TellowKrinkle 6ab24e6c17 VideoCommon: Better driver bug handling
Adds a pass to process driver deficiencies between UID caching and use, allowing a full view of the whole pipeline, since some bugs/workarounds involve interactions between blend modes and the pixel shader
2022-07-13 21:51:24 -05:00

522 lines
15 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/Rasterizer.h"
#include <algorithm>
#include <cstring>
#include <vector>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "VideoBackends/Software/EfbInterface.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace Rasterizer
{
static constexpr int BLOCK_SIZE = 2;
struct SlopeContext
{
SlopeContext(const OutputVertexData* v0, const OutputVertexData* v1, const OutputVertexData* v2,
s32 x0_, s32 y0_, s32 x_off, s32 y_off)
: x0(x0_), y0(y0_)
{
// adjust a little less than 0.5
const float adjust = 0.495f;
xOff = ((float)x0_ - (v0->screenPosition.x - x_off)) + adjust;
yOff = ((float)y0_ - (v0->screenPosition.y - y_off)) + adjust;
dx10 = v1->screenPosition.x - v0->screenPosition.x;
dx20 = v2->screenPosition.x - v0->screenPosition.x;
dy10 = v1->screenPosition.y - v0->screenPosition.y;
dy20 = v2->screenPosition.y - v0->screenPosition.y;
}
s32 x0;
s32 y0;
float xOff;
float yOff;
float dx10;
float dx20;
float dy10;
float dy20;
};
struct Slope
{
Slope() = default;
Slope(float f0_, float f1, float f2, const SlopeContext& ctx) : f0(f0_)
{
float delta_20 = f2 - f0_;
float delta_10 = f1 - f0_;
// x2 - x0 y1 - y0 x1 - x0 y2 - y0
float a = delta_20 * ctx.dy10 - delta_10 * ctx.dy20;
float b = ctx.dx20 * delta_10 - ctx.dx10 * delta_20;
float c = ctx.dx20 * ctx.dy10 - ctx.dx10 * ctx.dy20;
dfdx = a / c;
dfdy = b / c;
x0 = ctx.x0;
y0 = ctx.y0;
xOff = ctx.xOff;
yOff = ctx.yOff;
}
// These default values are used in the unlikely case that zfreeze is enabled when drawing the
// first primitive.
// TODO: This is just a guess!
float dfdx = 0.0f;
float dfdy = 0.0f;
float f0 = 1.0f;
// Both an s32 value and a float value are used to minimize rounding error
// TODO: is this really needed?
s32 x0 = 0;
s32 y0 = 0;
float xOff = 0.0f;
float yOff = 0.0f;
float GetValue(s32 x, s32 y) const
{
float dx = xOff + (float)(x - x0);
float dy = yOff + (float)(y - y0);
return f0 + (dfdx * dx) + (dfdy * dy);
}
};
static Slope ZSlope;
static Slope WSlope;
static Slope ColorSlopes[2][4];
static Slope TexSlopes[8][3];
static Tev tev;
static RasterBlock rasterBlock;
static std::vector<BPFunctions::ScissorRect> scissors;
void Init()
{
tev.Init();
// The other slopes are set each for each primitive drawn, but zfreeze means that the z slope
// needs to be set to an (untested) default value.
