1375 lines
40 KiB
C++

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
//////////////////////////////////////////////////////////////////////////////////////////
// Includes
// ¯¯¯¯¯¯¯¯¯¯¯¯¯
#include <wx/msgdlg.h>
#include <vector>
#include <string>
#include "Common.h" // Common
#include "pluginspecs_wiimote.h"
#include "StringUtil.h" // For ArrayToString
#include "wiimote_hid.h"
#include "main.h"
#include "EmuMain.h"
#include "EmuSubroutines.h"
#include "EmuDefinitions.h"
#include "Logging.h" // For startConsoleWin, Console::Print, GetConsoleHwnd
#include "Config.h" // For g_Config
//////////////////////////////////
extern SWiimoteInitialize g_WiimoteInitialize;
namespace WiiMoteEmu
{
//**************************************************************************************
// Recorded movements
//**************************************************************************************
// ------------------------------------------
// Variables: 0 = Wiimote, 1 = Nunchuck
// ----------------
int g_RecordingPlaying[3]; //g_RecordingPlaying[0] = -1; g_RecordingPlaying[1] = -1;
int g_RecordingCounter[3]; //g_RecordingCounter[0] = 0; g_RecordingCounter[1] = 0;
int g_RecordingPoint[3]; //g_RecordingPoint[0] = 0; g_RecordingPoint[1] = 0;
double g_RecordingStart[3]; //g_RecordingStart[0] = 0; g_RecordingStart[1] = 0;
double g_RecordingCurrentTime[3]; //g_RecordingCurrentTime[0] = 0; g_RecordingCurrentTime[1] = 0;
// --------------------------
/////////////////////////////////////////////////////////////////////////
/* Convert from -350 to -3.5 g. The Nunchuck gravity size is 51 compared to the 26 to 28 for the Wiimote.
So the maximum g values are higher for the Wiimote. */
// ---------------
int G2Accelerometer(int _G, int XYZ, int Wm)
{
float G = (float)_G / 100.0;
float Neutral, OneG, Accelerometer;
switch(XYZ)
{
case 0: // X
if(Wm == WM_RECORDING_WIIMOTE)
{
OneG = (float)g_wm.cal_g.x;
Neutral = (float)g_wm.cal_zero.x;
}
else
{
OneG = (float)g_nu.cal_g.x;
Neutral = (float)g_nu.cal_zero.x;
}
break;
case 1: // Y
if(Wm == WM_RECORDING_WIIMOTE)
{
OneG = (float)g_wm.cal_g.y;
Neutral = (float)g_wm.cal_zero.y;
}
else
{
OneG = (float)g_nu.cal_g.y;
Neutral = (float)g_nu.cal_zero.y;
}
break;
case 2: // Z
if(Wm == WM_RECORDING_WIIMOTE)
{
OneG = (float)g_wm.cal_g.z;
Neutral = (float)g_wm.cal_zero.z;
}
else
{
OneG = (float)g_nu.cal_g.z;
Neutral = (float)g_nu.cal_zero.z;
}
break;
default: PanicAlert("There is a syntax error in a function that is calling G2Accelerometer(%i, %i)", _G, XYZ);
}
Accelerometer = Neutral + (OneG * G);
int Return = (int)Accelerometer;
// Logging
//Console::Print("G2Accelerometer():%f %f %f %f\n", Neutral, OneG, G, Accelerometer);
// Boundaries
if (Return > 255) Return = 255;
if (Return < 0) Return = 0;
return Return;
}
template<class IRReportType>
bool RecordingPlayAccIR(u8 &_x, u8 &_y, u8 &_z, IRReportType &_IR, int Wm)
{
// Check if the recording is on
if (g_RecordingPlaying[Wm] == -1) return false;
// Return if the list is empty
if(VRecording.at(g_RecordingPlaying[Wm]).Recording.size() == 0)
{
g_RecordingPlaying[Wm] = -1;
Console::Print("Empty\n\n");
return false;
}
// Return if the playback speed is unset
if(VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed < 0)
{
Console::Print("PlaybackSpeed empty: %i\n\n", g_RecordingPlaying[Wm]);
g_RecordingPlaying[Wm] = -1;
return false;
}
// Get IR bytes
int IRBytes = VRecording.at(g_RecordingPlaying[Wm]).IRBytes;
// Return if the IR mode is wrong
if (Wm == WM_RECORDING_IR
&& ( (IRBytes == 12 && !(g_ReportingMode == 0x33))
|| (IRBytes == 10 && !(g_ReportingMode == 0x36 || g_ReportingMode == 0x37))
)
)
{
Console::Print("Wrong IR mode: %i\n\n", g_RecordingPlaying[Wm]);
g_RecordingPlaying[Wm] = -1;
return false;
}
// Get starting time
if(g_RecordingCounter[Wm] == 0)
{
Console::Print("\n\nBegin: %i\n", Wm);
g_RecordingStart[Wm] = GetDoubleTime();
}
// Get current time
g_RecordingCurrentTime[Wm] = GetDoubleTime() - g_RecordingStart[Wm];
// Modify the current time
g_RecordingCurrentTime[Wm] *= ((25.0 + (double)VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed * 25.0) / 100.0);
// Select reading
for (int i = 0; i < VRecording.at(g_RecordingPlaying[Wm]).Recording.size(); i++)
if (VRecording.at(g_RecordingPlaying[Wm]).Recording.at(i).Time > g_RecordingCurrentTime[Wm])
{
g_RecordingPoint[Wm] = i;
break; // Break loop
}
// Return if we are at the end of the list
if(g_RecordingCurrentTime[Wm] >=
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(
VRecording.at(g_RecordingPlaying[Wm]).Recording.size() - 1).Time)
// Or if we are playing back all observations regardless of time
//g_RecordingPoint[Wm] = g_RecordingCounter[Wm];
