mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-15 10:39:13 +01:00
276 lines
11 KiB
C
276 lines
11 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*
|
|
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
|
*/
|
|
|
|
#include "fixedint.h"
|
|
#include "sha512.h"
|
|
|
|
/* the K array */
|
|
static const uint64_t K[80] = {
|
|
UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
|
|
UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
|
|
UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
|
|
UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
|
|
UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
|
|
UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
|
|
UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
|
|
UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
|
|
UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
|
|
UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
|
|
UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
|
|
UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
|
|
UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
|
|
UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
|
|
UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
|
|
UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
|
|
UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
|
|
UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
|
|
UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
|
|
UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
|
|
UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
|
|
UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
|
|
UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
|
|
UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
|
|
UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
|
|
UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
|
|
UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
|
|
UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
|
|
UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
|
|
UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
|
|
UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
|
|
UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
|
|
UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
|
|
UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
|
|
UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
|
|
UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
|
|
UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
|
|
UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
|
|
UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
|
|
UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
|
|
};
|
|
|
|
/* Various logical functions */
|
|
|
|
#define ROR64c(x, y) \
|
|
( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
|
|
((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))
|
|
|
|
#define STORE64H(x, y) \
|
|
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
|
|
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
|
|
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
|
|
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
|
|
|
|
#define LOAD64H(x, y) \
|
|
{ x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
|
|
(((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
|
|
(((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
|
|
(((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
|
|
|
|
|
|
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
|
|
#define Maj(x,y,z) (((x | y) & z) | (x & y))
|
|
#define S(x, n) ROR64c(x, n)
|
|
#define R(x, n) (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
|
|
#define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
|
|
#define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
|
|
#define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
|
|
#define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
|
|
#ifndef MIN
|
|
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
|
|
#endif
|
|
|
|
/* compress 1024-bits */
|
|
static int sha512_compress(sha512_context *md, unsigned char *buf)
|
|
{
|
|
uint64_t S[8], W[80], t0, t1;
|
|
int i;
|
|
|
|
/* copy state into S */
|
|
for (i = 0; i < 8; i++) {
|
|
S[i] = md->state[i];
|
|
}
|
|
|
|
/* copy the state into 1024-bits into W[0..15] */
|
|
for (i = 0; i < 16; i++) {
|
|
LOAD64H(W[i], buf + (8*i));
|
|
}
|
|
|
|
/* fill W[16..79] */
|
|
for (i = 16; i < 80; i++) {
|
|
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
|
|
}
|
|
|
|
/* Compress */
|
|
#define RND(a,b,c,d,e,f,g,h,i) \
|
|
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
|
|
t1 = Sigma0(a) + Maj(a, b, c);\
|
|
d += t0; \
|
|
h = t0 + t1;
|
|
|
|
for (i = 0; i < 80; i += 8) {
|
|
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
|
|
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
|
|
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
|
|
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
|
|
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
|
|
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
|
|
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
|
|
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
|
|
}
|
|
|
|
#undef RND
|
|
|
|
|
|
|
|
/* feedback */
|
|
for (i = 0; i < 8; i++) {
|
|
md->state[i] = md->state[i] + S[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize the hash state
|
|
@param md The hash state you wish to initialize
|
|
@return 0 if successful
|
|
*/
|
|
int sha512_init(sha512_context * md) {
|
|
if (md == NULL) return 1;
|
|
|
|
md->curlen = 0;
|
|
md->length = 0;
|
|
md->state[0] = UINT64_C(0x6a09e667f3bcc908);
|
|
md->state[1] = UINT64_C(0xbb67ae8584caa73b);
|
|
md->state[2] = UINT64_C(0x3c6ef372fe94f82b);
|
|
md->state[3] = UINT64_C(0xa54ff53a5f1d36f1);
|
|
md->state[4] = UINT64_C(0x510e527fade682d1);
|
|
md->state[5] = UINT64_C(0x9b05688c2b3e6c1f);
|
|
md->state[6] = UINT64_C(0x1f83d9abfb41bd6b);
|
|
md->state[7] = UINT64_C(0x5be0cd19137e2179);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Process a block of memory though the hash
|
|
@param md The hash state
|
|
@param in The data to hash
|
|
@param inlen The length of the data (octets)
|
|
@return 0 if successful
|
|
*/
|
|
int sha512_update (sha512_context * md, const unsigned char *in, size_t inlen)
|
|
{
|
|
size_t n;
|
|
size_t i;
|
|
int err;
|
|
if (md == NULL) return 1;
|
|
if (in == NULL) return 1;
|
|
if (md->curlen > sizeof(md->buf)) {
|
|
return 1;
|
|
}
|
|
while (inlen > 0) {
|
|
if (md->curlen == 0 && inlen >= 128) {
|
|
if ((err = sha512_compress (md, (unsigned char *)in)) != 0) {
|
|
return err;
|
|
}
|
|
md->length += 128 * 8;
|
|
in += 128;
|
|
inlen -= 128;
|
|
} else {
|
|
n = MIN(inlen, (128 - md->curlen));
|
|
|
|
for (i = 0; i < n; i++) {
|
|
md->buf[i + md->curlen] = in[i];
|
|
}
|
|
|
|
|
|
md->curlen += n;
|
|
in += n;
|
|
inlen -= n;
|
|
if (md->curlen == 128) {
|
|
if ((err = sha512_compress (md, md->buf)) != 0) {
|
|
return err;
|
|
}
|
|
md->length += 8*128;
|
|
md->curlen = 0;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
Terminate the hash to get the digest
|
|
@param md The hash state
|
|
@param out [out] The destination of the hash (64 bytes)
|
|
@return 0 if successful
|
|
*/
|
|
int sha512_final(sha512_context * md, unsigned char *out)
|
|
{
|
|
int i;
|
|
|
|
if (md == NULL) return 1;
|
|
if (out == NULL) return 1;
|
|
|
|
if (md->curlen >= sizeof(md->buf)) {
|
|
return 1;
|
|
}
|
|
|
|
/* increase the length of the message */
|
|
md->length += md->curlen * UINT64_C(8);
|
|
|
|
/* append the '1' bit */
|
|
md->buf[md->curlen++] = (unsigned char)0x80;
|
|
|
|
/* if the length is currently above 112 bytes we append zeros
|
|
* then compress. Then we can fall back to padding zeros and length
|
|
* encoding like normal.
|
|
*/
|
|
if (md->curlen > 112) {
|
|
while (md->curlen < 128) {
|
|
md->buf[md->curlen++] = (unsigned char)0;
|
|
}
|
|
sha512_compress(md, md->buf);
|
|
md->curlen = 0;
|
|
}
|
|
|
|
/* pad upto 120 bytes of zeroes
|
|
* note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash
|
|
* > 2^64 bits of data... :-)
|
|
*/
|
|
while (md->curlen < 120) {
|
|
md->buf[md->curlen++] = (unsigned char)0;
|
|
}
|
|
|
|
/* store length */
|
|
STORE64H(md->length, md->buf+120);
|
|
sha512_compress(md, md->buf);
|
|
|
|
/* copy output */
|
|
for (i = 0; i < 8; i++) {
|
|
STORE64H(md->state[i], out+(8*i));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sha512(const unsigned char *message, size_t message_len, unsigned char *out)
|
|
{
|
|
sha512_context ctx;
|
|
int ret;
|
|
if ((ret = sha512_init(&ctx))) return ret;
|
|
if ((ret = sha512_update(&ctx, message, message_len))) return ret;
|
|
if ((ret = sha512_final(&ctx, out))) return ret;
|
|
return 0;
|
|
}
|