ZSlope = Slope();
}
void ScissorChanged()
{
scissors = std::move(BPFunctions::ComputeScissorRects().m_result);
}
// Returns approximation of log2(f) in s28.4
// results are close enough to use for LOD
static s32 FixedLog2(float f)
{
u32 x;
std::memcpy(&x, &f, sizeof(u32));
s32 logInt = ((x & 0x7F800000) >> 19) - 2032; // integer part
s32 logFract = (x & 0x007fffff) >> 19; // approximate fractional part
return logInt + logFract;
}
static inline int iround(float x)
{
int t = (int)x;
if ((x - t) >= 0.5)
return t + 1;
return t;
}
void SetTevReg(int reg, int comp, s16 color)
{
tev.SetRegColor(reg, comp, color);
}
static void Draw(s32 x, s32 y, s32 xi, s32 yi)
{
INCSTAT(g_stats.this_frame.rasterized_pixels);
s32 z = (s32)std::clamp<float>(ZSlope.GetValue(x, y), 0.0f, 16777215.0f);
if (bpmem.GetEmulatedZ() == EmulatedZ::Early)
{
// TODO: Test if perf regs are incremented even if test is disabled
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT_ZCOMPLOC);
if (bpmem.zmode.testenable)
{
// early z
if (!EfbInterface::ZCompare(x, y, z))
return;
}
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT_ZCOMPLOC);
}
RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi];
tev.Position[0] = x;
tev.Position[1] = y;
tev.Position[2] = z;
// colors
for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++)
{
for (int comp = 0; comp < 4; comp++)
{
u16 color = (u16)ColorSlopes[i][comp].GetValue(x, y);
// clamp color value to 0
u16 mask = ~(color >> 8);
tev.Color[i][comp] = color & mask;
}
}
// tex coords
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
{
// multiply by 128 because TEV stores UVs as s17.7
tev.Uv[i].s = (s32)(pixel.Uv[i][0] * 128);
tev.Uv[i].t = (s32)(pixel.Uv[i][1] * 128);
}
for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++)
{
tev.IndirectLod[i] = rasterBlock.IndirectLod[i];
tev.IndirectLinear[i] = rasterBlock.IndirectLinear[i];
}
for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++)
{
tev.TextureLod[i] = rasterBlock.TextureLod[i];
tev.TextureLinear[i] = rasterBlock.TextureLinear[i];
}
tev.Draw();
}
static inline void CalculateLOD(s32* lodp, bool* linear, u32 texmap, u32 texcoord)
{
auto texUnit = bpmem.tex.GetUnit(texmap);
// LOD calculation requires data from the texture mode for bias, etc.
// it does not seem to use the actual texture size
const TexMode0& tm0 = texUnit.texMode0;
const TexMode1& tm1 = texUnit.texMode1;
float sDelta, tDelta;
float* uv00 = rasterBlock.Pixel[0][0].Uv[texcoord];
float* uv10 = rasterBlock.Pixel[1][0].Uv[texcoord];
float* uv01 = rasterBlock.Pixel[0][1].Uv[texcoord];
float dudx = fabsf(uv00[0] - uv10[0]);
float dvdx = fabsf(uv00[1] - uv10[1]);
float dudy = fabsf(uv00[0] - uv01[0]);
float dvdy = fabsf(uv00[1] - uv01[1]);
if (tm0.diag_lod == LODType::Diagonal)
{
sDelta = dudx + dudy;
tDelta = dvdx + dvdy;
}
else
{
sDelta = std::max(dudx, dudy);
tDelta = std::max(dvdx, dvdy);
}
// get LOD in s28.4
s32 lod = FixedLog2(std::max(sDelta, tDelta));
// bias is s2.5
int bias = tm0.lod_bias;
bias >>= 1;
lod += bias;
*linear = ((lod > 0 && tm0.min_filter == FilterMode::Linear) ||
(lod <= 0 && tm0.mag_filter == FilterMode::Linear));
// NOTE: The order of comparisons for this clamp check matters.