//if (g_RecordingPoint[Wm] >= VRecording.at(g_RecordingPlaying[Wm]).Recording.size())
{
g_RecordingCounter[Wm] = 0;
g_RecordingPlaying[Wm] = -1;
g_RecordingStart[Wm] = 0;
g_RecordingCurrentTime[Wm] = 0;
Console::Print("End: %i\n\n", Wm);
return false;
}
// Update accelerometer values
_x = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).x, 0, Wm);
_y = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).y, 1, Wm);
_z = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).z, 2, Wm);
// Update IR values
if(Wm == WM_RECORDING_IR) memcpy(&_IR, VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).IR, IRBytes);
if (g_DebugAccelerometer)
{
//Console::ClearScreen();
Console::Print("Current time: [%i / %i] %f %f\n",
g_RecordingPoint[Wm], VRecording.at(g_RecordingPlaying[Wm]).Recording.size(),
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).Time, g_RecordingCurrentTime[Wm]
);
Console::Print("Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
}
//Console::Print("Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
g_RecordingCounter[Wm]++;
return true;
}
/* Because the playback is neatly controlled by RecordingPlayAccIR() we use these functions to be able to
use RecordingPlayAccIR() for both accelerometer and IR recordings */
bool RecordingPlay(u8 &_x, u8 &_y, u8 &_z, int Wm)
{
wm_ir_basic IR;
return RecordingPlayAccIR(_x, _y, _z, IR, Wm);
}
template<class IRReportType>
bool RecordingPlayIR(IRReportType &_IR)
{
u8 x, y, z;
return RecordingPlayAccIR(x, y, z, _IR, 2);
}
// Return true if this particual numerical key is pressed
bool IsNumericalKeyPressed(int _Key)
{
#ifdef _WIN32
// Check which key it is
std::string TmpKey = StringFromFormat("%i", _Key);
if(GetAsyncKeyState(TmpKey[0]))
return true;
else
// That numerical key is pressed
return false;
#else
// TODO linux port
return false;
#endif
}
// Check if a switch is pressed
bool IsSwitchPressed(int _Key)
{
#ifdef _WIN32
// Check if that switch is pressed
switch (_Key)
{
case 0: if (GetAsyncKeyState(VK_SHIFT)) return true;
case 1: if (GetAsyncKeyState(VK_CONTROL)) return true;
case 2: if (GetAsyncKeyState(VK_MENU)) return true;
}
// That switch was not pressed
return false;
#else
// TODO linux port
return false;
#endif
}
// Check if we should start the playback of a recording. Once it has been started it can currently
// not be stopped, it will always run to the end of the recording.
int RecordingCheckKeys(int WmNuIr)
{
#ifdef _WIN32
//Console::Print("RecordingCheckKeys: %i\n", Wiimote);
// Check if we have a HotKey match
bool Match = false;
int Recording = -1;
for(int i = 0; i < RECORDING_ROWS; i++)
{
// Check all ten numerical keys
for(int j = 0; j < 10; j++)
{
if ((VRecording.at(i).HotKeyWiimote == j && WmNuIr == 0 && IsNumericalKeyPressed(j)
|| VRecording.at(i).HotKeyNunchuck == j && WmNuIr == 1 && IsNumericalKeyPressed(j)
|| VRecording.at(i).HotKeyIR == j && WmNuIr == 2 && IsNumericalKeyPressed(j))
&& (IsSwitchPressed(VRecording.at(i).HotKeySwitch) || VRecording.at(i).HotKeySwitch == 3))
{
//Console::Print("Match: %i %i\n", i, Key);
Match = true;
Recording = i;
break;
}
}
}
// Return nothing if we don't have a match
if (!Match) return -1;
// Return the match
return Recording;
#else
return -1;
#endif
}
//******************************************************************************
// Subroutines
//******************************************************************************
/////////////////////////////////////////////////////////////////////////
// Multi System Input Status Check
// ---------------
int IsKey(int Key)
{
#ifdef _WIN32
switch(Key)
{
// Wiimote
case g_Wm.MA: return GetAsyncKeyState(VK_LBUTTON);
case g_Wm.MB: return GetAsyncKeyState(VK_RBUTTON);
case g_Wm.A: return GetAsyncKeyState(PadMapping[0].Wm.A);
case g_Wm.B: return GetAsyncKeyState(PadMapping[0].Wm.B);
case g_Wm.ONE: return GetAsyncKeyState(PadMapping[0].Wm.One);
case g_Wm.TWO: return GetAsyncKeyState(PadMapping[0].Wm.Two);
case g_Wm.P: return GetAsyncKeyState(PadMapping[0].Wm.P);
case g_Wm.M: return GetAsyncKeyState(PadMapping[0].Wm.M);
case g_Wm.H: return GetAsyncKeyState(PadMapping[0].Wm.H);
case g_Wm.L: return GetAsyncKeyState(PadMapping[0].Wm.L);
case g_Wm.R: return GetAsyncKeyState(PadMapping[0].Wm.R);
case g_Wm.U: return GetAsyncKeyState(PadMapping[0].Wm.U);
case g_Wm.D: return GetAsyncKeyState(PadMapping[0].Wm.D);
case g_Wm.PITCH_L: return GetAsyncKeyState(PadMapping[0].Wm.PitchL);
case g_Wm.PITCH_R: return GetAsyncKeyState(PadMapping[0].Wm.PitchR);
case g_Wm.SHAKE: return GetAsyncKeyState(PadMapping[0].Wm.Shake);
// Nunchuck
case g_Nc.Z: return GetAsyncKeyState(PadMapping[0].Nc.Z);
case g_Nc.C: return GetAsyncKeyState(PadMapping[0].Nc.C);
case g_Nc.L: return GetAsyncKeyState(PadMapping[0].Nc.L);
