dolphin/Source/Core/VideoCommon/PixelShaderGen.cpp
Pokechu22 444f6fd0cb Treat alpha as 0 if alpha is 1 for blending
This removes the white box in fortune street again, without causing Mario Kart Wii to regress.
2022-02-08 15:15:15 -08:00

2091 lines
82 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/PixelShaderGen.h"
#include <cmath>
#include <cstdio>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/EnumMap.h"
#include "Common/Logging/Log.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/LightingShaderGen.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h" // for texture projection mode
// TODO: Get rid of these
enum : u32
{
C_COLORMATRIX = 0, // 0
C_COLORS = 0, // 0
C_KCOLORS = C_COLORS + 4, // 4
C_ALPHA = C_KCOLORS + 4, // 8
C_TEXDIMS = C_ALPHA + 1, // 9
C_ZBIAS = C_TEXDIMS + 8, // 17
C_INDTEXSCALE = C_ZBIAS + 2, // 19
C_INDTEXMTX = C_INDTEXSCALE + 2, // 21
C_FOGCOLOR = C_INDTEXMTX + 6, // 27
C_FOGI = C_FOGCOLOR + 1, // 28
C_FOGF = C_FOGI + 1, // 29
C_ZSLOPE = C_FOGF + 2, // 31
C_EFBSCALE = C_ZSLOPE + 1, // 32
C_PENVCONST_END = C_EFBSCALE + 1
};
constexpr Common::EnumMap<const char*, KonstSel::K3_A> tev_ksel_table_c{
"255,255,255", // 1 = 0x00
"223,223,223", // 7_8 = 0x01
"191,191,191", // 3_4 = 0x02
"159,159,159", // 5_8 = 0x03
"128,128,128", // 1_2 = 0x04
"96,96,96", // 3_8 = 0x05
"64,64,64", // 1_4 = 0x06
"32,32,32", // 1_8 = 0x07
"0,0,0", // INVALID = 0x08
"0,0,0", // INVALID = 0x09
"0,0,0", // INVALID = 0x0a
"0,0,0", // INVALID = 0x0b
I_KCOLORS "[0].rgb", // K0 = 0x0C
I_KCOLORS "[1].rgb", // K1 = 0x0D
I_KCOLORS "[2].rgb", // K2 = 0x0E
I_KCOLORS "[3].rgb", // K3 = 0x0F
I_KCOLORS "[0].rrr", // K0_R = 0x10
I_KCOLORS "[1].rrr", // K1_R = 0x11
I_KCOLORS "[2].rrr", // K2_R = 0x12
I_KCOLORS "[3].rrr", // K3_R = 0x13
I_KCOLORS "[0].ggg", // K0_G = 0x14
I_KCOLORS "[1].ggg", // K1_G = 0x15
I_KCOLORS "[2].ggg", // K2_G = 0x16
I_KCOLORS "[3].ggg", // K3_G = 0x17
I_KCOLORS "[0].bbb", // K0_B = 0x18
I_KCOLORS "[1].bbb", // K1_B = 0x19
I_KCOLORS "[2].bbb", // K2_B = 0x1A
I_KCOLORS "[3].bbb", // K3_B = 0x1B
I_KCOLORS "[0].aaa", // K0_A = 0x1C
I_KCOLORS "[1].aaa", // K1_A = 0x1D
I_KCOLORS "[2].aaa", // K2_A = 0x1E
I_KCOLORS "[3].aaa", // K3_A = 0x1F
};
constexpr Common::EnumMap<const char*, KonstSel::K3_A> tev_ksel_table_a{
"255", // 1 = 0x00
"223", // 7_8 = 0x01
"191", // 3_4 = 0x02
"159", // 5_8 = 0x03
"128", // 1_2 = 0x04
"96", // 3_8 = 0x05
"64", // 1_4 = 0x06
"32", // 1_8 = 0x07
"0", // INVALID = 0x08
"0", // INVALID = 0x09
"0", // INVALID = 0x0a
"0", // INVALID = 0x0b
"0", // INVALID = 0x0c
"0", // INVALID = 0x0d
"0", // INVALID = 0x0e
"0", // INVALID = 0x0f
I_KCOLORS "[0].r", // K0_R = 0x10
I_KCOLORS "[1].r", // K1_R = 0x11
I_KCOLORS "[2].r", // K2_R = 0x12
I_KCOLORS "[3].r", // K3_R = 0x13
I_KCOLORS "[0].g", // K0_G = 0x14
I_KCOLORS "[1].g", // K1_G = 0x15
I_KCOLORS "[2].g", // K2_G = 0x16
I_KCOLORS "[3].g", // K3_G = 0x17
I_KCOLORS "[0].b", // K0_B = 0x18
I_KCOLORS "[1].b", // K1_B = 0x19
I_KCOLORS "[2].b", // K2_B = 0x1A
I_KCOLORS "[3].b", // K3_B = 0x1B
I_KCOLORS "[0].a", // K0_A = 0x1C
I_KCOLORS "[1].a", // K1_A = 0x1D
I_KCOLORS "[2].a", // K2_A = 0x1E
I_KCOLORS "[3].a", // K3_A = 0x1F
};
constexpr Common::EnumMap<const char*, TevColorArg::Zero> tev_c_input_table{
"prev.rgb", // CPREV,
"prev.aaa", // APREV,
"c0.rgb", // C0,
"c0.aaa", // A0,
"c1.rgb", // C1,
"c1.aaa", // A1,
"c2.rgb", // C2,
"c2.aaa", // A2,
"textemp.rgb", // TEXC,
"textemp.aaa", // TEXA,
"rastemp.rgb", // RASC,
"rastemp.aaa", // RASA,
"int3(255,255,255)", // ONE
"int3(128,128,128)", // HALF
"konsttemp.rgb", // KONST
"int3(0,0,0)", // ZERO
};
constexpr Common::EnumMap<const char*, TevAlphaArg::Zero> tev_a_input_table{
"prev.a", // APREV,
"c0.a", // A0,
"c1.a", // A1,
"c2.a", // A2,
"textemp.a", // TEXA,
"rastemp.a", // RASA,
"konsttemp.a", // KONST, (hw1 had quarter)
"0", // ZERO
};
constexpr Common::EnumMap<const char*, RasColorChan::Zero> tev_ras_table{
"iround(col0 * 255.0)",
"iround(col1 * 255.0)",
"ERROR13", // 2
"ERROR14", // 3
"ERROR15", // 4
"(int4(1, 1, 1, 1) * alphabump)", // bump alpha (0..248)
"(int4(1, 1, 1, 1) * (alphabump | (alphabump >> 5)))", // normalized bump alpha (0..255)
"int4(0, 0, 0, 0)", // zero
};
constexpr Common::EnumMap<const char*, TevOutput::Color2> tev_c_output_table{
"prev.rgb",
"c0.rgb",
"c1.rgb",
"c2.rgb",
};
constexpr Common::EnumMap<const char*, TevOutput::Color2> tev_a_output_table{
"prev.a",
"c0.a",
"c1.a",
"c2.a",
};
// FIXME: Some of the video card's capabilities (BBox support, EarlyZ support, dstAlpha support)
// leak into this UID; This is really unhelpful if these UIDs ever move from one machine to
// another.
PixelShaderUid GetPixelShaderUid()
{
PixelShaderUid out;
pixel_shader_uid_data* const uid_data = out.GetUidData();
uid_data->useDstAlpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate &&
bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24;
uid_data->genMode_numindstages = bpmem.genMode.numindstages;
uid_data->genMode_numtevstages = bpmem.genMode.numtevstages;
uid_data->genMode_numtexgens = bpmem.genMode.numtexgens;
uid_data->bounding_box = g_ActiveConfig.bBBoxEnable && g_renderer->IsBBoxEnabled();
uid_data->rgba6_format =
bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 && !g_ActiveConfig.bForceTrueColor;
uid_data->dither = bpmem.blendmode.dither && uid_data->rgba6_format;
uid_data->uint_output = bpmem.blendmode.UseLogicOp();
u32 numStages = uid_data->genMode_numtevstages + 1;
const bool forced_early_z =
bpmem.UseEarlyDepthTest() &&
(g_ActiveConfig.bFastDepthCalc ||
bpmem.alpha_test.TestResult() == AlphaTestResult::Undetermined)
// We can't allow early_ztest for zfreeze because depth is overridden per-pixel.
// This means it's impossible for zcomploc to be emulated on a zfrozen polygon.
&& !(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
const bool per_pixel_depth =
(bpmem.ztex2.op != ZTexOp::Disabled && bpmem.UseLateDepthTest()) ||
(!g_ActiveConfig.bFastDepthCalc && bpmem.zmode.testenable && !forced_early_z) ||
(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
uid_data->per_pixel_depth = per_pixel_depth;
uid_data->forced_early_z = forced_early_z;
if (g_ActiveConfig.bEnablePixelLighting)
{
uid_data->numColorChans = xfmem.numChan.numColorChans;
GetLightingShaderUid(uid_data->lighting);
}
if (uid_data->genMode_numtexgens > 0)
{
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
{
// optional perspective divides
uid_data->texMtxInfo_n_projection |= static_cast<u32>(xfmem.texMtxInfo[i].projection.Value())
<< i;
}
}
// indirect texture map lookup
int nIndirectStagesUsed = 0;
for (unsigned int i = 0; i < numStages; ++i)
{
if (bpmem.tevind[i].IsActive())
nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt;
}
uid_data->nIndirectStagesUsed = nIndirectStagesUsed;
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
{
if (uid_data->nIndirectStagesUsed & (1 << i))
uid_data->SetTevindrefValues(i, bpmem.tevindref.getTexCoord(i), bpmem.tevindref.getTexMap(i));
}
for (unsigned int n = 0; n < numStages; n++)
{
uid_data->stagehash[n].tevorders_texcoord = bpmem.tevorders[n / 2].getTexCoord(n & 1);
uid_data->stagehash[n].tevind = bpmem.tevind[n].hex;
TevStageCombiner::ColorCombiner& cc = bpmem.combiners[n].colorC;
TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[n].alphaC;
uid_data->stagehash[n].cc = cc.hex & 0xFFFFFF;
uid_data->stagehash[n].ac = ac.hex & 0xFFFFF0; // Storing rswap and tswap later
if (cc.a == TevColorArg::RasAlpha || cc.a == TevColorArg::RasColor ||
cc.b == TevColorArg::RasAlpha || cc.b == TevColorArg::RasColor ||
cc.c == TevColorArg::RasAlpha || cc.c == TevColorArg::RasColor ||
cc.d == TevColorArg::RasAlpha || cc.d == TevColorArg::RasColor ||
ac.a == TevAlphaArg::RasAlpha || ac.b == TevAlphaArg::RasAlpha ||
ac.c == TevAlphaArg::RasAlpha || ac.d == TevAlphaArg::RasAlpha)
{
const int i = bpmem.combiners[n].alphaC.rswap;
uid_data->stagehash[n].tevksel_swap1a = bpmem.tevksel[i * 2].swap1;
uid_data->stagehash[n].tevksel_swap2a = bpmem.tevksel[i * 2].swap2;
uid_data->stagehash[n].tevksel_swap1b = bpmem.tevksel[i * 2 + 1].swap1;
uid_data->stagehash[n].tevksel_swap2b = bpmem.tevksel[i * 2 + 1].swap2;
uid_data->stagehash[n].tevorders_colorchan = bpmem.tevorders[n / 2].getColorChan(n & 1);
}
uid_data->stagehash[n].tevorders_enable = bpmem.tevorders[n / 2].getEnable(n & 1);
if (uid_data->stagehash[n].tevorders_enable)
{
const int i = bpmem.combiners[n].alphaC.tswap;
uid_data->stagehash[n].tevksel_swap1c = bpmem.tevksel[i * 2].swap1;
uid_data->stagehash[n].tevksel_swap2c = bpmem.tevksel[i * 2].swap2;
uid_data->stagehash[n].tevksel_swap1d = bpmem.tevksel[i * 2 + 1].swap1;
uid_data->stagehash[n].tevksel_swap2d = bpmem.tevksel[i * 2 + 1].swap2;
uid_data->stagehash[n].tevorders_texmap = bpmem.tevorders[n / 2].getTexMap(n & 1);
}
if (cc.a == TevColorArg::Konst || cc.b == TevColorArg::Konst || cc.c == TevColorArg::Konst ||
cc.d == TevColorArg::Konst || ac.a == TevAlphaArg::Konst || ac.b == TevAlphaArg::Konst ||
ac.c == TevAlphaArg::Konst || ac.d == TevAlphaArg::Konst)
{
uid_data->stagehash[n].tevksel_kc = bpmem.tevksel[n / 2].getKC(n & 1);
uid_data->stagehash[n].tevksel_ka = bpmem.tevksel[n / 2].getKA(n & 1);
}
}
#define MY_STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str)))
uid_data->num_values = (g_ActiveConfig.bEnablePixelLighting) ?