if (lod > static_cast<s32>(tm1.max_lod))
lod = static_cast<s32>(tm1.max_lod);
else if (lod < static_cast<s32>(tm1.min_lod))
lod = static_cast<s32>(tm1.min_lod);
*lodp = lod;
}
static void BuildBlock(s32 blockX, s32 blockY)
{
for (s32 yi = 0; yi < BLOCK_SIZE; yi++)
{
for (s32 xi = 0; xi < BLOCK_SIZE; xi++)
{
RasterBlockPixel& pixel = rasterBlock.Pixel[xi][yi];
s32 x = xi + blockX;
s32 y = yi + blockY;
float invW = 1.0f / WSlope.GetValue(x, y);
pixel.InvW = invW;
// tex coords
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
{
float projection = invW;
float q = TexSlopes[i][2].GetValue(x, y) * invW;
if (q != 0.0f)
projection = invW / q;
pixel.Uv[i][0] = TexSlopes[i][0].GetValue(x, y) * projection;
pixel.Uv[i][1] = TexSlopes[i][1].GetValue(x, y) * projection;
}
}
}
u32 indref = bpmem.tevindref.hex;
for (unsigned int i = 0; i < bpmem.genMode.numindstages; i++)
{
u32 texmap = indref & 3;
indref >>= 3;
u32 texcoord = indref & 3;
indref >>= 3;
CalculateLOD(&rasterBlock.IndirectLod[i], &rasterBlock.IndirectLinear[i], texmap, texcoord);
}
for (unsigned int i = 0; i <= bpmem.genMode.numtevstages; i++)
{
int stageOdd = i & 1;
const TwoTevStageOrders& order = bpmem.tevorders[i >> 1];
if (order.getEnable(stageOdd))
{
u32 texmap = order.getTexMap(stageOdd);
u32 texcoord = order.getTexCoord(stageOdd);
CalculateLOD(&rasterBlock.TextureLod[i], &rasterBlock.TextureLinear[i], texmap, texcoord);
}
}
}
void UpdateZSlope(const OutputVertexData* v0, const OutputVertexData* v1,
const OutputVertexData* v2, s32 x_off, s32 y_off)
{
if (!bpmem.genMode.zfreeze)
{
const s32 X1 = iround(16.0f * (v0->screenPosition.x - x_off)) - 9;
const s32 Y1 = iround(16.0f * (v0->screenPosition.y - y_off)) - 9;
const SlopeContext ctx(v0, v1, v2, (X1 + 0xF) >> 4, (Y1 + 0xF) >> 4, x_off, y_off);
ZSlope = Slope(v0->screenPosition.z, v1->screenPosition.z, v2->screenPosition.z, ctx);
}
}
static void DrawTriangleFrontFace(const OutputVertexData* v0, const OutputVertexData* v1,
const OutputVertexData* v2,
const BPFunctions::ScissorRect& scissor)
{
// The zslope should be updated now, even if the triangle is rejected by the scissor test, as
// zfreeze depends on it
UpdateZSlope(v0, v1, v2, scissor.x_off, scissor.y_off);
// adapted from http://devmaster.net/posts/6145/advanced-rasterization
// 28.4 fixed-pou32 coordinates. rounded to nearest and adjusted to match hardware output
// could also take floor and adjust -8
const s32 Y1 = iround(16.0f * (v0->screenPosition.y - scissor.y_off)) - 9;
const s32 Y2 = iround(16.0f * (v1->screenPosition.y - scissor.y_off)) - 9;
const s32 Y3 = iround(16.0f * (v2->screenPosition.y - scissor.y_off)) - 9;
const s32 X1 = iround(16.0f * (v0->screenPosition.x - scissor.x_off)) - 9;
const s32 X2 = iround(16.0f * (v1->screenPosition.x - scissor.x_off)) - 9;
const s32 X3 = iround(16.0f * (v2->screenPosition.x - scissor.x_off)) - 9;
// Deltas
const s32 DX12 = X1 - X2;
const s32 DX23 = X2 - X3;
const s32 DX31 = X3 - X1;
const s32 DY12 = Y1 - Y2;
const s32 DY23 = Y2 - Y3;
const s32 DY31 = Y3 - Y1;
// Fixed-pos32 deltas
const s32 FDX12 = DX12 * 16;
const s32 FDX23 = DX23 * 16;
const s32 FDX31 = DX31 * 16;
const s32 FDY12 = DY12 * 16;
const s32 FDY23 = DY23 * 16;
const s32 FDY31 = DY31 * 16;
// Bounding rectangle
s32 minx = (std::min(std::min(X1, X2), X3) + 0xF) >> 4;