case g_Nc.R: return GetAsyncKeyState(PadMapping[0].Nc.R);
case g_Nc.U: return GetAsyncKeyState(PadMapping[0].Nc.U);
case g_Nc.D: return GetAsyncKeyState(PadMapping[0].Nc.D);
case g_Nc.SHAKE: return GetAsyncKeyState(PadMapping[0].Nc.Shake);
// Classic Controller
case g_Cc.A: return GetAsyncKeyState(PadMapping[0].Cc.A);
case g_Cc.B: return GetAsyncKeyState(PadMapping[0].Cc.B);
case g_Cc.X: return GetAsyncKeyState(PadMapping[0].Cc.X);
case g_Cc.Y: return GetAsyncKeyState(PadMapping[0].Cc.Y);
case g_Cc.P: return GetAsyncKeyState(PadMapping[0].Cc.P); // Default is O instead of P
case g_Cc.M: return GetAsyncKeyState(PadMapping[0].Cc.M); // Default is N instead of M
case g_Cc.H: return GetAsyncKeyState(PadMapping[0].Cc.H); // Default is U instead of H
case g_Cc.Tl: return GetAsyncKeyState(PadMapping[0].Cc.Tl); // Digital left trigger
case g_Cc.Zl: return GetAsyncKeyState(PadMapping[0].Cc.Zl);
case g_Cc.Zr: return GetAsyncKeyState(PadMapping[0].Cc.Zr);
case g_Cc.Tr: return GetAsyncKeyState(PadMapping[0].Cc.Tr); // Digital right trigger
case g_Cc.Dl: return GetAsyncKeyState(PadMapping[0].Cc.Dl); // Digital left
case g_Cc.Du: return GetAsyncKeyState(PadMapping[0].Cc.Du); // Up
case g_Cc.Dr: return GetAsyncKeyState(PadMapping[0].Cc.Dr); // Right
case g_Cc.Dd: return GetAsyncKeyState(PadMapping[0].Cc.Dd); // Down
case g_Cc.Ll: return GetAsyncKeyState(PadMapping[0].Cc.Ll); // Left analog
case g_Cc.Lu: return GetAsyncKeyState(PadMapping[0].Cc.Lu);
case g_Cc.Lr: return GetAsyncKeyState(PadMapping[0].Cc.Lr);
case g_Cc.Ld: return GetAsyncKeyState(PadMapping[0].Cc.Ld);
case g_Cc.Rl: return GetAsyncKeyState(PadMapping[0].Cc.Rl); // Right analog
case g_Cc.Ru: return GetAsyncKeyState(PadMapping[0].Cc.Ru);
case g_Cc.Rr: return GetAsyncKeyState(PadMapping[0].Cc.Rr);
case g_Cc.Rd: return GetAsyncKeyState(PadMapping[0].Cc.Rd);
// This should not happen
default: PanicAlert("There is syntax error in a function that is calling IsKey(%i)", Key); return false;
}
#else
return true;
#endif
}
//////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
// Wiimote core buttons
// ---------------
void FillReportInfo(wm_core& _core)
{
/* This has to be filled with zeroes (and not for example 0xff) because when no buttons are pressed the
value is 00 00 */
memset(&_core, 0x00, sizeof(wm_core));
// Check that Dolphin is in focus
if (!IsFocus()) return;
// Check the mouse position. Don't allow mouse clicks from outside the window.
float x, y; GetMousePos(x, y);
bool InsideScreen = !(x < 0 || x > 1 || y < 0 || y > 1);
// Allow both mouse buttons and keyboard to press a and b
if((IsKey(g_Wm.MA) && InsideScreen) || IsKey(g_Wm.A))
_core.a = 1;
if((IsKey(g_Wm.MB) && InsideScreen) || IsKey(g_Wm.B))
_core.b = 1;
_core.one = IsKey(g_Wm.ONE) ? 1 : 0;
_core.two = IsKey(g_Wm.TWO) ? 1 : 0;
_core.plus = IsKey(g_Wm.P) ? 1 : 0;
_core.minus = IsKey(g_Wm.M) ? 1 : 0;
_core.home = IsKey(g_Wm.H) ? 1 : 0;
/* Sideways controls (for example for Wario Land) if the Wiimote is intended to be held sideways */
if(g_Config.bSidewaysDPad)
{
_core.left = IsKey(g_Wm.D) ? 1 : 0;
_core.up = IsKey(g_Wm.L) ? 1 : 0;
_core.right = IsKey(g_Wm.U) ? 1 : 0;
_core.down = IsKey(g_Wm.R) ? 1 : 0;
}
else
{
_core.left = IsKey(g_Wm.L) ? 1 : 0;
_core.up = IsKey(g_Wm.U) ? 1 : 0;
_core.right = IsKey(g_Wm.R) ? 1 : 0;
_core.down = IsKey(g_Wm.D) ? 1 : 0;
}
}
//////////////////////////
///////////////////////////////////////////////////////////////////
// Wiimote accelerometer
// ---------------
/* The accelerometer x, y and z values range from 0x00 to 0xff with the default netural values
being [y = 0x84, x = 0x84, z = 0x9f] according to a source. The extremes are 0x00 for (-)
and 0xff for (+). It's important that all values are not 0x80, the mouse pointer can disappear
from the screen permanently then, until z is adjusted back. This is because the game detects
a steep pitch of the Wiimote then. */
// ----------
// Global declarations for FillReportAcc: These variables are global so they can be changed during debugging
//int A = 0, B = 128, C = 64; // for debugging
//int a = 1, b = 1, c = 2, d = -2; // for debugging
//int consoleDisplay = 0;
// For all functions
u8 g_x, g_y, g_z, g_X, g_Y, g_Z;
// For the shake function, 0 = Wiimote, 1 = Nunchuck
int Shake[] = {-1, -1};
// For the tilt function, the size of this list determines how fast Y returns to its neutral value
std::vector<u8> yhist(15, 0); float KbDegree;
// ------------------------------------------
// Single shake of Wiimote while holding it sideways (Wario Land pound ground)
// ---------------
void SingleShake(u8 &_y, u8 &_z, int i)
{
#ifdef _WIN32
// Shake Wiimote with S, Nunchuck with D
if((i == 0 && IsKey(g_Wm.SHAKE)) || (i == 1 && IsKey(g_Nc.SHAKE)))