sizeof(*uid_data) :
MY_STRUCT_OFFSET(*uid_data, stagehash[numStages]);
uid_data->Pretest = bpmem.alpha_test.TestResult();
uid_data->late_ztest = bpmem.UseLateDepthTest();
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
// (in this case we need to write a depth value if depth test passes regardless of the alpha
// testing result)
if (uid_data->Pretest == AlphaTestResult::Undetermined ||
(uid_data->Pretest == AlphaTestResult::Fail && uid_data->late_ztest))
{
uid_data->alpha_test_comp0 = bpmem.alpha_test.comp0;
uid_data->alpha_test_comp1 = bpmem.alpha_test.comp1;
uid_data->alpha_test_logic = bpmem.alpha_test.logic;
// ZCOMPLOC HACK:
// The only way to emulate alpha test + early-z is to force early-z in the shader.
// As this isn't available on all drivers and as we can't emulate this feature otherwise,
// we are only able to choose which one we want to respect more.
// Tests seem to have proven that writing depth even when the alpha test fails is more
// important that a reliable alpha test, so we just force the alpha test to always succeed.
// At least this seems to be less buggy.
uid_data->alpha_test_use_zcomploc_hack =
bpmem.UseEarlyDepthTest() && bpmem.zmode.updateenable &&
!g_ActiveConfig.backend_info.bSupportsEarlyZ && !bpmem.genMode.zfreeze;
}
uid_data->zfreeze = bpmem.genMode.zfreeze;
uid_data->ztex_op = bpmem.ztex2.op;
uid_data->early_ztest = bpmem.UseEarlyDepthTest();
uid_data->fog_fsel = bpmem.fog.c_proj_fsel.fsel;
uid_data->fog_proj = bpmem.fog.c_proj_fsel.proj;
uid_data->fog_RangeBaseEnabled = bpmem.fogRange.Base.Enabled;
BlendingState state = {};
state.Generate(bpmem);
if (state.usedualsrc && state.dstalpha && g_ActiveConfig.backend_info.bSupportsFramebufferFetch &&
!g_ActiveConfig.backend_info.bSupportsDualSourceBlend)
{
uid_data->blend_enable = state.blendenable;
uid_data->blend_src_factor = state.srcfactor;
uid_data->blend_src_factor_alpha = state.srcfactoralpha;
uid_data->blend_dst_factor = state.dstfactor;
uid_data->blend_dst_factor_alpha = state.dstfactoralpha;
uid_data->blend_subtract = state.subtract;
uid_data->blend_subtract_alpha = state.subtractAlpha;
}
uid_data->logic_op_enable = state.logicopenable;
uid_data->logic_op_mode = u32(state.logicmode.Value());
return out;
}
void ClearUnusedPixelShaderUidBits(APIType api_type, const ShaderHostConfig& host_config,
PixelShaderUid* uid)
{
pixel_shader_uid_data* const uid_data = uid->GetUidData();
// OpenGL and Vulkan convert implicitly normalized color outputs to their uint representation.
// Therefore, it is not necessary to use a uint output on these backends. We also disable the
// uint output when logic op is not supported (i.e. driver/device does not support D3D11.1).
if (api_type != APIType::D3D || !host_config.backend_logic_op)
uid_data->uint_output = 0;
// If bounding box is enabled when a UID cache is created, then later disabled, we shouldn't
// emit the bounding box portion of the shader.
uid_data->bounding_box &= host_config.bounding_box & host_config.backend_bbox;
}
void WritePixelShaderCommonHeader(ShaderCode& out, APIType api_type,
const ShaderHostConfig& host_config, bool bounding_box)
{
// dot product for integer vectors
out.Write("int idot(int3 x, int3 y)\n"
"{{\n"
"\tint3 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z;\n"
"}}\n");
out.Write("int idot(int4 x, int4 y)\n"
"{{\n"
"\tint4 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z + tmp.w;\n"
"}}\n\n");
// rounding + casting to integer at once in a single function
out.Write("int iround(float x) {{ return int (round(x)); }}\n"
"int2 iround(float2 x) {{ return int2(round(x)); }}\n"
"int3 iround(float3 x) {{ return int3(round(x)); }}\n"
"int4 iround(float4 x) {{ return int4(round(x)); }}\n\n");
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
out.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp[8];\n");
}
else // D3D
{
// Declare samplers
out.Write("SamplerState samp[8] : register(s0);\n"
"\n"
"Texture2DArray tex[8] : register(t0);\n");
}
out.Write("\n");
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
out.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n");
else
out.Write("cbuffer PSBlock : register(b0) {{\n");
out.Write("\tint4 " I_COLORS "[4];\n"
"\tint4 " I_KCOLORS "[4];\n"
"\tint4 " I_ALPHA ";\n"
"\tint4 " I_TEXDIMS "[8];\n"
"\tint4 " I_ZBIAS "[2];\n"
"\tint4 " I_INDTEXSCALE "[2];\n"
"\tint4 " I_INDTEXMTX "[6];\n"
"\tint4 " I_FOGCOLOR ";\n"
"\tint4 " I_FOGI ";\n"
"\tfloat4 " I_FOGF ";\n"
"\tfloat4 " I_FOGRANGE "[3];\n"
"\tfloat4 " I_ZSLOPE ";\n"
"\tfloat2 " I_EFBSCALE ";\n"
"\tuint bpmem_genmode;\n"
"\tuint bpmem_alphaTest;\n"
"\tuint bpmem_fogParam3;\n"
"\tuint bpmem_fogRangeBase;\n"
"\tuint bpmem_dstalpha;\n"
"\tuint bpmem_ztex_op;\n"
"\tbool bpmem_late_ztest;\n"
"\tbool bpmem_rgba6_format;\n"
"\tbool bpmem_dither;\n"
"\tbool bpmem_bounding_box;\n"
"\tuint4 bpmem_pack1[16];\n" // .xy - combiners, .z - tevind
"\tuint4 bpmem_pack2[8];\n" // .x - tevorder, .y - tevksel, .zw - SamplerState tm0/tm1
"\tint4 konstLookup[32];\n"
"\tbool blend_enable;\n"
"\tuint blend_src_factor;\n"
"\tuint blend_src_factor_alpha;\n"
"\tuint blend_dst_factor;\n"
"\tuint blend_dst_factor_alpha;\n"
"\tbool blend_subtract;\n"
"\tbool blend_subtract_alpha;\n"
"\tbool logic_op_enable;\n"
"\tuint logic_op_mode;\n"
"}};\n\n");
out.Write("#define bpmem_combiners(i) (bpmem_pack1[(i)].xy)\n"
"#define bpmem_tevind(i) (bpmem_pack1[(i)].z)\n"
"#define bpmem_iref(i) (bpmem_pack1[(i)].w)\n"
"#define bpmem_tevorder(i) (bpmem_pack2[(i)].x)\n"
"#define bpmem_tevksel(i) (bpmem_pack2[(i)].y)\n"
"#define samp_texmode0(i) (bpmem_pack2[(i)].z)\n"
"#define samp_texmode1(i) (bpmem_pack2[(i)].w)\n\n");
if (host_config.per_pixel_lighting)
{
out.Write("{}", s_lighting_struct);
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
out.Write("UBO_BINDING(std140, 2) uniform VSBlock {{\n");
else
out.Write("cbuffer VSBlock : register(b1) {{\n");
out.Write("{}", s_shader_uniforms);
out.Write("}};\n");
}
if (bounding_box)
{
if (api_type == APIType::D3D)
{
out.Write("globallycoherent RWBuffer<int> bbox_data : register(u2);\n"
"#define atomicMin InterlockedMin\n"
"#define atomicMax InterlockedMax");
}
else
{
out.Write("SSBO_BINDING(0) buffer BBox {{\n");
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_SSBO_FIELD_ATOMICS))
{
// AMD drivers on Windows seemingly ignore atomic writes to fields or array elements of an
// SSBO other than the first one, but using an int4 seems to work fine
out.Write(" int4 bbox_data;\n");
}
else
{
// The Metal shader compiler fails to compile the atomic instructions when operating on
// individual components of a vector
out.Write(" int bbox_data[4];\n");
}
out.Write("}};");
}
out.Write(R"(
#define bbox_left bbox_data[0]
#define bbox_right bbox_data[1]
#define bbox_top bbox_data[2]
#define bbox_bottom bbox_data[3]
void UpdateBoundingBoxBuffer(int2 min_pos, int2 max_pos) {{
if (bbox_left > min_pos.x)
atomicMin(bbox_left, min_pos.x);
if (bbox_right < max_pos.x)
atomicMax(bbox_right, max_pos.x);
if (bbox_top > min_pos.y)
atomicMin(bbox_top, min_pos.y);
if (bbox_bottom < max_pos.y)
atomicMax(bbox_bottom, max_pos.y);
}}
void UpdateBoundingBox(float2 rawpos) {{
// We only want to include coordinates for pixels aligned with the native resolution pixel centers.
