dolphin/Source/Core/VideoBackends/Vulkan/TextureConverter.cpp
2017-11-17 22:11:31 -06:00

894 lines
36 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Vulkan/TextureConverter.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <string>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/StagingTexture2D.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/Texture2D.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VKTexture.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VideoConfig.h"
namespace Vulkan
{
namespace
{
struct EFBEncodeParams
{
std::array<s32, 4> position_uniform;
float y_scale;
};
}
TextureConverter::TextureConverter()
{
}
TextureConverter::~TextureConverter()
{
for (const auto& it : m_palette_conversion_shaders)
{
if (it != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it, nullptr);
}
if (m_texel_buffer_view_r8_uint != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r8_uint, nullptr);
if (m_texel_buffer_view_r16_uint != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r16_uint, nullptr);
if (m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r32g32_uint, nullptr);
if (m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_rgba8_unorm, nullptr);
if (m_texel_buffer_view_rgba8_uint != VK_NULL_HANDLE)
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_rgba8_uint, nullptr);
if (m_encoding_render_pass != VK_NULL_HANDLE)
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_encoding_render_pass, nullptr);
if (m_encoding_render_framebuffer != VK_NULL_HANDLE)
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_encoding_render_framebuffer, nullptr);
for (auto& it : m_encoding_shaders)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second, nullptr);
for (const auto& it : m_decoding_pipelines)
{
if (it.second.compute_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.compute_shader, nullptr);
}
if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr);
if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr);
}
bool TextureConverter::Initialize()
{
if (!CreateTexelBuffer())
{
PanicAlert("Failed to create uniform buffer");
return false;
}
if (!CompilePaletteConversionShaders())
{
PanicAlert("Failed to compile palette conversion shaders");
return false;
}
if (!CreateEncodingRenderPass())
{
PanicAlert("Failed to create encode render pass");
return false;
}
if (!CreateEncodingTexture())
{
PanicAlert("Failed to create encoding texture");
return false;
}
if (!CreateEncodingDownloadTexture())
{
PanicAlert("Failed to create download texture");
return false;
}
if (!CreateDecodingTexture())
{
PanicAlert("Failed to create decoding texture");
return false;
}
if (!CompileYUYVConversionShaders())
{
PanicAlert("Failed to compile YUYV conversion shaders");
return false;
}
return true;
}
bool TextureConverter::ReserveTexelBufferStorage(size_t size, size_t alignment)
{
// Enforce the minimum alignment for texture buffers on the device.
size_t actual_alignment =
std::max(static_cast<size_t>(g_vulkan_context->GetTexelBufferAlignment()), alignment);
if (m_texel_buffer->ReserveMemory(size, actual_alignment))
return true;
WARN_LOG(VIDEO, "Executing command list while waiting for space in palette buffer");
Util::ExecuteCurrentCommandsAndRestoreState(false);
// This next call should never fail, since a command buffer is now in-flight and we can
// wait on the fence for the GPU to finish. If this returns false, it's probably because
// the device has been lost, which is fatal anyway.
if (!m_texel_buffer->ReserveMemory(size, actual_alignment))
{
PanicAlert("Failed to allocate space for texture conversion");
return false;
}
return true;
}
VkCommandBuffer
TextureConverter::GetCommandBufferForTextureConversion(const TextureCache::TCacheEntry* src_entry)
{
// EFB copies can be used as paletted textures as well. For these, we can't assume them to be
// contain the correct data before the frame begins (when the init command buffer is executed),
// so we must convert them at the appropriate time, during the drawing command buffer.
if (src_entry->IsCopy())
{
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
return g_command_buffer_mgr->GetCurrentCommandBuffer();
}
else
{
// Use initialization command buffer and perform conversion before the drawing commands.
return g_command_buffer_mgr->GetCurrentInitCommandBuffer();
}
}
void TextureConverter::ConvertTexture(TextureCacheBase::TCacheEntry* dst_entry,
TextureCacheBase::TCacheEntry* src_entry,
VkRenderPass render_pass, const void* palette,
TLUTFormat palette_format)
{
struct PSUniformBlock
{
float multiplier;
int texel_buffer_offset;
int pad[2];
};
VKTexture* source_texture = static_cast<VKTexture*>(src_entry->texture.get());
VKTexture* destination_texture = static_cast<VKTexture*>(dst_entry->texture.get());
_assert_(static_cast<size_t>(palette_format) < NUM_PALETTE_CONVERSION_SHADERS);
_assert_(destination_texture->GetConfig().rendertarget);
// We want to align to 2 bytes (R16) or the device's texel buffer alignment, whichever is greater.
size_t palette_size = src_entry->format == TextureFormat::I4 ? 32 : 512;
if (!ReserveTexelBufferStorage(palette_size, sizeof(u16)))
return;
// Copy in palette to texel buffer.
u32 palette_offset = static_cast<u32>(m_texel_buffer->GetCurrentOffset());
memcpy(m_texel_buffer->GetCurrentHostPointer(), palette, palette_size);
m_texel_buffer->CommitMemory(palette_size);
VkCommandBuffer command_buffer = GetCommandBufferForTextureConversion(src_entry);
source_texture->GetRawTexIdentifier()->TransitionToLayout(
command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
destination_texture->GetRawTexIdentifier()->TransitionToLayout(
command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Bind and draw to the destination.