{
_z = 0;
_y = 0;
Shake[i] = 2;
}
else if(Shake[i] == 2)
{
// This works regardless of calibration, in Wario Land
_z = g_wm.cal_zero.z - 2;
_y = 0;
Shake[i] = 1;
}
else if(Shake[i] == 1)
{
Shake[i] = -1;
}
#endif
//if (Shake[i] > -1) Console::Print("Shake: %i\n", Shake[i]);
}
// ------------------------------------------
/* Tilting Wiimote with gamepad. We can guess that the game will calculate a Wiimote pitch and use it as a
measure of the tilting of the Wiimote. We are interested in this tilting range
90° to -90° */
// ---------------
void TiltWiimoteGamepad(float &Roll, float &Pitch)
{
// Return if we have no pads
if (NumGoodPads == 0) return;
// This has to be changed if multiple Wiimotes are to be supported later
const int Page = 0;
/* Adjust the pad state values, including a downscaling from the original 0x8000 size values
to 0x80. The only reason we do this is that the code below crrently assume that the range
is 0 to 255 for all axes. If we lose any precision by doing this we could consider not
doing this adjustment. And instead for example upsize the XInput trigger from 0x80 to 0x8000. */
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
float Lx = (float)_Lx;
float Ly = (float)_Ly;
float Rx = (float)_Rx;
float Ry = (float)_Ry;
float Tl = (float)_Tl;
float Tr = (float)_Tr;
// Save the Range in degrees, 45° and 90° are good values in some games
float RollRange = (float)g_Config.Trigger.Range.Roll;
float PitchRange = (float)g_Config.Trigger.Range.Pitch;
// The trigger currently only controls pitch
if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER)
{
// Make the range the same dimension as the analog stick
Tl = Tl / 2;
Tr = Tr / 2;
// Invert
if (PadMapping[Page].bPitchInvert) { Tl = -Tl; Tr = -Tr; }
// The final value
Pitch = Tl * (PitchRange / 128.0)
- Tr * (PitchRange / 128.0);
}
/* For the analog stick roll us by default set to the X-axis, pitch is by default set to the Y-axis.
By changing the axis mapping and the invert options this can be altered in any way */
else if (g_Config.Trigger.Type == g_Config.Trigger.ANALOG1)
{
// Adjust the trigger to go between negative and positive values
Lx = Lx - 128.0;
Ly = Ly - 128.0;
// Invert
if (PadMapping[Page].bRollInvert) Lx = -Lx; // else Tr = -Tr;
if (PadMapping[Page].bPitchInvert) Ly = -Ly; // else Tr = -Tr;
// Produce the final value
Roll = Lx * (RollRange / 128.0);
Pitch = Ly * (PitchRange / 128.0);
}
// Otherwise we are using ANALOG2
else
{
// Adjust the trigger to go between negative and positive values
Rx = Rx - 128.0;
Ry = Ry - 128.0;
// Invert
if (PadMapping[Page].bRollInvert) Rx = -Rx; // else Tr = -Tr;
if (PadMapping[Page].bPitchInvert) Ry = -Ry; // else Tr = -Tr;
// Produce the final value
Roll = Rx * (RollRange / 128.0);
Pitch = Ry * (PitchRange / 128.0);
}
// Adjustment to prevent a slightly to high angle
if (Pitch >= PitchRange) Pitch = PitchRange - 0.1;
if (Roll >= RollRange) Roll = RollRange - 0.1;
}
// ------------------------------------------
// Tilting Wiimote with keyboard
// ---------------
void TiltWiimoteKeyboard(float &Roll, float &Pitch)
{
#ifdef _WIN32
if(IsKey(g_Wm.PITCH_L))
{
// Stop at the upper end of the range
if(KbDegree < g_Config.Trigger.Range.Pitch)
KbDegree += 3; // aim left
}
else if(IsKey(g_Wm.PITCH_R))
{
// Stop at the lower end of the range
if(KbDegree > -g_Config.Trigger.Range.Pitch)
KbDegree -= 3; // aim right
}
// -----------------------------------
// Check for inactivity in the tilting, the Y value will be reset after ten inactive updates
// ----------
// Check for activity
yhist[yhist.size() - 1] = (
IsKey(g_Wm.PITCH_L)
||IsKey(g_Wm.PITCH_R)
);
// Move all items back, and check if any of them are true
bool ypressed = false;
for (int i = 1; i < (int)yhist.size(); i++)
{
yhist[i-1] = yhist[i];
if(yhist[i]) ypressed = true;
}
// Tilting was not used a single time, reset the angle to zero
if(!ypressed)
{
KbDegree = 0;
}
else
{
Pitch = KbDegree;
//Console::Print("Degree: %2.1f\n", KbDegree);
}
// --------------------
#endif
}
// ------------------------------------------
// Tilting Wiimote (Wario Land aiming, Mario Kart steering and other things)
// ---------------
void Tilt(u8 &_x, u8 &_y, u8 &_z)
{
// Ceck if it's on
if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER_OFF) return;
// Set to zero
float Roll = 0, Pitch = 0;
// Select input method and return the x, y, x values
if (g_Config.Trigger.Type == g_Config.Trigger.KEYBOARD)
TiltWiimoteKeyboard(Roll, Pitch);
else if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER || g_Config.Trigger.Type == g_Config.Trigger.ANALOG1 || g_Config.Trigger.Type == g_Config.Trigger.ANALOG2)
TiltWiimoteGamepad(Roll, Pitch);