// This makes bounding box sizes more accurate (though not perfect) at higher resolutions,
// avoiding EFB copy buffer overflow in affected games.
//
// For a more detailed explanation, see https://dolp.in/pr9801
int2 int_efb_scale = iround(1.0 / {efb_scale}.xy);
if (int(rawpos.x) % int_efb_scale.x != int_efb_scale.x >> 1 ||
int(rawpos.y) % int_efb_scale.y != int_efb_scale.y >> 1) // right shift for fast divide by two
{{
return;
}}
// The rightmost shaded pixel is not included in the right bounding box register,
// such that width = right - left + 1. This has been verified on hardware.
int2 pos = int2(rawpos * {efb_scale}.xy);
#ifdef API_OPENGL
// We need to invert the Y coordinate due to OpenGL's lower-left origin
pos.y = {efb_height} - pos.y - 1;
#endif
// The GC/Wii GPU rasterizes in 2x2 pixel groups, so bounding box values will be rounded to the
// extents of these groups, rather than the exact pixel.
int2 pos_tl = pos & ~1; // round down to even
int2 pos_br = pos | 1; // round up to odd
#ifdef SUPPORTS_SUBGROUP_REDUCTION
if (CAN_USE_SUBGROUP_REDUCTION) {{
int2 min_pos = IS_HELPER_INVOCATION ? int2(2147483647, 2147483647) : pos_tl;
int2 max_pos = IS_HELPER_INVOCATION ? int2(-2147483648, -2147483648) : pos_br;
SUBGROUP_MIN(min_pos);
SUBGROUP_MAX(max_pos);
if (IS_FIRST_ACTIVE_INVOCATION)
UpdateBoundingBoxBuffer(min_pos, max_pos);
}} else {{
UpdateBoundingBoxBuffer(pos_tl, pos_br);
}}
#else
UpdateBoundingBoxBuffer(pos_tl, pos_br);
#endif
}}
)",
fmt::arg("efb_height", EFB_HEIGHT), fmt::arg("efb_scale", I_EFBSCALE));
}
if (host_config.manual_texture_sampling)
{
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
out.Write(R"(
int4 readTexture(in sampler2DArray tex, uint u, uint v, int layer, int lod) {{
return iround(texelFetch(tex, int3(u, v, layer), lod) * 255.0);
}}
int4 readTextureLinear(in sampler2DArray tex, uint2 uv1, uint2 uv2, int layer, int lod, int2 frac_uv) {{)");
}
else if (api_type == APIType::D3D)
{
out.Write(R"(
int4 readTexture(in Texture2DArray tex, uint u, uint v, int layer, int lod) {{
return iround(tex.Load(int4(u, v, layer, lod)) * 255.0);
}}
int4 readTextureLinear(in Texture2DArray tex, uint2 uv1, uint2 uv2, int layer, int lod, int2 frac_uv) {{)");
}
out.Write(R"(
int4 result =
readTexture(tex, uv1.x, uv1.y, layer, lod) * (128 - frac_uv.x) * (128 - frac_uv.y) +
readTexture(tex, uv2.x, uv1.y, layer, lod) * ( frac_uv.x) * (128 - frac_uv.y) +
readTexture(tex, uv1.x, uv2.y, layer, lod) * (128 - frac_uv.x) * ( frac_uv.y) +
readTexture(tex, uv2.x, uv2.y, layer, lod) * ( frac_uv.x) * ( frac_uv.y);
return result >> 14;
}}
)");
if (host_config.manual_texture_sampling_custom_texture_sizes)
{
// This is slower, and doesn't result in the same odd behavior that happens on console when
// wrapping with non-power-of-2 sizes, but it's fine for custom textures to have non-console
// behavior.
out.Write(R"(
// Both GLSL and HLSL produce undefined values when the modulo operator (%) is used with a negative
// dividend and a positive divisor. We want a positive value such that SafeModulo(-1, 3) is 2.
int SafeModulo(int dividend, int divisor) {{
if (dividend >= 0) {{
return dividend % divisor;
}} else {{
// This works because ~x is the same as -x - 1.
// `~x % 5` over -5 to -1 gives 4, 3, 2, 1, 0. `4 - (~x % 5)` gives 0, 1, 2, 3, 4.
return (divisor - 1) - (~dividend % divisor);
}}
}}
uint WrapCoord(int coord, uint wrap, int size) {{
switch (wrap) {{
case {:s}:
default: // confirmed that clamp is used for invalid (3) via hardware test
return uint(clamp(coord, 0, size - 1));
case {:s}:
return uint(SafeModulo(coord, size)); // coord % size
case {:s}:
if (SafeModulo(coord, 2 * size) >= size) {{ // coord % (2 * size)
coord = ~coord;
}}
return uint(SafeModulo(coord, size)); // coord % size
}}
}}
)",
WrapMode::Clamp, WrapMode::Repeat, WrapMode::Mirror);
}
else
{
out.Write(R"(
uint WrapCoord(int coord, uint wrap, int size) {{
switch (wrap) {{
case {:s}:
default: // confirmed that clamp is used for invalid (3) via hardware test
return uint(clamp(coord, 0, size - 1));
case {:s}:
return uint(coord & (size - 1));
case {:s}:
if ((coord & size) != 0) {{
coord = ~coord;
}}
return uint(coord & (size - 1));
}}
}}
)",
WrapMode::Clamp, WrapMode::Repeat, WrapMode::Mirror);
}
}
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
out.Write("\nint4 sampleTexture(uint texmap, in sampler2DArray tex, int2 uv, int layer) {{\n");
}
else if (api_type == APIType::D3D)
{
out.Write("\nint4 sampleTexture(uint texmap, in Texture2DArray tex, in SamplerState tex_samp, "
"int2 uv, int layer) {{\n");
}
if (!host_config.manual_texture_sampling)
{
out.Write(" float size_s = float(" I_TEXDIMS "[texmap].x * 128);\n"
" float size_t = float(" I_TEXDIMS "[texmap].y * 128);\n"
" float3 coords = float3(float(uv.x) / size_s, float(uv.y) / size_t, layer);\n");
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
if (!host_config.backend_sampler_lod_bias)
{
out.Write(" uint texmode0 = samp_texmode0(texmap);\n"
" float lod_bias = float({}) / 256.0f;\n"
" return iround(255.0 * texture(tex, coords, lod_bias));\n",
BitfieldExtract<&SamplerState::TM0::lod_bias>("texmode0"));
}
else
{
out.Write(" return iround(255.0 * texture(tex, coords));\n");
}
out.Write("}}\n");
}
else if (api_type == APIType::D3D)
{
out.Write(" return iround(255.0 * tex.Sample(tex_samp, coords));\n}}\n");
}
}
else
{
out.Write(R"(
uint texmode0 = samp_texmode0(texmap);
uint texmode1 = samp_texmode1(texmap);
uint wrap_s = {};
uint wrap_t = {};
bool mag_linear = {} != 0u;
bool mipmap_linear = {} != 0u;
bool min_linear = {} != 0u;
bool diag_lod = {} != 0u;
int lod_bias = {};
// uint max_aniso = TODO;
bool lod_clamp = {} != 0u;
int min_lod = int({});
int max_lod = int({});
)",
BitfieldExtract<&SamplerState::TM0::wrap_u>("texmode0"),
BitfieldExtract<&SamplerState::TM0::wrap_v>("texmode0"),
BitfieldExtract<&SamplerState::TM0::mag_filter>("texmode0"),
BitfieldExtract<&SamplerState::TM0::mipmap_filter>("texmode0"),
BitfieldExtract<&SamplerState::TM0::min_filter>("texmode0"),
BitfieldExtract<&SamplerState::TM0::diag_lod>("texmode0"),
BitfieldExtract<&SamplerState::TM0::lod_bias>("texmode0"),
// BitfieldExtract<&SamplerState::TM0::max_aniso>("texmode0"),
BitfieldExtract<&SamplerState::TM0::lod_clamp>("texmode0"),
BitfieldExtract<&SamplerState::TM1::min_lod>("texmode1"),
BitfieldExtract<&SamplerState::TM1::max_lod>("texmode1"));
if (host_config.manual_texture_sampling_custom_texture_sizes)
{
out.Write(R"(
int native_size_s = )" I_TEXDIMS R"([texmap].x;
int native_size_t = )" I_TEXDIMS R"([texmap].y;
)");
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
out.Write(R"(
int3 size = textureSize(tex, 0);
int size_s = size.x;
int size_t = size.y;
)");
if (g_ActiveConfig.backend_info.bSupportsTextureQueryLevels)
{
out.Write(" int number_of_levels = textureQueryLevels(tex);\n");
}
else
{
out.Write(" int number_of_levels = 256; // textureQueryLevels is not supported\n");
ERROR_LOG_FMT(VIDEO, "textureQueryLevels is not supported! Odd graphical results may "
"occur if custom textures are in use!");
}
}
else if (api_type == APIType::D3D)
{
ASSERT(g_ActiveConfig.backend_info.bSupportsTextureQueryLevels);
out.Write(R"(
int size_s, size_t, layers, number_of_levels;
tex.GetDimensions(0, size_s, size_t, layers, number_of_levels);
)");
}
out.Write(R"(
// Prevent out-of-bounds LOD values when using custom textures
max_lod = min(max_lod, (number_of_levels - 1) << 4);
// Rescale uv to account for the new texture size
uv.x = (uv.x * size_s) / native_size_s;
uv.y = (uv.y * size_t) / native_size_t;
)");
}
else
{
out.Write(R"(
int size_s = )" I_TEXDIMS R"([texmap].x;
int size_t = )" I_TEXDIMS R"([texmap].y;
)");
}
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
if (g_ActiveConfig.backend_info.bSupportsCoarseDerivatives)
{
// The software renderer uses the equivalent of coarse derivatives, so use them here for
// consistency. This hasn't been hardware tested.
// Note that bSupportsCoarseDerivatives being false only means dFdxCoarse and dFdxFine don't
// exist. The GPU may still implement dFdx using coarse derivatives; we just don't have the
// ability to specifically require it.
out.Write(R"(
float2 uv_delta_x = abs(dFdxCoarse(float2(uv)));
float2 uv_delta_y = abs(dFdyCoarse(float2(uv)));
)");
}
else
{
out.Write(R"(
float2 uv_delta_x = abs(dFdx(float2(uv)));
float2 uv_delta_y = abs(dFdy(float2(uv)));
)");
}
}
else if (api_type == APIType::D3D)
{
ASSERT(g_ActiveConfig.backend_info.bSupportsCoarseDerivatives);
out.Write(R"(
float2 uv_delta_x = abs(ddx_coarse(float2(uv)));
float2 uv_delta_y = abs(ddy_coarse(float2(uv)));
)");
}
// TODO: LOD bias is normally S2.5 (Dolphin uses S7.8 for arbitrary mipmap detection and higher
// IRs), but (at least per the software renderer) actual LOD is S28.4. How does this work?
