _PITCH_DOWN_ = (Type) ? ENC_PITCH_D : EWM_PITCH_D;
// Do roll/pitch or free swing
#if defined(HAVE_WX) && HAVE_WX
if (IsKey(_ROLL_LEFT_))
{
if (WiiMapping[g_ID].Tilt.RollRange)
{
// Stop at the lower end of the range
if (_TiltData.Roll > -WiiMapping[g_ID].Tilt.RollRange)
_TiltData.Roll -= 3; // aim left
}
else // Free swing
{
_TiltData.Roll = -0x80 / 2;
}
}
else if (IsKey(_ROLL_RIGHT_))
{
if (WiiMapping[g_ID].Tilt.RollRange)
{
// Stop at the upper end of the range
if (_TiltData.Roll < WiiMapping[g_ID].Tilt.RollRange)
_TiltData.Roll += 3; // aim right
}
else // Free swing
{
_TiltData.Roll = 0x80 / 2;
}
}
else
{
_TiltData.Roll = 0;
}
if (IsKey(_PITCH_UP_))
{
if (WiiMapping[g_ID].Tilt.PitchRange)
{
// Stop at the lower end of the range
if (_TiltData.Pitch > -WiiMapping[g_ID].Tilt.PitchRange)
_TiltData.Pitch -= 3; // aim down
}
else // Free swing
{
_TiltData.Pitch = -0x80 / 2;
}
}
else if (IsKey(_PITCH_DOWN_))
{
if (WiiMapping[g_ID].Tilt.PitchRange)
{
// Stop at the upper end of the range
if (_TiltData.Pitch < WiiMapping[g_ID].Tilt.PitchRange)
_TiltData.Pitch += 3; // aim up
}
else // Free swing
{
_TiltData.Pitch = 0x80 / 2;
}
}
else
{
_TiltData.Pitch = 0;
}
#endif
}
// Tilting Wiimote (Wario Land aiming, Mario Kart steering and other things)
void TiltWiimote(int &_x, int &_y, int &_z)
{
// Select input method and return the x, y, x values
if (WiiMapping[g_ID].Tilt.InputWM == FROM_KEYBOARD)
TiltByKeyboard(WiiMapping[g_ID].Motion.TiltWM, 0);
else
TiltByGamepad(WiiMapping[g_ID].Motion.TiltWM, WiiMapping[g_ID].Tilt.InputWM);
// Adjust angles, it's only needed if both roll and pitch is used together
if (WiiMapping[g_ID].Tilt.RollRange && WiiMapping[g_ID].Tilt.PitchRange)
AdjustAngles(WiiMapping[g_ID].Motion.TiltWM.Roll, WiiMapping[g_ID].Motion.TiltWM.Pitch);
// Calculate the accelerometer value from this tilt angle
TiltToAccelerometer(_x, _y, _z,WiiMapping[g_ID].Motion.TiltWM);
//DEBUG_LOG(WIIMOTE, "Roll:%i, Pitch:%i, _x:%u, _y:%u, _z:%u", g_Wiimote_kbd.TiltData.Roll, g_Wiimote_kbd.TiltData.Pitch, _x, _y, _z);
}
// Tilting Nunchuck (Mad World, Dead Space and other things)
void TiltNunchuck(int &_x, int &_y, int &_z)
{
// Select input method and return the x, y, x values
if (WiiMapping[g_ID].Tilt.InputNC == FROM_KEYBOARD)
TiltByKeyboard(WiiMapping[g_ID].Motion.TiltNC, 1);
else
TiltByGamepad(WiiMapping[g_ID].Motion.TiltNC, WiiMapping[g_ID].Tilt.InputNC);
// Adjust angles, it's only needed if both roll and pitch is used together
if (WiiMapping[g_ID].Tilt.RollRange && WiiMapping[g_ID].Tilt.PitchRange)
AdjustAngles(WiiMapping[g_ID].Motion.TiltNC.Roll, WiiMapping[g_ID].Motion.TiltNC.Pitch);
// Calculate the accelerometer value from this tilt angle
TiltToAccelerometer(_x, _y, _z, WiiMapping[g_ID].Motion.TiltNC);
//DEBUG_LOG(WIIMOTE, "Roll:%i, Pitch:%i, _x:%u, _y:%u, _z:%u", g_NunchuckExt.TiltData.Roll, g_NunchuckExt.TiltData.Pitch, _x, _y, _z);
}
/* Angles adjustment for the upside down state when both roll and pitch is
used. When the absolute values of the angles go over 90 the Wiimote is
upside down and these adjustments are needed. */
void AdjustAngles(int &Roll, int &Pitch)
{
int OldPitch = Pitch;
if (abs(Roll) > 90)
{
if (Pitch >= 0)