// Adjust angles, it's only needed if both roll and pitch is used together
if (g_Config.Trigger.Range.Roll != 0 && g_Config.Trigger.Range.Pitch != 0) AdjustAngles(Roll, Pitch);
// Calculate the accelerometer value from this tilt angle
//PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z, g_Config.Trigger.Roll, g_Config.Trigger.Pitch);
PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z);
if (g_DebugData)
{
//Console::ClearScreen();
/*Console::Print("L:%2.1f R:%2.1f Lx:%2.1f Range:%2.1f Degree:%2.1f L:%i R:%i\n",
Tl, Tr, Lx, Range, Degree, PadState[Page].Axis.Tl, PadState[Page].Axis.Tr);*/
/*Console::Print("Roll:%2.1f Pitch:%2.1f\n", Roll, Pitch);*/
}
}
void FillReportAcc(wm_accel& _acc)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[0] < 0)
{
g_RecordingPlaying[0] = RecordingCheckKeys(0);
}
else
{
// If the recording reached the end or failed somehow we will not return
if (RecordingPlay(_acc.x, _acc.y, _acc.z, 0)) return;
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
}
// ---------------------
// The default values can change so we need to update them all the time
g_X = g_wm.cal_zero.x;
g_Y = g_wm.cal_zero.y;
g_Z = g_wm.cal_zero.z + g_wm.cal_g.z;
// Check that Dolphin is in focus
if (!IsFocus())
{
_acc.x = g_X;
_acc.y = g_y;
_acc.z = g_z;
return;
}
// ------------------------------------------------
// Wiimote to Gamepad translations
// ------------
// The following functions may or may not update these values
g_x = g_X;
g_y = g_Y;
g_z = g_Z;
// Shake the Wiimote
SingleShake(g_y, g_z, 0);
// Tilt Wiimote, allow the shake function to interrupt it
if (Shake[0] == -1) Tilt(g_x, g_y, g_z);
// Write final values
_acc.x = g_x;
_acc.y = g_y;
_acc.z = g_z;
// ----------------------------
// Debugging for translating Wiimote to Keyboard (or Gamepad)
// ----------
/*
// Toogle console display
if(GetAsyncKeyState('U'))
{
if(consoleDisplay < 2)
consoleDisplay ++;
else
consoleDisplay = 0;
}
if(GetAsyncKeyState('5'))
A-=1;
else if(GetAsyncKeyState('6'))
A+=1;
if(GetAsyncKeyState('7'))
B-=1;
else if(GetAsyncKeyState('8'))
B+=1;
if(GetAsyncKeyState('9'))
C-=1;
else if(GetAsyncKeyState('0'))
C+=1;
else if(GetAsyncKeyState(VK_NUMPAD3))
d-=1;
else if(GetAsyncKeyState(VK_NUMPAD6))
d+=1;
else if(GetAsyncKeyState(VK_ADD))
yhistsize-=1;
else if(GetAsyncKeyState(VK_SUBTRACT))
yhistsize+=1;
if(GetAsyncKeyState(VK_INSERT))
AX-=1;
else if(GetAsyncKeyState(VK_DELETE))
AX+=1;
else if(GetAsyncKeyState(VK_HOME))
AY-=1;
else if(GetAsyncKeyState(VK_END))
AY+=1;
else if(GetAsyncKeyState(VK_SHIFT))
AZ-=1;
else if(GetAsyncKeyState(VK_CONTROL))
AZ+=1;
if(GetAsyncKeyState(VK_NUMPAD1))
X+=1;
else if(GetAsyncKeyState(VK_NUMPAD2))
X-=1;
if(GetAsyncKeyState(VK_NUMPAD4))
Y+=1;
else if(GetAsyncKeyState(VK_NUMPAD5))
Y-=1;
if(GetAsyncKeyState(VK_NUMPAD7))
Z+=1;
else if(GetAsyncKeyState(VK_NUMPAD8))
Z-=1;
//if(consoleDisplay == 0)
Console::Print("x: %03i | y: %03i | z: %03i | A:%i B:%i C:%i a:%i b:%i c:%i d:%i X:%i Y:%i Z:%i\n",
_acc.x, _acc.y, _acc.z,
A, B, C,
a, b, c, d,
X, Y, Z
);
Console::Print("x: %03i | y: %03i | z: %03i | X:%i Y:%i Z:%i | AX:%i AY:%i AZ:%i \n",
_acc.x, _acc.y, _acc.z,
X, Y, Z,
AX, AY, AZ
);*/
}
/////////////////////////
/*
int Top = TOP, Left = LEFT, Right = RIGHT,
Bottom = BOTTOM, SensorBarRadius = SENSOR_BAR_RADIUS;
*/
///////////////////////////////////////////////////////////////////
// The extended 12 byte (3 byte per object) reporting
// ---------------
void FillReportIR(wm_ir_extended& _ir0, wm_ir_extended& _ir1)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[2] < 0)
{
g_RecordingPlaying[2] = RecordingCheckKeys(2);
}
else
{
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
if (RecordingPlayIR(_ir0)) return;
}
// ---------------------
/* Fill with 0xff if empty. The real Wiimote seems to use 0xff when it doesn't see a certain point,
at least from how WiiMoteReal::SendEvent() works. */
memset(&_ir0, 0xff, sizeof(wm_ir_extended));
memset(&_ir1, 0xff, sizeof(wm_ir_extended));
float MouseX, MouseY;
GetMousePos(MouseX, MouseY);
// If we are outside the screen leave the values at 0xff
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
// --------------------------------------
// Position calculation
// ----------
int y0 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
int y1 = y0;
// The distance between the x positions are two sensor bar radii
int x0 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) - SENSOR_BAR_RADIUS;
int x1 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) + SENSOR_BAR_RADIUS;
// ------------------
// ----------------------------
// Debugging for calibration
// ----------
/*
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
Right +=1;
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