// Also, note that we can make some assumptions due to use of a SamplerState version of the BP
// configuration, which tidies things compared to whatever nonsense games can put in.
out.Write(R"(
float2 uv_delta = diag_lod ? uv_delta_x + uv_delta_y : max(uv_delta_x, uv_delta_y);
float max_delta = max(uv_delta.x / 128.0, uv_delta.y / 128.0);
// log2(x) is undefined if x <= 0, but in practice it seems log2(0) is -infinity, which becomes INT_MIN.
// If lod_bias is negative, adding it to INT_MIN causes an underflow, resulting in a large positive value.
// Hardware testing indicates that min_lod should be used when the derivative is 0.
int lod = max_delta == 0.0 ? min_lod : int(floor(log2(max_delta) * 16.0)) + (lod_bias >> 4);
bool is_linear = (lod > 0) ? min_linear : mag_linear;
lod = clamp(lod, min_lod, max_lod);
int base_lod = lod >> 4;
int frac_lod = lod & 15;
if (!mipmap_linear && frac_lod >= 8) {{
// Round to nearest LOD in point mode
base_lod++;
}}
if (is_linear) {{
uint2 texuv1 = uint2(
WrapCoord(((uv.x >> base_lod) - 64) >> 7, wrap_s, size_s >> base_lod),
WrapCoord(((uv.y >> base_lod) - 64) >> 7, wrap_t, size_t >> base_lod));
uint2 texuv2 = uint2(
WrapCoord(((uv.x >> base_lod) + 64) >> 7, wrap_s, size_s >> base_lod),
WrapCoord(((uv.y >> base_lod) + 64) >> 7, wrap_t, size_t >> base_lod));
int2 frac_uv = int2(((uv.x >> base_lod) - 64) & 0x7f, ((uv.y >> base_lod) - 64) & 0x7f);
int4 result = readTextureLinear(tex, texuv1, texuv2, layer, base_lod, frac_uv);
if (frac_lod != 0 && mipmap_linear) {{
texuv1 = uint2(
WrapCoord(((uv.x >> (base_lod + 1)) - 64) >> 7, wrap_s, size_s >> (base_lod + 1)),
WrapCoord(((uv.y >> (base_lod + 1)) - 64) >> 7, wrap_t, size_t >> (base_lod + 1)));
texuv2 = uint2(
WrapCoord(((uv.x >> (base_lod + 1)) + 64) >> 7, wrap_s, size_s >> (base_lod + 1)),
WrapCoord(((uv.y >> (base_lod + 1)) + 64) >> 7, wrap_t, size_t >> (base_lod + 1)));
frac_uv = int2(((uv.x >> (base_lod + 1)) - 64) & 0x7f, ((uv.y >> (base_lod + 1)) - 64) & 0x7f);
result *= 16 - frac_lod;
result += readTextureLinear(tex, texuv1, texuv2, layer, base_lod + 1, frac_uv) * frac_lod;
result >>= 4;
}}
return result;
}} else {{
uint2 texuv = uint2(
WrapCoord(uv.x >> (7 + base_lod), wrap_s, size_s >> base_lod),
WrapCoord(uv.y >> (7 + base_lod), wrap_t, size_t >> base_lod));
int4 result = readTexture(tex, texuv.x, texuv.y, layer, base_lod);
if (frac_lod != 0 && mipmap_linear) {{
texuv = uint2(
WrapCoord(uv.x >> (7 + base_lod + 1), wrap_s, size_s >> (base_lod + 1)),
WrapCoord(uv.y >> (7 + base_lod + 1), wrap_t, size_t >> (base_lod + 1)));
result *= 16 - frac_lod;
result += readTexture(tex, texuv.x, texuv.y, layer, base_lod + 1) * frac_lod;
result >>= 4;
}}
return result;
}}
}}
)");
}
}
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
APIType api_type, bool stereo);
static void WriteTevRegular(ShaderCode& out, std::string_view components, TevBias bias, TevOp op,
bool clamp, TevScale scale);
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType api_type,
bool per_pixel_depth, bool use_dual_source);
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data);
static void WriteLogicOp(ShaderCode& out, const pixel_shader_uid_data* uid_data);
static void WriteColor(ShaderCode& out, APIType api_type, const pixel_shader_uid_data* uid_data,
bool use_dual_source);
static void WriteBlend(ShaderCode& out, const pixel_shader_uid_data* uid_data);
ShaderCode GeneratePixelShaderCode(APIType api_type, const ShaderHostConfig& host_config,
const pixel_shader_uid_data* uid_data)
{
ShaderCode out;
const bool per_pixel_lighting = g_ActiveConfig.bEnablePixelLighting;
const bool msaa = host_config.msaa;
const bool ssaa = host_config.ssaa;
const bool stereo = host_config.stereo;
const u32 numStages = uid_data->genMode_numtevstages + 1;
out.Write("// Pixel Shader for TEV stages\n");
out.Write("// {} TEV stages, {} texgens, {} IND stages\n", numStages,
uid_data->genMode_numtexgens, uid_data->genMode_numindstages);
// Stuff that is shared between ubershaders and pixelgen.
WriteBitfieldExtractHeader(out, api_type, host_config);
WritePixelShaderCommonHeader(out, api_type, host_config, uid_data->bounding_box);
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
out.Write("\n#define sampleTextureWrapper(texmap, uv, layer) "
"sampleTexture(texmap, samp[texmap], uv, layer)\n");
}
else if (api_type == APIType::D3D)
{
out.Write("\n#define sampleTextureWrapper(texmap, uv, layer) "
"sampleTexture(texmap, tex[texmap], samp[texmap], uv, layer)\n");
}
if (uid_data->forced_early_z && g_ActiveConfig.backend_info.bSupportsEarlyZ)
{
// Zcomploc (aka early_ztest) is a way to control whether depth test is done before
// or after texturing and alpha test. PC graphics APIs used to provide no way to emulate
// this feature properly until 2012: Depth tests were always done after alpha testing.
// Most importantly, it was not possible to write to the depth buffer without also writing
// a color value (unless color writing was disabled altogether).
// OpenGL 4.2 actually provides two extensions which can force an early z test:
// * ARB_image_load_store has 'layout(early_fragment_tests)' which forces the driver to do z
// and stencil tests early.
// * ARB_conservative_depth has 'layout(depth_unchanged) which signals to the driver that it
// can make optimisations
// which assume the pixel shader won't update the depth buffer.
// early_fragment_tests is the best option, as it requires the driver to do early-z and defines
// early-z exactly as
// we expect, with discard causing the shader to exit with only the depth buffer updated.
// Conservative depth's 'depth_unchanged' only hints to the driver that an early-z optimisation
// can be made and
// doesn't define what will happen if we discard the fragment. But the way modern graphics
// hardware is implemented
// means it is not unreasonable to expect the same behaviour as early_fragment_tests.
// We can also assume that if a driver has gone out of its way to support conservative depth and
// not image_load_store
// as required by OpenGL 4.2 that it will be doing the optimisation.
// If the driver doesn't actually do an early z optimisation, ZCompLoc will be broken and depth
// will only be written
// if the alpha test passes.
// We support Conservative as a fallback, because many drivers based on Mesa haven't implemented
// all of the
// ARB_image_load_store extension yet.
// D3D11 also has a way to force the driver to enable early-z, so we're fine here.
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
// This is a #define which signals whatever early-z method the driver supports.
out.Write("FORCE_EARLY_Z; \n");
}
else
{
out.Write("[earlydepthstencil]\n");
}
}
// Only use dual-source blending when required on drivers that don't support it very well.
const bool use_dual_source =
host_config.backend_dual_source_blend &&
(!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DUAL_SOURCE_BLENDING) ||
uid_data->useDstAlpha);
const bool use_shader_blend =
!use_dual_source && (uid_data->useDstAlpha && host_config.backend_shader_framebuffer_fetch);
const bool use_shader_logic_op =
!host_config.backend_logic_op && host_config.backend_shader_framebuffer_fetch;
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
{
bool use_framebuffer_fetch = use_shader_blend || use_shader_logic_op;
#ifdef __APPLE__
// Framebuffer fetch is only supported by Metal, so ensure that we're running Vulkan (MoltenVK)
// if we want to use it.
if (api_type == APIType::Vulkan)
{
if (use_dual_source)
{
out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) out vec4 ocol0;\n"
"FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 1) out vec4 ocol1;\n");
}
else if (use_shader_blend)
{
// Metal doesn't support a single unified variable for both input and output, so we declare
// the output separately. The input will be defined later below.
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 real_ocol0;\n");
}
else
{
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
}
if (use_framebuffer_fetch)
{
// Subpass inputs will be converted to framebuffer fetch by SPIRV-Cross.
out.Write("INPUT_ATTACHMENT_BINDING(0, 0, 0) uniform subpassInput in_ocol0;\n");
}
}
else
#endif
{
bool has_broken_decoration =
DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION);
out.Write("{} {} vec4 {};\n",
has_broken_decoration ? "FRAGMENT_OUTPUT_LOCATION(0)" :
"FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0)",
use_framebuffer_fetch ? "FRAGMENT_INOUT" : "out",
use_shader_blend ? "real_ocol0" : "ocol0");
if (use_dual_source)
{
out.Write("{} out vec4 ocol1;\n", has_broken_decoration ?
"FRAGMENT_OUTPUT_LOCATION(1)" :
"FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 1)");
}
}
if (uid_data->per_pixel_depth)
out.Write("#define depth gl_FragDepth\n");
if (host_config.backend_geometry_shaders)
{
out.Write("VARYING_LOCATION(0) in VertexData {{\n");
GenerateVSOutputMembers(out, api_type, uid_data->genMode_numtexgens, host_config,
GetInterpolationQualifier(msaa, ssaa, true, true));
if (stereo)
out.Write("\tflat int layer;\n");
out.Write("}};\n");
}
else
{
// Let's set up attributes
u32 counter = 0;
out.Write("VARYING_LOCATION({}) {} in float4 colors_0;\n", counter++,
GetInterpolationQualifier(msaa, ssaa));
out.Write("VARYING_LOCATION({}) {} in float4 colors_1;\n", counter++,
GetInterpolationQualifier(msaa, ssaa));
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
{
out.Write("VARYING_LOCATION({}) {} in float3 tex{};\n", counter++,
GetInterpolationQualifier(msaa, ssaa), i);
}
if (!host_config.fast_depth_calc)
{
out.Write("VARYING_LOCATION({}) {} in float4 clipPos;\n", counter++,
GetInterpolationQualifier(msaa, ssaa));
}
if (per_pixel_lighting)
{
out.Write("VARYING_LOCATION({}) {} in float3 Normal;\n", counter++,
GetInterpolationQualifier(msaa, ssaa));
out.Write("VARYING_LOCATION({}) {} in float3 WorldPos;\n", counter++,
GetInterpolationQualifier(msaa, ssaa));
}
}
out.Write("void main()\n{{\n");
out.Write("\tfloat4 rawpos = gl_FragCoord;\n");
if (use_framebuffer_fetch)
{
// Store off a copy of the initial framebuffer value.