Pitch = 180 - Pitch; // 15 to 165
else
Pitch = -180 - Pitch; // -15 to -165
}
if (abs(OldPitch) > 90)
{
if (Roll >= 0)
Roll = 180 - Roll; // 15 to 165
else
Roll = -180 - Roll; // -15 to -165
}
}
// Angles to accelerometer values
void TiltToAccelerometer(int &_x, int &_y, int &_z, STiltData &_TiltData)
{
if (_TiltData.Roll == 0 && _TiltData.Pitch == 0)
return;
// We need radiands for the math functions
float Roll = InputCommon::Deg2Rad((float)_TiltData.Roll);
float Pitch = InputCommon::Deg2Rad((float)_TiltData.Pitch);
// We need float values
float x = 0.0f, y = 0.0f, z = 1.0f; // Gravity
// In these cases we can use the simple and accurate formula
if(WiiMapping[g_ID].Tilt.RollRange && !WiiMapping[g_ID].Tilt.PitchRange)
{
x = sin(Roll);
z = cos(Roll);
}
else if (WiiMapping[g_ID].Tilt.PitchRange && !WiiMapping[g_ID].Tilt.RollRange)
{
y = sin(Pitch);
z = cos(Pitch);
}
else if(WiiMapping[g_ID].Tilt.RollRange && WiiMapping[g_ID].Tilt.PitchRange)
{
// ====================================================
/* This seems to always produce the exact same combination of x, y, z
and Roll and Pitch that the real Wiimote produce. There is an
unlimited amount of x, y, z combinations for any combination of Roll
and Pitch. But if we select a Z from the smallest of the absolute
value of cos(Roll) and cos (Pitch) we get the right values. */
// ---------
if (abs(cos(Roll)) < abs(cos(Pitch)))
z = cos(Roll);
else
z = cos(Pitch);
/* I got these from reversing the calculation in
PitchAccelerometerToDegree() in a math program. */
float x_num = 2 * tanf(0.5f * Roll) * z;
float x_den = pow2f(tanf(0.5f * Roll)) - 1;
x = - (x_num / x_den);
float y_num = 2 * tanf(0.5f * Pitch) * z;
float y_den = pow2f(tanf(0.5f * Pitch)) - 1;
y = - (y_num / y_den);
}
// Multiply with neutral value and its g
float xg = g_wm.cal_g.x;
float yg = g_wm.cal_g.y;
float zg = g_wm.cal_g.z;
int ix = g_wm.cal_zero.x + (int)(xg * x);
int iy = g_wm.cal_zero.y + (int)(yg * y);
int iz = g_wm.cal_zero.z + (int)(zg * z);
if (!WiiMapping[g_ID].bUpright)
{
if(WiiMapping[g_ID].Tilt.RollRange) _x = ix;
if(WiiMapping[g_ID].Tilt.PitchRange) _y = iy;
_z = iz;
}
else // Upright wiimote
{
if(WiiMapping[g_ID].Tilt.RollRange) _x = ix;
if(WiiMapping[g_ID].Tilt.PitchRange) _z = iy;
_y = 0xFF - iz;
}
// Direct mapping for swing, from analog stick to accelerometer
if (!WiiMapping[g_ID].Tilt.RollRange)
{
_x -= _TiltData.Roll;
}
if (!WiiMapping[g_ID].Tilt.PitchRange)
{
if (!WiiMapping[g_ID].bUpright)
_z -= _TiltData.Pitch;
else // Upright wiimote
_y += _TiltData.Pitch;
}
}
// Rotate IR dot when rolling Wiimote
void RotateIRDot(int &_x, int &_y, STiltData &_TiltData)
{
if (!WiiMapping[g_ID].Tilt.RollRange || !_TiltData.Roll)
return;
// The IR camera resolution is 1023x767
float dot_x = _x - 1023.0f / 2;
float dot_y = _y - 767.0f / 2;
float radius = sqrt(pow(dot_x, 2) + pow(dot_y, 2));
float radian = atan2(dot_y, dot_x);
_x = (int)(radius * cos(radian + InputCommon::Deg2Rad((float)_TiltData.Roll)) + 1023.0f / 2);
_y = (int)(radius * sin(radian + InputCommon::Deg2Rad((float)_TiltData.Roll)) + 767.0f / 2);
// Out of sight check
if (_x < 0 || _x > 1023) _x = 0xFFFF;
if (_y < 0 || _y > 767) _y = 0xFFFF;
}
/*
// Test the calculations