s32 maxx = (std::max(std::max(X1, X2), X3) + 0xF) >> 4;
s32 miny = (std::min(std::min(Y1, Y2), Y3) + 0xF) >> 4;
s32 maxy = (std::max(std::max(Y1, Y2), Y3) + 0xF) >> 4;
// scissor
ASSERT(scissor.rect.left >= 0);
ASSERT(scissor.rect.right <= static_cast<int>(EFB_WIDTH));
ASSERT(scissor.rect.top >= 0);
ASSERT(scissor.rect.bottom <= static_cast<int>(EFB_HEIGHT));
minx = std::max(minx, scissor.rect.left);
maxx = std::min(maxx, scissor.rect.right);
miny = std::max(miny, scissor.rect.top);
maxy = std::min(maxy, scissor.rect.bottom);
if (minx >= maxx || miny >= maxy)
return;
// Set up the remaining slopes
const SlopeContext ctx(v0, v1, v2, (X1 + 0xF) >> 4, (Y1 + 0xF) >> 4, scissor.x_off,
scissor.y_off);
float w[3] = {1.0f / v0->projectedPosition.w, 1.0f / v1->projectedPosition.w,
1.0f / v2->projectedPosition.w};
WSlope = Slope(w[0], w[1], w[2], ctx);
for (unsigned int i = 0; i < bpmem.genMode.numcolchans; i++)
{
for (int comp = 0; comp < 4; comp++)
ColorSlopes[i][comp] = Slope(v0->color[i][comp], v1->color[i][comp], v2->color[i][comp], ctx);
}
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; i++)
{
for (int comp = 0; comp < 3; comp++)
{
TexSlopes[i][comp] = Slope(v0->texCoords[i][comp] * w[0], v1->texCoords[i][comp] * w[1],
v2->texCoords[i][comp] * w[2], ctx);
}
}
// Half-edge constants
s32 C1 = DY12 * X1 - DX12 * Y1;
s32 C2 = DY23 * X2 - DX23 * Y2;
s32 C3 = DY31 * X3 - DX31 * Y3;
// Correct for fill convention
if (DY12 < 0 || (DY12 == 0 && DX12 > 0))
C1++;
if (DY23 < 0 || (DY23 == 0 && DX23 > 0))
C2++;
if (DY31 < 0 || (DY31 == 0 && DX31 > 0))
C3++;
// Start in corner of 2x2 block
s32 block_minx = minx & ~(BLOCK_SIZE - 1);
s32 block_miny = miny & ~(BLOCK_SIZE - 1);
// Loop through blocks
for (s32 y = block_miny & ~(BLOCK_SIZE - 1); y < maxy; y += BLOCK_SIZE)
{
for (s32 x = block_minx; x < maxx; x += BLOCK_SIZE)
{
s32 x1_ = (x + BLOCK_SIZE - 1);
s32 y1_ = (y + BLOCK_SIZE - 1);
// Corners of block
s32 x0 = x << 4;
s32 x1 = x1_ << 4;
s32 y0 = y << 4;
s32 y1 = y1_ << 4;
// Evaluate half-space functions
bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
// Skip block when outside an edge
if (a == 0x0 || b == 0x0 || c == 0x0)
continue;
BuildBlock(x, y);
// Accept whole block when totally covered
// We still need to check min/max x/y because of the scissor
if (a == 0xF && b == 0xF && c == 0xF && x >= minx && x1_ < maxx && y >= miny && y1_ < maxy)
{
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
{
Draw(x + ix, y + iy, ix, iy);
}
}
}
else // Partially covered block
{
s32 CY1 = C1 + DX12 * y0 - DY12 * x0;
s32 CY2 = C2 + DX23 * y0 - DY23 * x0;
s32 CY3 = C3 + DX31 * y0 - DY31 * x0;
for (s32 iy = 0; iy < BLOCK_SIZE; iy++)
{
s32 CX1 = CY1;
s32 CX2 = CY2;
s32 CX3 = CY3;
for (s32 ix = 0; ix < BLOCK_SIZE; ix++)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
{
// This check enforces the scissor rectangle, since it might not be aligned with the
// blocks
if (x + ix >= minx && x + ix < maxx && y + iy >= miny && y + iy < maxy)
Draw(x + ix, y + iy, ix, iy);
}
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
}
}
}
}
}
void DrawTriangleFrontFace(const OutputVertexData* v0, const OutputVertexData* v1,
const OutputVertexData* v2)
{
INCSTAT(g_stats.this_frame.num_triangles_drawn);
for (const auto& scissor : scissors)
DrawTriangleFrontFace(v0, v1, v2, scissor);
}
} // namespace Rasterizer