//
// If FB_FETCH_VALUE isn't defined (i.e. no special keyword for fetching from the
// framebuffer), we read from real_ocol0 or ocol0, depending if shader blending is enabled.
out.Write("#ifdef FB_FETCH_VALUE\n"
"\tfloat4 initial_ocol0 = FB_FETCH_VALUE;\n"
"#else\n"
"\tfloat4 initial_ocol0 = {};\n"
"#endif\n",
use_shader_blend ? "real_ocol0" : "ocol0");
}
if (use_shader_blend)
{
// QComm's Adreno driver doesn't seem to like using the framebuffer_fetch value as an
// intermediate value with multiple reads & modifications, so we pull out the "real" output
// value above and use a temporary for calculations, then set the output value once at the
// end of the shader if we are using shader blending.
out.Write("\tfloat4 ocol0;\n"
"\tfloat4 ocol1;\n");
}
}
else // D3D
{
out.Write("void main(\n");
if (uid_data->uint_output)
{
out.Write(" out uint4 ocol0 : SV_Target,\n");
}
else
{
out.Write(" out float4 ocol0 : SV_Target0,\n"
" out float4 ocol1 : SV_Target1,\n");
}
out.Write("{}"
" in float4 rawpos : SV_Position,\n",
uid_data->per_pixel_depth ? " out float depth : SV_Depth,\n" : "");
out.Write(" in {} float4 colors_0 : COLOR0,\n", GetInterpolationQualifier(msaa, ssaa));
out.Write(" in {} float4 colors_1 : COLOR1\n", GetInterpolationQualifier(msaa, ssaa));
// compute window position if needed because binding semantic WPOS is not widely supported
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
{
out.Write(",\n in {} float3 tex{} : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), i,
i);
}
if (!host_config.fast_depth_calc)
{
out.Write(",\n in {} float4 clipPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
uid_data->genMode_numtexgens);
}
if (per_pixel_lighting)
{
out.Write(",\n in {} float3 Normal : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
uid_data->genMode_numtexgens + 1);
out.Write(",\n in {} float3 WorldPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
uid_data->genMode_numtexgens + 2);
}
if (host_config.backend_geometry_shaders)
{
out.Write(",\n in float clipDist0 : SV_ClipDistance0\n"
",\n in float clipDist1 : SV_ClipDistance1\n");
}
if (stereo)
out.Write(",\n in uint layer : SV_RenderTargetArrayIndex\n");
out.Write(" ) {{\n");
}
if (!stereo)
out.Write("\tint layer = 0;\n");
out.Write("\tint4 c0 = " I_COLORS "[1], c1 = " I_COLORS "[2], c2 = " I_COLORS
"[3], prev = " I_COLORS "[0];\n"
"\tint4 rastemp = int4(0, 0, 0, 0), textemp = int4(0, 0, 0, 0), konsttemp = int4(0, 0, "
"0, 0);\n"
"\tint3 comp16 = int3(1, 256, 0), comp24 = int3(1, 256, 256*256);\n"
"\tint alphabump=0;\n"
"\tint3 tevcoord=int3(0, 0, 0);\n"
"\tint2 wrappedcoord=int2(0,0), tempcoord=int2(0,0);\n"
"\tint4 "
"tevin_a=int4(0,0,0,0),tevin_b=int4(0,0,0,0),tevin_c=int4(0,0,0,0),tevin_d=int4(0,0,0,"
"0);\n\n"); // tev combiner inputs
// On GLSL, input variables must not be assigned to.
// This is why we declare these variables locally instead.
out.Write("\tfloat4 col0 = colors_0;\n"
"\tfloat4 col1 = colors_1;\n");
if (per_pixel_lighting)
{
out.Write("\tfloat3 _norm0 = normalize(Normal.xyz);\n\n"
"\tfloat3 pos = WorldPos;\n");
out.Write("\tint4 lacc;\n"
"\tfloat3 ldir, h, cosAttn, distAttn;\n"
"\tfloat dist, dist2, attn;\n");
// TODO: Our current constant usage code isn't able to handle more than one buffer.
// So we can't mark the VS constant as used here. But keep them here as reference.
// out.SetConstantsUsed(C_PLIGHT_COLORS, C_PLIGHT_COLORS+7); // TODO: Can be optimized further
// out.SetConstantsUsed(C_PLIGHTS, C_PLIGHTS+31); // TODO: Can be optimized further
// out.SetConstantsUsed(C_PMATERIALS, C_PMATERIALS+3);
GenerateLightingShaderCode(out, uid_data->lighting, "colors_", "col");
// The number of colors available to TEV is determined by numColorChans.
// Normally this is performed in the vertex shader after lighting, but with per-pixel lighting,
// we need to perform it here. (It needs to be done after lighting, as what was originally
// black might become a different color after lighting).
if (uid_data->numColorChans == 0)
out.Write("col0 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (uid_data->numColorChans <= 1)
out.Write("col1 = float4(0.0, 0.0, 0.0, 0.0);\n");
}
if (uid_data->genMode_numtexgens == 0)
{
// TODO: This is a hack to ensure that shaders still compile when setting out of bounds tex
// coord indices to 0. Ideally, it shouldn't exist at all, but the exact behavior hasn't been
// tested.
out.Write("\tint2 fixpoint_uv0 = int2(0, 0);\n\n");
}
else
{
out.SetConstantsUsed(C_TEXDIMS, C_TEXDIMS + uid_data->genMode_numtexgens - 1);
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
{
out.Write("\tint2 fixpoint_uv{} = int2(", i);
out.Write("(tex{}.z == 0.0 ? tex{}.xy : tex{}.xy / tex{}.z)", i, i, i, i);
out.Write(" * float2(" I_TEXDIMS "[{}].zw * 128));\n", i);
// TODO: S24 overflows here?
}
}
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
{
if ((uid_data->nIndirectStagesUsed & (1U << i)) != 0)
{
u32 texcoord = uid_data->GetTevindirefCoord(i);
const u32 texmap = uid_data->GetTevindirefMap(i);
// Quirk: when the tex coord is not less than the number of tex gens (i.e. the tex coord does
// not exist), then tex coord 0 is used (though sometimes glitchy effects happen on console).
// This affects the Mario portrait in Luigi's Mansion, where the developers forgot to set
// the number of tex gens to 2 (bug 11462).
if (texcoord >= uid_data->genMode_numtexgens)
texcoord = 0;
out.SetConstantsUsed(C_INDTEXSCALE + i / 2, C_INDTEXSCALE + i / 2);
out.Write("\ttempcoord = fixpoint_uv{} >> " I_INDTEXSCALE "[{}].{};\n", texcoord, i / 2,
(i & 1) ? "zw" : "xy");
out.Write("\tint3 iindtex{0} = sampleTextureWrapper({1}u, tempcoord, layer).abg;\n", i,
texmap);
}
}
for (u32 i = 0; i < numStages; i++)
{
// Build the equation for this stage
WriteStage(out, uid_data, i, api_type, stereo);
}
{
// The results of the last texenv stage are put onto the screen,
// regardless of the used destination register
TevStageCombiner::ColorCombiner last_cc;
TevStageCombiner::AlphaCombiner last_ac;
last_cc.hex = uid_data->stagehash[uid_data->genMode_numtevstages].cc;
last_ac.hex = uid_data->stagehash[uid_data->genMode_numtevstages].ac;
if (last_cc.dest != TevOutput::Prev)
{
out.Write("\tprev.rgb = {};\n", tev_c_output_table[last_cc.dest]);
}
if (last_ac.dest != TevOutput::Prev)
{
out.Write("\tprev.a = {};\n", tev_a_output_table[last_ac.dest]);
}
}
out.Write("\tprev = prev & 255;\n");
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
// (in this case we need to write a depth value if depth test passes regardless of the alpha
// testing result)
if (uid_data->Pretest == AlphaTestResult::Undetermined ||
(uid_data->Pretest == AlphaTestResult::Fail && uid_data->late_ztest))
{
WriteAlphaTest(out, uid_data, api_type, uid_data->per_pixel_depth,
use_dual_source || use_shader_blend);
}
// This situation is important for Mario Kart Wii's menus (they will render incorrectly if the
// alpha test for the FMV in the background fails, since they depend on depth for drawing a yellow
// border) and Fortune Street's gameplay (where a rectangle with an alpha value of 1 is drawn over
// the center of the screen several times, but those rectangles shouldn't be visible).
// Blending seems to result in no changes to the output with an alpha of 1, even if the input
// color is white.
// TODO: Investigate this further: we might be handling blending incorrectly in general (though
// there might not be any good way of changing blending behavior)
out.Write("\t// Hardware testing indicates that an alpha of 1 can pass an alpha test,\n"
"\t// but doesn't do anything in blending\n"
"\tif (prev.a == 1) prev.a = 0;\n");
if (uid_data->zfreeze)
{
out.SetConstantsUsed(C_ZSLOPE, C_ZSLOPE);
out.SetConstantsUsed(C_EFBSCALE, C_EFBSCALE);
out.Write("\tfloat2 screenpos = rawpos.xy * " I_EFBSCALE ".xy;\n");
// Opengl has reversed vertical screenspace coordinates
if (api_type == APIType::OpenGL)
out.Write("\tscreenpos.y = {}.0 - screenpos.y;\n", EFB_HEIGHT);
out.Write("\tint zCoord = int(" I_ZSLOPE ".z + " I_ZSLOPE ".x * screenpos.x + " I_ZSLOPE
".y * screenpos.y);\n");
}
else if (!host_config.fast_depth_calc)
{
// FastDepth means to trust the depth generated in perspective division.
// It should be correct, but it seems not to be as accurate as required. TODO: Find out why!
// For disabled FastDepth we just calculate the depth value again.