Right -=1;
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
Left +=1;
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
Left -=1;
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
Top += 1;
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
Top -= 1;
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
Bottom += 1;
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
Bottom -= 1;
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
SensorBarRadius += 1;
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
SensorBarRadius -= 1;
//Console::ClearScreen();
//if(consoleDisplay == 1)
Console::Print("x0:%03i x1:%03i y0:%03i y1:%03i | T:%i L:%i R:%i B:%i S:%i\n",
x0, x1, y0, y1, Top, Left, Right, Bottom, SensorBarRadius
);*/
// ------------------
// --------------------------------------
// Converted to IR data
// ----------
// The width is 0 to 1023
// The height is 0 to 767
x0 = 1023 - x0;
_ir0.x = x0 & 0xff; _ir0.xHi = x0 >> 8;
_ir0.y = y0 & 0xff; _ir0.yHi = y0 >> 8;
// The size can be between 0 and 15 and is probably not important
_ir0.size = 10;
x1 = 1023 - x1;
_ir1.x = x1 & 0xff; _ir1.xHi = x1 >> 8;
_ir1.y = y1 & 0xff; _ir1.yHi = y1 >> 8;
_ir1.size = 10;
// ------------------
}
///////////////////////////////////////////////////////////////////
// The 10 byte reporting used when an extension is connected
// ---------------
void FillReportIRBasic(wm_ir_basic& _ir0, wm_ir_basic& _ir1)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[2] < 0)
{
g_RecordingPlaying[2] = RecordingCheckKeys(2);
}
// We are playing back a recording, we don't accept any manual input this time
else
{
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
if (RecordingPlayIR(_ir0)) return;
}
// ---------------------
// Fill with 0xff if empty
memset(&_ir0, 0xff, sizeof(wm_ir_basic));
memset(&_ir1, 0xff, sizeof(wm_ir_basic));
float MouseX, MouseY;
GetMousePos(MouseX, MouseY);
// If we are outside the screen leave the values at 0xff
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
int y1 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
int y2 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
int x1 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) - SENSOR_BAR_RADIUS;
int x2 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) + SENSOR_BAR_RADIUS;
/* As with the extented report we settle with emulating two out of four possible objects
the only difference is that we don't report any size of the tracked object here */
x1 = 1023 - x1;
_ir0.x1 = x1 & 0xff; _ir0.x1Hi = (x1 >> 8); // we are dealing with 2 bit values here
_ir0.y1 = y1 & 0xff; _ir0.y1Hi = (y1 >> 8);
x2 = 1023 - x2;
_ir0.x2 = x2 & 0xff; _ir0.x2Hi = (x2 >> 8);
_ir0.y2 = y2 & 0xff; _ir0.y2Hi = (y2 >> 8);
// ------------------------------------
// Debugging for calibration
// ----------
/*
if(GetAsyncKeyState(VK_NUMPAD1))
Right +=1;
else if(GetAsyncKeyState(VK_NUMPAD2))
Right -=1;
if(GetAsyncKeyState(VK_NUMPAD4))
Left +=1;
else if(GetAsyncKeyState(VK_NUMPAD5))
Left -=1;
if(GetAsyncKeyState(VK_NUMPAD7))
Top += 1;
else if(GetAsyncKeyState(VK_NUMPAD8))
Top -= 1;
if(GetAsyncKeyState(VK_NUMPAD6))
Bottom += 1;
else if(GetAsyncKeyState(VK_NUMPAD3))
Bottom -= 1;
if(GetAsyncKeyState(VK_INSERT))
SensorBarRadius += 1;
else if(GetAsyncKeyState(VK_DELETE))
SensorBarRadius -= 1;
//ClearScreen();
//if(consoleDisplay == 1)
Console::Print("x1:%03i x2:%03i y1:%03i y2:%03i irx1:%02x y1:%02x x2:%02x y2:%02x | T:%i L:%i R:%i B:%i S:%i\n",
x1, x2, y1, y2, _ir0.x1, _ir0.y1, _ir1.x2, _ir1.y2, Top, Left, Right, Bottom, SensorBarRadius
);
Console::Print("\n");
Console::Print("ir0.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir0.y1:%02x y1h:%02x y2:%02x y2h:%02x | ir1.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir1.y1:%02x y1h:%02x y2:%02x y2h:%02x\n",
_ir0.x1, _ir0.x1Hi, _ir0.x2, _ir0.x2Hi,
_ir0.y1, _ir0.y1Hi, _ir0.y2, _ir0.y2Hi,
_ir1.x1, _ir1.x1Hi, _ir1.x2, _ir1.x2Hi,
_ir1.y1, _ir1.y1Hi, _ir1.y2, _ir1.y2Hi
);*/
// ------------------
}
//**************************************************************************************
// Extensions
//**************************************************************************************
// ===================================================
/* Generate the 6 byte extension report for the Nunchuck, encrypted. The bytes are JX JY AX AY AZ BT. */
// ----------------
void FillReportExtension(wm_extension& _ext)
{
// ------------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[1] < 0) g_RecordingPlaying[1] = RecordingCheckKeys(1);
// We should not play back the accelerometer values
if (!(g_RecordingPlaying[1] >= 0 && RecordingPlay(_ext.ax, _ext.ay, _ext.az, 1)))
{
// Use the neutral values
_ext.ax = g_nu.cal_zero.x;