void TiltTest(u8 x, u8 y, u8 z)
{
int Roll, Pitch, RollAdj, PitchAdj;
PitchAccelerometerToDegree(x, y, z, Roll, Pitch, RollAdj, PitchAdj);
std::string From = StringFromFormat("From: X:%i Y:%i Z:%i Roll:%s Pitch:%s", x, y, z,
(Roll >= 0) ? StringFromFormat(" %03i", Roll).c_str() : StringFromFormat("%04i", Roll).c_str(),
(Pitch >= 0) ? StringFromFormat(" %03i", Pitch).c_str() : StringFromFormat("%04i", Pitch).c_str());
float _Roll = (float)Roll, _Pitch = (float)Pitch;
PitchDegreeToAccelerometer(_Roll, _Pitch, x, y, z);
std::string To = StringFromFormat("%s\nTo: X:%i Y:%i Z:%i Roll:%s Pitch:%s", From.c_str(), x, y, z,
(_Roll >= 0) ? StringFromFormat(" %03i", (int)_Roll).c_str() : StringFromFormat("%04i", (int)_Roll).c_str(),
(_Pitch >= 0) ? StringFromFormat(" %03i", (int)_Pitch).c_str() : StringFromFormat("%04i", (int)_Pitch).c_str());
NOTICE_LOG(CONSOLE, "\n%s", To.c_str());
}
// Accelerometer to roll and pitch angles
float AccelerometerToG(float Current, float Neutral, float G)
{
float _G = (Current - Neutral) / G;
return _G;
}
void PitchAccelerometerToDegree(u8 _x, u8 _y, u8 _z, int &_Roll, int &_Pitch, int &_RollAdj, int &_PitchAdj)
{
// Definitions
float Roll = 0, Pitch = 0;
// Calculate how many g we are from the neutral
float x = AccelerometerToG((float)_x, (float)g_wm.cal_zero.x, (float)g_wm.cal_g.x);
float y = AccelerometerToG((float)_y, (float)g_wm.cal_zero.y, (float)g_wm.cal_g.y);
float z = AccelerometerToG((float)_z, (float)g_wm.cal_zero.z, (float)g_wm.cal_g.z);
if (!g_Config.bUpright)
{
// If it is over 1g then it is probably accelerating and may not reliable
//if (abs(accel->x - ac->cal_zero.x) <= ac->cal_g.x)
{
// Calculate the degree
Roll = InputCommon::Rad2Deg(atan2(x, z));
}
//if (abs(_y - g_wm.cal_zero.y) <= g_wm.cal_g.y)
{
// Calculate the degree
Pitch = InputCommon::Rad2Deg(atan2(y, z));
}
}
else
{
//if (abs(accel->z - ac->cal_zero.z) <= ac->cal_g.x)
{
// Calculate the degree
Roll = InputCommon::Rad2Deg(atan2(z, -y));
}
//if (abs(_x - g_wm.cal_zero.x) <= g_wm.cal_g.x)
{
// Calculate the degree
Pitch = InputCommon::Rad2Deg(atan2(-x, -y));
}
}
_Roll = (int)Roll;
_Pitch = (int)Pitch;
// Don't allow forces bigger than 1g
if (x < -1.0) x = -1.0; else if (x > 1.0) x = 1.0;
if (y < -1.0) y = -1.0; else if (y > 1.0) y = 1.0;
if (z < -1.0) z = -1.0; else if (z > 1.0) z = 1.0;
if (!g_Config.bUpright)
{
Roll = InputCommon::Rad2Deg(atan2(x, z));
Pitch = InputCommon::Rad2Deg(atan2(y, z));
}
else
{
Roll = InputCommon::Rad2Deg(atan2(z, -y));
Pitch = InputCommon::Rad2Deg(atan2(-x, -y));
}
_RollAdj = (int)Roll;
_PitchAdj = (int)Pitch;
}
//******************************************************************************
// IR data functions
//******************************************************************************
// Calculate dot positions from the basic 10 byte IR data
void IRData2DotsBasic(u8 *Data)
{
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
Dot[0].Rx = 1023 - (Data[0] | ((Data[2] & 0x30) << 4));
Dot[0].Ry = Data[1] | ((Data[2] & 0xc0) << 2);
Dot[1].Rx = 1023 - (Data[3] | ((Data[2] & 0x03) << 8));
Dot[1].Ry = Data[4] | ((Data[2] & 0x0c) << 6);
Dot[2].Rx = 1023 - (Data[5] | ((Data[7] & 0x30) << 4));
Dot[2].Ry = Data[6] | ((Data[7] & 0xc0) << 2);