// The performance impact of this additional calculation doesn't matter, but it prevents
// the host GPU driver from performing any early depth test optimizations.
out.SetConstantsUsed(C_ZBIAS + 1, C_ZBIAS + 1);
// the screen space depth value = far z + (clip z / clip w) * z range
out.Write("\tint zCoord = " I_ZBIAS "[1].x + int((clipPos.z / clipPos.w) * float(" I_ZBIAS
"[1].y));\n");
}
else
{
if (!host_config.backend_reversed_depth_range)
out.Write("\tint zCoord = int((1.0 - rawpos.z) * 16777216.0);\n");
else
out.Write("\tint zCoord = int(rawpos.z * 16777216.0);\n");
}
out.Write("\tzCoord = clamp(zCoord, 0, 0xFFFFFF);\n");
// depth texture can safely be ignored if the result won't be written to the depth buffer
// (early_ztest) and isn't used for fog either
const bool skip_ztexture = !uid_data->per_pixel_depth && uid_data->fog_fsel == FogType::Off;
// Note: z-textures are not written to depth buffer if early depth test is used
if (uid_data->per_pixel_depth && uid_data->early_ztest)
{
if (!host_config.backend_reversed_depth_range)
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
else
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
}
// Note: depth texture output is only written to depth buffer if late depth test is used
// theoretical final depth value is used for fog calculation, though, so we have to emulate
// ztextures anyway
if (uid_data->ztex_op != ZTexOp::Disabled && !skip_ztexture)
{
// use the texture input of the last texture stage (textemp), hopefully this has been read and
// is in correct format...
out.SetConstantsUsed(C_ZBIAS, C_ZBIAS + 1);
out.Write("\tzCoord = idot(" I_ZBIAS "[0].xyzw, textemp.xyzw) + " I_ZBIAS "[1].w {};\n",
(uid_data->ztex_op == ZTexOp::Add) ? "+ zCoord" : "");
out.Write("\tzCoord = zCoord & 0xFFFFFF;\n");
}
if (uid_data->per_pixel_depth && uid_data->late_ztest)
{
if (!host_config.backend_reversed_depth_range)
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
else
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
}
// No dithering for RGB8 mode
if (uid_data->dither)
{
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
// Here the matrix is encoded into the two factor constants
out.Write("\tint2 dither = int2(rawpos.xy) & 1;\n");
out.Write("\tprev.rgb = (prev.rgb - (prev.rgb >> 6)) + abs(dither.y * 3 - dither.x * 2);\n");
}
WriteFog(out, uid_data);
if (use_shader_logic_op)
WriteLogicOp(out, uid_data);
// Write the color and alpha values to the framebuffer
// If using shader blend, we still use the separate alpha
WriteColor(out, api_type, uid_data, use_dual_source || use_shader_blend);
if (use_shader_blend)
WriteBlend(out, uid_data);
if (uid_data->bounding_box)
out.Write("\tUpdateBoundingBox(rawpos.xy);\n");
out.Write("}}\n");
return out;
}
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
APIType api_type, bool stereo)
{
using Common::EnumMap;
const auto& stage = uid_data->stagehash[n];
out.Write("\n\t// TEV stage {}\n", n);
// Quirk: when the tex coord is not less than the number of tex gens (i.e. the tex coord does not
// exist), then tex coord 0 is used (though sometimes glitchy effects happen on console).
u32 texcoord = stage.tevorders_texcoord;
const bool has_tex_coord = texcoord < uid_data->genMode_numtexgens;
if (!has_tex_coord)
texcoord = 0;
{
const TevStageIndirect tevind{.hex = stage.tevind};
out.Write("\t// indirect op\n");
// Quirk: Referencing a stage above the number of ind stages is undefined behavior,
// and on console produces a noise pattern (details unknown).
// Instead, just skip applying the indirect operation, which is close enough.
// We need to do *something*, as there won't be an iindtex variable otherwise.
// Viewtiful Joe hits this case (bug 12525).
// Wrapping and add to previous still apply in this case (and when the stage is disabled).
const bool has_ind_stage = tevind.bt < uid_data->genMode_numindstages;
// Perform the indirect op on the incoming regular coordinates
// using iindtex{} as the offset coords
if (has_ind_stage && tevind.bs != IndTexBumpAlpha::Off)
{
static constexpr EnumMap<const char*, IndTexBumpAlpha::U> tev_ind_alpha_sel{
"",
"x",
"y",
"z",
};
// According to libogc, the bump alpha value is 5 bits, and comes from the bottom bits of the
// component byte, except in the case of ITF_8, which presumably uses the top bits with a
// mask.
// https://github.com/devkitPro/libogc/blob/bd24a9b3f59502f9b30d6bac0ae35fc485045f78/gc/ogc/gx.h#L3038-L3041
// https://github.com/devkitPro/libogc/blob/bd24a9b3f59502f9b30d6bac0ae35fc485045f78/gc/ogc/gx.h#L790-L800
static constexpr EnumMap<char, IndTexFormat::ITF_3> tev_ind_alpha_shift{
'0', // ITF_8: 0bXXXXXYYY -> 0bXXXXX000? No shift?
'5', // ITF_5: 0bIIIIIAAA -> 0bAAA00000, shift of 5
'4', // ITF_4: 0bIIIIAAAA -> 0bAAAA0000, shift of 4
'3', // ITF_3: 0bIIIAAAAA -> 0bAAAAA000, shift of 3
};
out.Write("\talphabump = (iindtex{}.{} << {}) & 248;\n", tevind.bt,
tev_ind_alpha_sel[tevind.bs], tev_ind_alpha_shift[tevind.fmt]);
}
else
{
// TODO: Should we reset alphabump to 0 here?
}
if (has_ind_stage && tevind.matrix_index != IndMtxIndex::Off)
{
// format
static constexpr EnumMap<char, IndTexFormat::ITF_3> tev_ind_fmt_shift{
'0', // ITF_8: 0bXXXXXXXX -> 0bXXXXXXXX, no shift
'3', // ITF_5: 0bIIIIIAAA -> 0b000IIIII, shift of 3
'4', // ITF_4: 0bIIIIAAAA -> 0b0000IIII, shift of 4
'5', // ITF_3: 0bIIIAAAAA -> 0b00000III, shift of 5
};
out.Write("\tint3 iindtevcrd{} = iindtex{} >> {};\n", n, tevind.bt,
tev_ind_fmt_shift[tevind.fmt]);
// bias - TODO: Check if this needs to be this complicated...
// indexed by bias
static constexpr EnumMap<const char*, IndTexBias::STU> tev_ind_bias_field{
"", "x", "y", "xy", "z", "xz", "yz", "xyz",
};
// indexed by fmt
static constexpr EnumMap<const char*, IndTexFormat::ITF_3> tev_ind_bias_add{
"-128",
"1",
"1",
"1",
};
if (tevind.bias == IndTexBias::S || tevind.bias == IndTexBias::T ||
tevind.bias == IndTexBias::U)
{
out.Write("\tiindtevcrd{}.{} += int({});\n", n, tev_ind_bias_field[tevind.bias],
tev_ind_bias_add[tevind.fmt]);
}
else if (tevind.bias == IndTexBias::ST || tevind.bias == IndTexBias::SU ||
tevind.bias == IndTexBias::TU_)
{
out.Write("\tiindtevcrd{0}.{1} += int2({2}, {2});\n", n, tev_ind_bias_field[tevind.bias],
tev_ind_bias_add[tevind.fmt]);
}
else if (tevind.bias == IndTexBias::STU)
{
out.Write("\tiindtevcrd{0}.{1} += int3({2}, {2}, {2});\n", n,
tev_ind_bias_field[tevind.bias], tev_ind_bias_add[tevind.fmt]);
}
// Multiplied by 2 because each matrix has two rows.
// Note also that the 4th column of the matrix contains the scale factor.
const u32 mtxidx = 2 * (static_cast<u32>(tevind.matrix_index.Value()) - 1);
// multiply by offset matrix and scale - calculations are likely to overflow badly,
// yet it works out since we only care about the lower 23 bits (+1 sign bit) of the result
if (tevind.matrix_id == IndMtxId::Indirect)
{
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans{} = int2(idot(" I_INDTEXMTX
"[{}].xyz, iindtevcrd{}), idot(" I_INDTEXMTX "[{}].xyz, iindtevcrd{})) >> 3;\n",
n, mtxidx, n, mtxidx + 1, n);
// TODO: should use a shader uid branch for this for better performance
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
{
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= indtexmtx_w_inverse_{};\n", n, n);
}
else
{
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
}
}
else if (tevind.matrix_id == IndMtxId::S)
{
ASSERT(has_tex_coord);
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans{} = int2(fixpoint_uv{} * iindtevcrd{}.xx) >> 8;\n", n,
texcoord, n);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
{
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= (indtexmtx_w_inverse_{});\n", n, n);
}
else
{
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
}
}
else if (tevind.matrix_id == IndMtxId::T)
{
ASSERT(has_tex_coord);
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
out.Write("\tint2 indtevtrans{} = int2(fixpoint_uv{} * iindtevcrd{}.yy) >> 8;\n", n,
texcoord, n);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
{
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= (indtexmtx_w_inverse_{});\n", n, n);
}
else
{
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
mtxidx, n, mtxidx);
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
}
}
else
{
out.Write("\tint2 indtevtrans{} = int2(0, 0);\n", n);
ASSERT(false); // Unknown value for matrix_id
}
}
else
{
out.Write("\tint2 indtevtrans{} = int2(0, 0);\n", n);
if (tevind.matrix_index == IndMtxIndex::Off)
{
// If matrix_index is Off (0), matrix_id should be Indirect (0)
ASSERT(tevind.matrix_id == IndMtxId::Indirect);
}
}
// ---------
// Wrapping
// ---------
static constexpr std::array<const char*, 5> tev_ind_wrap_start{
"(256<<7)", "(128<<7)", "(64<<7)", "(32<<7)", "(16<<7)",
};
// wrap S
if (tevind.sw == IndTexWrap::ITW_OFF)
{
out.Write("\twrappedcoord.x = fixpoint_uv{}.x;\n", texcoord);
}
else if (tevind.sw >= IndTexWrap::ITW_0) // 7 (Invalid) appears to behave the same as 6 (ITW_0)
{
out.Write("\twrappedcoord.x = 0;\n");
}
else
{
out.Write("\twrappedcoord.x = fixpoint_uv{}.x & ({} - 1);\n", texcoord,
tev_ind_wrap_start[u32(tevind.sw.Value()) - u32(IndTexWrap::ITW_256)]);
}
// wrap T
if (tevind.tw == IndTexWrap::ITW_OFF)
{
out.Write("\twrappedcoord.y = fixpoint_uv{}.y;\n", texcoord);
}
else if (tevind.tw >= IndTexWrap::ITW_0) // 7 (Invalid) appears to behave the same as 6 (ITW_0)
{
out.Write("\twrappedcoord.y = 0;\n");
}
else
{
out.Write("\twrappedcoord.y = fixpoint_uv{}.y & ({} - 1);\n", texcoord,
tev_ind_wrap_start[u32(tevind.tw.Value()) - u32(IndTexWrap::ITW_256)]);
}
if (tevind.fb_addprev) // add previous tevcoord
out.Write("\ttevcoord.xy += wrappedcoord + indtevtrans{};\n", n);
else
out.Write("\ttevcoord.xy = wrappedcoord + indtevtrans{};\n", n);
// Emulate s24 overflows
out.Write("\ttevcoord.xy = (tevcoord.xy << 8) >> 8;\n");
}
TevStageCombiner::ColorCombiner cc;
TevStageCombiner::AlphaCombiner ac;
cc.hex = stage.cc;
ac.hex = stage.ac;
if (cc.a == TevColorArg::RasAlpha || cc.a == TevColorArg::RasColor ||
cc.b == TevColorArg::RasAlpha || cc.b == TevColorArg::RasColor ||
cc.c == TevColorArg::RasAlpha || cc.c == TevColorArg::RasColor ||
cc.d == TevColorArg::RasAlpha || cc.d == TevColorArg::RasColor ||
ac.a == TevAlphaArg::RasAlpha || ac.b == TevAlphaArg::RasAlpha ||
ac.c == TevAlphaArg::RasAlpha || ac.d == TevAlphaArg::RasAlpha)
{
// Generate swizzle string to represent the Ras color channel swapping
const char rasswap[5] = {
"rgba"[stage.tevksel_swap1a],
"rgba"[stage.tevksel_swap2a],
"rgba"[stage.tevksel_swap1b],
"rgba"[stage.tevksel_swap2b],
'\0',
};
out.Write("\trastemp = {}.{};\n", tev_ras_table[stage.tevorders_colorchan], rasswap);
}
if (stage.tevorders_enable && uid_data->genMode_numtexgens > 0)
{
// Generate swizzle string to represent the texture color channel swapping
const char texswap[5] = {
"rgba"[stage.tevksel_swap1c],
"rgba"[stage.tevksel_swap2c],
"rgba"[stage.tevksel_swap1d],
"rgba"[stage.tevksel_swap2d],
'\0',
};
out.Write("\ttextemp = sampleTextureWrapper({0}u, tevcoord.xy, layer).{1};\n",
stage.tevorders_texmap, texswap);
}
else if (uid_data->genMode_numtexgens == 0)
{
// It seems like the result is always black when no tex coords are enabled, but further testing
// is needed.