_ext.ay = g_nu.cal_zero.y;
_ext.az = g_nu.cal_zero.z + g_nu.cal_g.z;
}
// ---------------------
// Shake the Wiimote
SingleShake(_ext.ay, _ext.az, 1);
// ------------------------------------
// The default joystick and button values unless we use them
// --------------
_ext.jx = g_nu.jx.center;
_ext.jy = g_nu.jy.center;
_ext.bt = 0x03; // 0x03 means no button pressed, the button is zero active
// ---------------------
// Update the analog stick
if (g_Config.Nunchuck.Type == g_Config.Nunchuck.KEYBOARD)
{
// Set the max values to the current calibration values
if(IsKey(g_Nc.L)) // x
_ext.jx = g_nu.jx.min;
if(IsKey(g_Nc.R))
_ext.jx = g_nu.jx.max;
if(IsKey(g_Nc.D)) // y
_ext.jy = g_nu.jy.min;
if(IsKey(g_Nc.U))
_ext.jy = g_nu.jy.max;
}
else
{
// Get adjusted pad state values
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
// The Y-axis is inverted
_Ly = 0xff - _Ly;
_Ry = 0xff - _Ry;
/* This is if we are also using a real Nunchuck that we are sharing the calibration with. It's not
needed if we are using our default values. We adjust the values to the configured range, we even
allow the center to not be 0x80. */
if(g_nu.jx.max != 0xff || g_nu.jy.max != 0xff
|| g_nu.jx.min != 0 || g_nu.jy.min != 0
|| g_nu.jx.center != 0x80 || g_nu.jy.center != 0x80)
{
float Lx = (float)_Lx;
float Ly = (float)_Ly;
float Rx = (float)_Rx;
float Ry = (float)_Ry;
float Tl = (float)_Tl;
float Tr = (float)_Tr;
float XRangePos = (float) (g_nu.jx.max - g_nu.jx.center);
float XRangeNeg = (float) (g_nu.jx.center - g_nu.jx.min);
float YRangePos = (float) (g_nu.jy.max - g_nu.jy.center);
float YRangeNeg = (float) (g_nu.jy.center - g_nu.jy.min);
if (Lx > 0x80) Lx = Lx * (XRangePos / 128.0);
if (Lx < 0x80) Lx = Lx * (XRangeNeg / 128.0);
if (Lx == 0x80) Lx = (float)g_nu.jx.center;
if (Ly > 0x80) Ly = Ly * (YRangePos / 128.0);
if (Ly < 0x80) Ly = Ly * (YRangeNeg / 128.0);
if (Ly == 0x80) Lx = (float)g_nu.jy.center;
// Boundaries
_Lx = (int)Lx;
_Ly = (int)Ly;
_Rx = (int)Rx;
_Ry = (int)Ry;
if (_Lx > 0xff) _Lx = 0xff; if (_Lx < 0) _Lx = 0;
if (_Rx > 0xff) _Rx = 0xff; if (_Rx < 0) _Rx = 0;
if (_Ly > 0xff) _Ly = 0xff; if (_Ly < 0) _Ly = 0;
if (_Ry > 0xff) _Ry = 0xff; if (_Ry < 0) _Ry = 0;
}
if (g_Config.Nunchuck.Type == g_Config.Nunchuck.ANALOG1)
{
_ext.jx = _Lx;
_ext.jy = _Ly;
}
else // ANALOG2
{
_ext.jx = _Rx;
_ext.jy = _Ry;
}
}
if(IsKey(g_Nc.C))
_ext.bt = 0x01;
if(IsKey(g_Nc.Z))
_ext.bt = 0x02;
if(IsKey(g_Nc.C) && IsKey(g_Nc.Z))
_ext.bt = 0x00;
/* Here we encrypt the report */
// Create a temporary storage for the data
u8 Tmp[sizeof(_ext)];
// Clear the array by copying zeroes to it
memset(Tmp, 0, sizeof(_ext));
// Copy the data to it
memcpy(Tmp, &_ext, sizeof(_ext));
// Encrypt it
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
// Write it back to the struct
memcpy(&_ext, Tmp, sizeof(_ext));
}
// =======================
// ===================================================
/* Generate the 6 byte extension report for the Classic Controller, encrypted.
The bytes are ... */
// ----------------
void FillReportClassicExtension(wm_classic_extension& _ext)
{
/* These are the default neutral values for the analog triggers and sticks */
u8 Rx = g_cc.Rx.center, Ry = g_cc.Ry.center,
Lx = g_cc.Lx.center, Ly = g_cc.Ly.center,
lT = g_cc.Tl.neutral, rT = g_cc.Tl.neutral;
_ext.b1.padding = 0x01; // 0x01 means not pressed
_ext.b1.bRT = 0x01;
_ext.b1.bP = 0x01;
_ext.b1.bH = 0x01;
_ext.b1.bM = 0x01;
_ext.b1.bLT = 0x01;
_ext.b1.bdD = 0x01;
_ext.b1.bdR = 0x01;
_ext.b2.bdU = 0x01;
_ext.b2.bdL = 0x01;
_ext.b2.bZR = 0x01;
_ext.b2.bX = 0x01;
_ext.b2.bA = 0x01;
_ext.b2.bY = 0x01;
_ext.b2.bB = 0x01;
_ext.b2.bZL = 0x01;
// --------------------------------------
// Check that Dolphin is in focus
if (IsFocus())
{
// --------------------------------------
/* Left and right analog sticks and analog triggers
u8 Lx : 6; // byte 0
u8 Rx : 2;
u8 Ly : 6; // byte 1
u8 Rx2 : 2;
u8 Ry : 5; // byte 2
u8 lT : 2;
u8 Rx3 : 1;
u8 rT : 5; // byte 3
u8 lT2 : 3;
We use a 200 range (28 to 228) for the left analog stick and a 176 range
(40 to 216) for the right analog stick to match our calibration values
in classic_calibration
*/
// Update the left analog stick
if (g_Config.ClassicController.LType == g_Config.ClassicController.KEYBOARD)
{
if(IsKey(g_Cc.Ll)) // Left analog left
Lx = g_cc.Lx.min;
if(IsKey(g_Cc.Lu)) // up
Ly = g_cc.Ly.max;
if(IsKey(g_Cc.Lr)) // right
Lx = g_cc.Lx.max;
if(IsKey(g_Cc.Ld)) // down
Ly = g_cc.Ly.min;
}
else
{
// Get adjusted pad state values
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
// The Y-axis is inverted
_Ly = 0xff - _Ly;
_Ry = 0xff - _Ry;
/* This is if we are also using a real Classic Controller that we are sharing the calibration with.