Dot[3].Rx = 1023 - (Data[8] | ((Data[7] & 0x03) << 8));
Dot[3].Ry = Data[9] | ((Data[7] & 0x0c) << 6);
// set each IR spot to visible if spot is in range
for (int i = 0; i < 4; ++i)
{
if (Dot[i].Ry == 1023)
{
Dot[i].Visible = 0;
}
else
{
Dot[i].Visible = 1;
Dot[i].Size = 0; // since we don't know the size, set it as 0
}
// For now we let our virtual resolution be the same as the default one
Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry;
}
// Calculate the other values
ReorderIRDots();
IRData2Distance();
}
// Calculate dot positions from the extented 12 byte IR data
void IRData2Dots(u8 *Data)
{
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
for (int i = 0; i < 4; ++i)
{
//Console::Print("Rx: %i\n", Dot[i].Rx);
Dot[i].Rx = 1023 - (Data[3*i] | ((Data[(3*i)+2] & 0x30) << 4));
Dot[i].Ry = Data[(3*i)+1] | ((Data[(3*i)+2] & 0xc0) << 2);
Dot[i].Size = Data[(3*i)+2] & 0x0f;
// if in range set to visible
if (Dot[i].Ry == 1023)
Dot[i].Visible = false;
else
Dot[i].Visible = true;
//Console::Print("Rx: %i\n", Dot[i].Rx);
// For now we let our virtual resolution be the same as the default one
Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry;
}
// Calculate the other values
ReorderIRDots();
IRData2Distance();
}
// Reorder the IR dots according to their x-axis value
void ReorderIRDots()
{
// Create a shortcut
SDot* Dot = g_Wiimote_kbd.IR.Dot;
// Variables
int i, j, order;
// Reset the dot ordering to zero
for (i = 0; i < 4; ++i)
Dot[i].Order = 0;
// is this just a weird filter+sort?
for (order = 1; order < 5; ++order)
{
i = 0;
//
for (; !Dot[i].Visible || Dot[i].Order; ++i)
if (i > 4) return;
//
for (j = 0; j < 4; ++j)
{
if (Dot[j].Visible && !Dot[j].Order && (Dot[j].X < Dot[i].X))
i = j;
}
Dot[i].Order = order;
}
}
// Calculate dot positions from the extented 12 byte IR data
void IRData2Distance()
{
// Create a shortcut
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
// Make these ones global
int i1, i2;
for (i1 = 0; i1 < 4; ++i1)
if (Dot[i1].Visible) break;
// Only one dot was visible, we can not calculate the distance
if (i1 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; }
// Look at the next dot
for (i2 = i1 + 1; i2 < 4; ++i2)
if (Dot[i2].Visible) break;
// Only one dot was visible, we can not calculate the distance
if (i2 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; }
// For the emulated Wiimote the y distance is always zero so then the distance is the
// simple distance between the x dots, i.e. the sensor bar width
int xd = Dot[i2].X - Dot[i1].X;
int yd = Dot[i2].Y - Dot[i1].Y;
// Save the distance
g_Wiimote_kbd.IR.Distance = (int)sqrt((float)(xd*xd) + (float)(yd*yd));
}
//******************************************************************************
// Classic Controller functions
//******************************************************************************
std::string CCData2Values(u8 *Data)
{
return StringFromFormat(
"Tl:%03i Tr:%03i Lx:%03i Ly:%03i Rx:%03i Ry:%03i",
(((Data[2] & 0x60) >> 2) | ((Data[3] & 0xe0) >> 5)),
(Data[3] & 0x1f),
(Data[0] & 0x3f),
(Data[1] & 0x3f),
((Data[0] & 0xc0) >> 3) | ((Data[1] & 0xc0) >> 5) | ((Data[2] & 0x80) >> 7),
(Data[2] & 0x1f));
}
*/
} // WiiMoteEmu