out.Write("\ttextemp = int4(0, 0, 0, 0);\n");
}
else
{
out.Write("\ttextemp = int4(255, 255, 255, 255);\n");
}
if (cc.a == TevColorArg::Konst || cc.b == TevColorArg::Konst || cc.c == TevColorArg::Konst ||
cc.d == TevColorArg::Konst || ac.a == TevAlphaArg::Konst || ac.b == TevAlphaArg::Konst ||
ac.c == TevAlphaArg::Konst || ac.d == TevAlphaArg::Konst)
{
out.Write("\tkonsttemp = int4({}, {});\n", tev_ksel_table_c[stage.tevksel_kc],
tev_ksel_table_a[stage.tevksel_ka]);
if (u32(stage.tevksel_kc) > 7)
{
out.SetConstantsUsed(C_KCOLORS + ((u32(stage.tevksel_kc) - 0xc) % 4),
C_KCOLORS + ((u32(stage.tevksel_kc) - 0xc) % 4));
}
if (u32(stage.tevksel_ka) > 7)
{
out.SetConstantsUsed(C_KCOLORS + ((u32(stage.tevksel_ka) - 0xc) % 4),
C_KCOLORS + ((u32(stage.tevksel_ka) - 0xc) % 4));
}
}
if (cc.d == TevColorArg::Color0 || cc.d == TevColorArg::Alpha0 || ac.d == TevAlphaArg::Alpha0)
out.SetConstantsUsed(C_COLORS + 1, C_COLORS + 1);
if (cc.d == TevColorArg::Color1 || cc.d == TevColorArg::Alpha1 || ac.d == TevAlphaArg::Alpha1)
out.SetConstantsUsed(C_COLORS + 2, C_COLORS + 2);
if (cc.d == TevColorArg::Color2 || cc.d == TevColorArg::Alpha2 || ac.d == TevAlphaArg::Alpha2)
out.SetConstantsUsed(C_COLORS + 3, C_COLORS + 3);
if (cc.dest >= TevOutput::Color0)
out.SetConstantsUsed(C_COLORS + u32(cc.dest.Value()), C_COLORS + u32(cc.dest.Value()));
if (ac.dest >= TevOutput::Color0)
out.SetConstantsUsed(C_COLORS + u32(ac.dest.Value()), C_COLORS + u32(ac.dest.Value()));
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VECTOR_BITWISE_AND))
{
out.Write("\ttevin_a = int4({} & 255, {} & 255);\n", tev_c_input_table[cc.a],
tev_a_input_table[ac.a]);
out.Write("\ttevin_b = int4({} & 255, {} & 255);\n", tev_c_input_table[cc.b],
tev_a_input_table[ac.b]);
out.Write("\ttevin_c = int4({} & 255, {} & 255);\n", tev_c_input_table[cc.c],
tev_a_input_table[ac.c]);
}
else
{
out.Write("\ttevin_a = int4({}, {})&int4(255, 255, 255, 255);\n", tev_c_input_table[cc.a],
tev_a_input_table[ac.a]);
out.Write("\ttevin_b = int4({}, {})&int4(255, 255, 255, 255);\n", tev_c_input_table[cc.b],
tev_a_input_table[ac.b]);
out.Write("\ttevin_c = int4({}, {})&int4(255, 255, 255, 255);\n", tev_c_input_table[cc.c],
tev_a_input_table[ac.c]);
}
out.Write("\ttevin_d = int4({}, {});\n", tev_c_input_table[cc.d], tev_a_input_table[ac.d]);
out.Write("\t// color combine\n");
out.Write("\t{} = clamp(", tev_c_output_table[cc.dest]);
if (cc.bias != TevBias::Compare)
{
WriteTevRegular(out, "rgb", cc.bias, cc.op, cc.clamp, cc.scale);
}
else
{
static constexpr EnumMap<const char*, TevCompareMode::RGB8> tev_rgb_comparison_gt{
"((tevin_a.r > tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // TevCompareMode::R8
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.rgb : int3(0,0,0))", // GR16
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.rgb : int3(0,0,0))", // BGR24
"(max(sign(tevin_a.rgb - tevin_b.rgb), int3(0,0,0)) * tevin_c.rgb)", // RGB8
};
static constexpr EnumMap<const char*, TevCompareMode::RGB8> tev_rgb_comparison_eq{
"((tevin_a.r == tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // TevCompareMode::R8
"((idot(tevin_a.rgb,comp16) == idot(tevin_b.rgb,comp16)) ? tevin_c.rgb : int3(0,0,0))", // GR16
"((idot(tevin_a.rgb,comp24) == idot(tevin_b.rgb,comp24)) ? tevin_c.rgb : int3(0,0,0))", // BGR24
"((int3(1,1,1) - sign(abs(tevin_a.rgb - tevin_b.rgb))) * tevin_c.rgb)" // RGB8
};
if (cc.comparison == TevComparison::EQ)
out.Write(" tevin_d.rgb + {}", tev_rgb_comparison_eq[cc.compare_mode]);
else
out.Write(" tevin_d.rgb + {}", tev_rgb_comparison_gt[cc.compare_mode]);
}
if (cc.clamp)
out.Write(", int3(0,0,0), int3(255,255,255))");
else
out.Write(", int3(-1024,-1024,-1024), int3(1023,1023,1023))");
out.Write(";\n");
out.Write("\t// alpha combine\n");
out.Write("\t{} = clamp(", tev_a_output_table[ac.dest]);
if (ac.bias != TevBias::Compare)
{
WriteTevRegular(out, "a", ac.bias, ac.op, ac.clamp, ac.scale);
}
else
{
static constexpr EnumMap<const char*, TevCompareMode::A8> tev_a_comparison_gt{
"((tevin_a.r > tevin_b.r) ? tevin_c.a : 0)", // TevCompareMode::R8
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // GR16
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // BGR24
"((tevin_a.a > tevin_b.a) ? tevin_c.a : 0)", // A8
};
static constexpr EnumMap<const char*, TevCompareMode::A8> tev_a_comparison_eq{
"((tevin_a.r == tevin_b.r) ? tevin_c.a : 0)", // TevCompareMode::R8
"((idot(tevin_a.rgb, comp16) == idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // GR16,
"((idot(tevin_a.rgb, comp24) == idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // BGR24,
"((tevin_a.a == tevin_b.a) ? tevin_c.a : 0)", // A8
};
if (ac.comparison == TevComparison::EQ)
out.Write(" tevin_d.a + {}", tev_a_comparison_eq[ac.compare_mode]);
else
out.Write(" tevin_d.a + {}", tev_a_comparison_gt[ac.compare_mode]);
}
if (ac.clamp)
out.Write(", 0, 255)");
else
out.Write(", -1024, 1023)");
out.Write(";\n");
}
static void WriteTevRegular(ShaderCode& out, std::string_view components, TevBias bias, TevOp op,
bool clamp, TevScale scale)
{
static constexpr Common::EnumMap<const char*, TevScale::Divide2> tev_scale_table_left{
"", // Scale1
" << 1", // Scale2
" << 2", // Scale4
"", // Divide2
};
static constexpr Common::EnumMap<const char*, TevScale::Divide2> tev_scale_table_right{
"", // Scale1
"", // Scale2
"", // Scale4
" >> 1", // Divide2
};
static constexpr Common::EnumMap<const char*, TevOp::Sub> tev_lerp_bias{
" + 128",
" + 127",
};
static constexpr Common::EnumMap<const char*, TevBias::Compare> tev_bias_table{
"", // Zero,
" + 128", // AddHalf,
" - 128", // SubHalf,
"",
};
static constexpr Common::EnumMap<char, TevOp::Sub> tev_op_table{
'+', // TevOp::Add = 0,
'-', // TevOp::Sub = 1,
};
// Regular TEV stage: (d + bias + lerp(a,b,c)) * scale
// The GameCube/Wii GPU uses a very sophisticated algorithm for scale-lerping:
// - c is scaled from 0..255 to 0..256, which allows dividing the result by 256 instead of 255
// - if scale is bigger than one, it is moved inside the lerp calculation for increased accuracy
// - a rounding bias is added before dividing by 256
// TODO: Is the rounding bias still added when the scale is divide by 2? Currently we do not
// apply it.