It's not needed if we are using our default values. We adjust the values to the configured range.
Status: Not added, we are not currently sharing the calibration with the real Classic Controller
*/
if (g_Config.ClassicController.LType == g_Config.ClassicController.ANALOG1)
{
Lx = _Lx;
Ly = _Ly;
}
else // ANALOG2
{
Lx = _Rx;
Ly = _Ry;
}
}
// Update the right analog stick
if (g_Config.ClassicController.RType == g_Config.ClassicController.KEYBOARD)
{
if(IsKey(g_Cc.Rl)) // Right analog left
Rx = g_cc.Rx.min;
if(IsKey(g_Cc.Ru)) // up
Ry = g_cc.Ry.max;
if(IsKey(g_Cc.Rr)) // right
Rx = g_cc.Rx.max;
if(IsKey(g_Cc.Rd)) // down
Ry = g_cc.Ry.min;
}
else
{
// Get adjusted pad state values
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
// The Y-axis is inverted
_Ly = 0xff - _Ly;
_Ry = 0xff - _Ry;
/* This is if we are also using a real Classic Controller that we are sharing the calibration with.
It's not needed if we are using our default values. We adjust the values to the configured range.
Status: Not added, we are not currently sharing the calibration with the real Classic Controller
*/
if (g_Config.ClassicController.RType == g_Config.ClassicController.ANALOG1)
{
Rx = _Lx;
Ry = _Ly;
}
else // ANALOG2
{
Rx = _Rx;
Ry = _Ry;
}
}
// Update the left and right analog triggers
if (g_Config.ClassicController.TType == g_Config.ClassicController.KEYBOARD)
{
if(IsKey(g_Cc.Tl)) // analog left trigger
{ _ext.b1.bLT = 0x00; lT = 0x1f; }
if(IsKey(g_Cc.Tr)) // analog right trigger
{ _ext.b1.bRT = 0x00; rT = 0x1f; }
}
else // g_Config.ClassicController.TRIGGER
{
// Get adjusted pad state values
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
/* This is if we are also using a real Classic Controller that we are sharing the calibration with.
It's not needed if we are using our default values. We adjust the values to the configured range.
Status: Not added, we are not currently sharing the calibration with the real Classic Controller
*/
// Check if the trigger is fully pressed, then update the digital trigger values to
if (_Tl == 0xff) _ext.b1.bLT = 0x00;
if (_Tr == 0xff) _ext.b1.bRT = 0x00;
// These can be copied directly, the bitshift further down fix this value to
lT = _Tl;
rT = _Tr;
}
// --------------
// --------------------------------------
/* D-Pad
u8 b1;
0:
6: bdD
7: bdR
u8 b2;
0: bdU
1: bdL
*/
if(IsKey(g_Cc.Dl)) _ext.b2.bdL = 0x00; // Digital left
if(IsKey(g_Cc.Du)) _ext.b2.bdU = 0x00; // Up
if(IsKey(g_Cc.Dr)) _ext.b1.bdR = 0x00; // Right
if(IsKey(g_Cc.Dd)) _ext.b1.bdD = 0x00; // Down
// --------------
// --------------------------------------
/* Buttons
u8 b1;
0:
6: -
7: -
u8 b2;
0: -
1: -
2: bZr
3: bX
4: bA
5: bY
6: bB
7: bZl
*/
if(IsKey(g_Cc.A))
_ext.b2.bA = 0x00;
if(IsKey(g_Cc.B))
_ext.b2.bB = 0x00;
if(IsKey(g_Cc.Y))
_ext.b2.bY = 0x00;
if(IsKey(g_Cc.X))
_ext.b2.bX = 0x00;
if(IsKey(g_Cc.P)) // O instead of P
_ext.b1.bP = 0x00;
if(IsKey(g_Cc.M)) // N instead of M
_ext.b1.bM = 0x00;
if(IsKey(g_Cc.H)) // Home button
_ext.b1.bH = 0x00;
if(IsKey(g_Cc.Zl)) // Digital left trigger
_ext.b2.bZL = 0x00;
if(IsKey(g_Cc.Zr)) // Digital right trigger
_ext.b2.bZR = 0x00;
// All buttons pressed
//if(GetAsyncKeyState('C') && GetAsyncKeyState('Z'))
// { _ext.b2.bA = 0x01; _ext.b2.bB = 0x01; }
// --------------
}
// --------------------------------------
// --------------------------------------
// Convert data for reporting
// --------------
_ext.Lx = (Lx >> 2);
_ext.Ly = (Ly >> 2);
// 5 bit to 1 bit
_ext.Rx = (Rx >> 3) & 0x01;
// 5 bit to the next 2 bit
_ext.Rx2 = ((Rx >> 3) >> 1) & 0x03;
// 5 bit to the next 2 bit
_ext.Rx3 = ((Rx >> 3) >> 3) & 0x03;
_ext.Ry = (Ry >> 3);
// 5 bit to 3 bit
_ext.lT = (lT >> 3) & 0x07;
// 5 bit to the highest two bits
_ext.lT2 = (lT >> 3) >> 3;
_ext.rT = (rT >> 3);
// --------------
/* Here we encrypt the report */
// Create a temporary storage for the data
u8 Tmp[sizeof(_ext)];
// Clear the array by copying zeroes to it
memset(Tmp, 0, sizeof(_ext));
// Copy the data to it
memcpy(Tmp, &_ext, sizeof(_ext));
// Encrypt it
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
// Write it back to the struct
memcpy(&_ext, Tmp, sizeof(_ext));
}
// =======================
} // end of namespace