out.Write("(((tevin_d.{}{}){})", components, tev_bias_table[bias], tev_scale_table_left[scale]);
out.Write(" {} ", tev_op_table[op]);
out.Write("(((((tevin_a.{0}<<8) + "
"(tevin_b.{0}-tevin_a.{0})*(tevin_c.{0}+(tevin_c.{0}>>7))){1}){2})>>8)",
components, tev_scale_table_left[scale],
(scale != TevScale::Divide2) ? tev_lerp_bias[op] : "");
out.Write("){}", tev_scale_table_right[scale]);
}
constexpr Common::EnumMap<const char*, CompareMode::Always> tev_alpha_funcs_table{
"(false)", // CompareMode::Never
"(prev.a < {})", // CompareMode::Less
"(prev.a == {})", // CompareMode::Equal
"(prev.a <= {})", // CompareMode::LEqual
"(prev.a > {})", // CompareMode::Greater
"(prev.a != {})", // CompareMode::NEqual
"(prev.a >= {})", // CompareMode::GEqual
"(true)" // CompareMode::Always
};
constexpr Common::EnumMap<const char*, AlphaTestOp::Xnor> tev_alpha_funclogic_table{
" && ", // and
" || ", // or
" != ", // xor
" == " // xnor
};
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType api_type,
bool per_pixel_depth, bool use_dual_source)
{
static constexpr std::array<std::string_view, 2> alpha_ref{
I_ALPHA ".r",
I_ALPHA ".g",
};
const auto write_alpha_func = [&out](CompareMode mode, std::string_view ref) {
const bool has_no_arguments = mode == CompareMode::Never || mode == CompareMode::Always;
if (has_no_arguments)
out.Write("{}", tev_alpha_funcs_table[mode]);
else
out.Write(fmt::runtime(tev_alpha_funcs_table[mode]), ref);
};
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_NEGATED_BOOLEAN))
out.Write("\tif(( ");
else
out.Write("\tif(!( ");
// Lookup the first component from the alpha function table
write_alpha_func(uid_data->alpha_test_comp0, alpha_ref[0]);
// Lookup the logic op
out.Write("{}", tev_alpha_funclogic_table[uid_data->alpha_test_logic]);
// Lookup the second component from the alpha function table
write_alpha_func(uid_data->alpha_test_comp1, alpha_ref[1]);
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_NEGATED_BOOLEAN))
out.Write(") == false) {{\n");
else
out.Write(")) {{\n");
out.Write("\t\tocol0 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (use_dual_source && !(api_type == APIType::D3D && uid_data->uint_output))
out.Write("\t\tocol1 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (per_pixel_depth)
{
out.Write("\t\tdepth = {};\n",
!g_ActiveConfig.backend_info.bSupportsReversedDepthRange ? "0.0" : "1.0");
}
// ZCOMPLOC HACK:
if (!uid_data->alpha_test_use_zcomploc_hack)
{
out.Write("\t\tdiscard;\n");
if (api_type == APIType::D3D)
out.Write("\t\treturn;\n");
}
out.Write("\t}}\n");
}
constexpr Common::EnumMap<const char*, FogType::BackwardsExpSq> tev_fog_funcs_table{
"", // No Fog
"", // ?
"", // Linear
"", // ?
"\tfog = 1.0 - exp2(-8.0 * fog);\n", // exp
"\tfog = 1.0 - exp2(-8.0 * fog * fog);\n", // exp2
"\tfog = exp2(-8.0 * (1.0 - fog));\n", // backward exp
"\tfog = 1.0 - fog;\n fog = exp2(-8.0 * fog * fog);\n" // backward exp2
};
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data)
{
if (uid_data->fog_fsel == FogType::Off)
return; // no Fog
out.SetConstantsUsed(C_FOGCOLOR, C_FOGCOLOR);
out.SetConstantsUsed(C_FOGI, C_FOGI);
out.SetConstantsUsed(C_FOGF, C_FOGF + 1);
if (uid_data->fog_proj == FogProjection::Perspective)
{
// perspective
// ze = A/(B - (Zs >> B_SHF)
// TODO: Verify that we want to drop lower bits here! (currently taken over from software
// renderer)
// Maybe we want to use "ze = (A << B_SHF)/((B << B_SHF) - Zs)" instead?
// That's equivalent, but keeps the lower bits of Zs.
out.Write("\tfloat ze = (" I_FOGF ".x * 16777216.0) / float(" I_FOGI ".y - (zCoord >> " I_FOGI
".w));\n");
}
else
{
// orthographic
// ze = a*Zs (here, no B_SHF)
out.Write("\tfloat ze = " I_FOGF ".x * float(zCoord) / 16777216.0;\n");
}
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
if (uid_data->fog_RangeBaseEnabled)
{
out.SetConstantsUsed(C_FOGF, C_FOGF);
out.Write("\tfloat offset = (2.0 * (rawpos.x / " I_FOGF ".w)) - 1.0 - " I_FOGF ".z;\n"
"\tfloat floatindex = clamp(9.0 - abs(offset) * 9.0, 0.0, 9.0);\n"
"\tuint indexlower = uint(floatindex);\n"
"\tuint indexupper = indexlower + 1u;\n"
"\tfloat klower = " I_FOGRANGE "[indexlower >> 2u][indexlower & 3u];\n"
"\tfloat kupper = " I_FOGRANGE "[indexupper >> 2u][indexupper & 3u];\n"
"\tfloat k = lerp(klower, kupper, frac(floatindex));\n"
"\tfloat x_adjust = sqrt(offset * offset + k * k) / k;\n"
"\tze *= x_adjust;\n");
}
out.Write("\tfloat fog = clamp(ze - " I_FOGF ".y, 0.0, 1.0);\n");
if (uid_data->fog_fsel >= FogType::Exp)
{
out.Write("{}", tev_fog_funcs_table[uid_data->fog_fsel]);
}
else
{
if (uid_data->fog_fsel != FogType::Linear)
WARN_LOG_FMT(VIDEO, "Unknown Fog Type! {}", uid_data->fog_fsel);
}
out.Write("\tint ifog = iround(fog * 256.0);\n");
out.Write("\tprev.rgb = (prev.rgb * (256 - ifog) + " I_FOGCOLOR ".rgb * ifog) >> 8;\n");
}
static void WriteLogicOp(ShaderCode& out, const pixel_shader_uid_data* uid_data)
{
if (uid_data->logic_op_enable)
{
static constexpr std::array<const char*, 16> logic_op_mode{
"int4(0, 0, 0, 0)", // CLEAR
"prev & fb_value", // AND
"prev & ~fb_value", // AND_REVERSE
"prev", // COPY
"~prev & fb_value", // AND_INVERTED
"fb_value", // NOOP
"prev ^ fb_value", // XOR
"prev | fb_value", // OR
"~(prev | fb_value)", // NOR
"~(prev ^ fb_value)", // EQUIV
"~fb_value", // INVERT
"prev | ~fb_value", // OR_REVERSE
"~prev", // COPY_INVERTED
"~prev | fb_value", // OR_INVERTED
"~(prev & fb_value)", // NAND
"int4(255, 255, 255, 255)", // SET
};
out.Write("\tint4 fb_value = iround(initial_ocol0 * 255.0);\n");
out.Write("\tprev = {};\n", logic_op_mode[uid_data->logic_op_mode]);
}
}
static void WriteColor(ShaderCode& out, APIType api_type, const pixel_shader_uid_data* uid_data,
bool use_dual_source)
{
// D3D requires that the shader outputs be uint when writing to a uint render target for logic op.
if (api_type == APIType::D3D && uid_data->uint_output)
{
if (uid_data->rgba6_format)
out.Write("\tocol0 = uint4(prev & 0xFC);\n");
else
out.Write("\tocol0 = uint4(prev);\n");
return;
}
if (uid_data->rgba6_format)
out.Write("\tocol0.rgb = float3(prev.rgb >> 2) / 63.0;\n");
else
out.Write("\tocol0.rgb = float3(prev.rgb) / 255.0;\n");
// Colors will be blended against the 8-bit alpha from ocol1 and
// the 6-bit alpha from ocol0 will be written to the framebuffer
if (uid_data->useDstAlpha)
{
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
out.Write("\tocol0.a = float(" I_ALPHA ".a >> 2) / 63.0;\n");
// Use dual-source color blending to perform dst alpha in a single pass
if (use_dual_source)
out.Write("\tocol1 = float4(0.0, 0.0, 0.0, float(prev.a) / 255.0);\n");
}
else
{
out.Write("\tocol0.a = float(prev.a >> 2) / 63.0;\n");
if (use_dual_source)
out.Write("\tocol1 = float4(0.0, 0.0, 0.0, float(prev.a) / 255.0);\n");
}
}
static void WriteBlend(ShaderCode& out, const pixel_shader_uid_data* uid_data)
{
if (uid_data->blend_enable)
{
using Common::EnumMap;
static constexpr EnumMap<const char*, SrcBlendFactor::InvDstAlpha> blend_src_factor{
"float3(0,0,0);", // ZERO
"float3(1,1,1);", // ONE
"initial_ocol0.rgb;", // DSTCLR
"float3(1,1,1) - initial_ocol0.rgb;", // INVDSTCLR
"ocol1.aaa;", // SRCALPHA
"float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA
"initial_ocol0.aaa;", // DSTALPHA
"float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA
};
static constexpr EnumMap<const char*, SrcBlendFactor::InvDstAlpha> blend_src_factor_alpha{
"0.0;", // ZERO
"1.0;", // ONE
"initial_ocol0.a;", // DSTCLR
"1.0 - initial_ocol0.a;", // INVDSTCLR
"ocol1.a;", // SRCALPHA
"1.0 - ocol1.a;", // INVSRCALPHA
"initial_ocol0.a;", // DSTALPHA
"1.0 - initial_ocol0.a;", // INVDSTALPHA
};
static constexpr EnumMap<const char*, DstBlendFactor::InvDstAlpha> blend_dst_factor{
"float3(0,0,0);", // ZERO
"float3(1,1,1);", // ONE
"ocol0.rgb;", // SRCCLR
"float3(1,1,1) - ocol0.rgb;", // INVSRCCLR
"ocol1.aaa;", // SRCALHA
"float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA
"initial_ocol0.aaa;", // DSTALPHA
"float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA
};
static constexpr EnumMap<const char*, DstBlendFactor::InvDstAlpha> blend_dst_factor_alpha{
"0.0;", // ZERO
"1.0;", // ONE
"ocol0.a;", // SRCCLR
"1.0 - ocol0.a;", // INVSRCCLR
"ocol1.a;", // SRCALPHA
"1.0 - ocol1.a;", // INVSRCALPHA
"initial_ocol0.a;", // DSTALPHA
"1.0 - initial_ocol0.a;", // INVDSTALPHA
};
out.Write("\tfloat4 blend_src;\n");
out.Write("\tblend_src.rgb = {}\n", blend_src_factor[uid_data->blend_src_factor]);
out.Write("\tblend_src.a = {}\n", blend_src_factor_alpha[uid_data->blend_src_factor_alpha]);
out.Write("\tfloat4 blend_dst;\n");
out.Write("\tblend_dst.rgb = {}\n", blend_dst_factor[uid_data->blend_dst_factor]);
out.Write("\tblend_dst.a = {}\n", blend_dst_factor_alpha[uid_data->blend_dst_factor_alpha]);
out.Write("\tfloat4 blend_result;\n");
if (uid_data->blend_subtract)
{
out.Write("\tblend_result.rgb = initial_ocol0.rgb * blend_dst.rgb - ocol0.rgb * "
"blend_src.rgb;\n");
}
else
{
out.Write(
"\tblend_result.rgb = initial_ocol0.rgb * blend_dst.rgb + ocol0.rgb * blend_src.rgb;\n");
}
if (uid_data->blend_subtract_alpha)
out.Write("\tblend_result.a = initial_ocol0.a * blend_dst.a - ocol0.a * blend_src.a;\n");
else
out.Write("\tblend_result.a = initial_ocol0.a * blend_dst.a + ocol0.a * blend_src.a;\n");
}
else
{
out.Write("\tfloat4 blend_result = ocol0;\n");
}
out.Write("\treal_ocol0 = blend_result;\n");
}