UtilityShaderDraw draw(command_buffer,
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION),
render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE,
m_palette_conversion_shaders[static_cast<int>(palette_format)]);
VkRect2D region = {{0, 0}, {dst_entry->GetWidth(), dst_entry->GetHeight()}};
draw.BeginRenderPass(destination_texture->GetFramebuffer(), region);
PSUniformBlock uniforms = {};
uniforms.multiplier = src_entry->format == TextureFormat::I4 ? 15.0f : 255.0f;
uniforms.texel_buffer_offset = static_cast<int>(palette_offset / sizeof(u16));
draw.SetPushConstants(&uniforms, sizeof(uniforms));
draw.SetPSSampler(0, source_texture->GetRawTexIdentifier()->GetView(),
g_object_cache->GetPointSampler());
draw.SetPSTexelBuffer(m_texel_buffer_view_r16_uint);
draw.SetViewportAndScissor(0, 0, dst_entry->GetWidth(), dst_entry->GetHeight());
draw.DrawWithoutVertexBuffer(4);
draw.EndRenderPass();
}
void TextureConverter::EncodeTextureToMemory(VkImageView src_texture, u8* dest_ptr,
const EFBCopyParams& params, u32 native_width,
u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride,
const EFBRectangle& src_rect, bool scale_by_half)
{
VkShaderModule shader = GetEncodingShader(params);
if (shader == VK_NULL_HANDLE)
{
ERROR_LOG(VIDEO, "Missing encoding fragment shader for format %u->%u",
static_cast<unsigned>(params.efb_format), static_cast<unsigned>(params.copy_format));
return;
}
// Can't do our own draw within a render pass.
StateTracker::GetInstance()->EndRenderPass();
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_PUSH_CONSTANT),
m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(),
VK_NULL_HANDLE, shader);
// Uniform - int4 of left,top,native_width,scale
EFBEncodeParams encoder_params;
encoder_params.position_uniform[0] = src_rect.left;
encoder_params.position_uniform[1] = src_rect.top;
encoder_params.position_uniform[2] = static_cast<s32>(native_width);
encoder_params.position_uniform[3] = scale_by_half ? 2 : 1;
encoder_params.y_scale = params.y_scale;
draw.SetPushConstants(&encoder_params, sizeof(encoder_params));
// We also linear filtering for both box filtering and downsampling higher resolutions to 1x
// TODO: This only produces perfect downsampling for 2x IR, other resolutions will need more
// complex down filtering to average all pixels and produce the correct result.
bool linear_filter =
(scale_by_half && !params.depth) || g_renderer->GetEFBScale() != 1 || params.y_scale > 1.0f;
draw.SetPSSampler(0, src_texture, linear_filter ? g_object_cache->GetLinearSampler() :
g_object_cache->GetPointSampler());
u32 render_width = bytes_per_row / sizeof(u32);
u32 render_height = num_blocks_y;
Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0, render_width,
render_height);
VkRect2D render_region = {{0, 0}, {render_width, render_height}};
draw.BeginRenderPass(m_encoding_render_framebuffer, render_region);
draw.DrawWithoutVertexBuffer(4);
draw.EndRenderPass();
// Transition the image before copying
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
m_encoding_download_texture->CopyFromImage(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_encoding_render_texture->GetImage(),
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, render_width, render_height, 0, 0);
// Block until the GPU has finished copying to the staging texture.
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
// Copy from staging texture to the final destination, adjusting pitch if necessary.
m_encoding_download_texture->ReadTexels(0, 0, render_width, render_height, dest_ptr,
memory_stride);
}
void TextureConverter::EncodeTextureToMemoryYUYV(void* dst_ptr, u32 dst_width, u32 dst_stride,
u32 dst_height, Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
StateTracker::GetInstance()->EndRenderPass();
// Borrow framebuffer from EFB2RAM encoder.
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_encoding_render_texture->TransitionToLayout(command_buffer,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Use fragment shader to convert RGBA to YUYV.
// Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in
// the order the guest is expecting and we don't have to swap it at readback time. The width
// is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel.
u32 output_width = dst_width / 2;
UtilityShaderDraw draw(command_buffer,
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
m_encoding_render_pass, g_shader_cache->GetPassthroughVertexShader(),
VK_NULL_HANDLE, m_rgb_to_yuyv_shader);
VkRect2D region = {{0, 0}, {output_width, dst_height}};
draw.BeginRenderPass(m_encoding_render_framebuffer, region);
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
draw.DrawQuad(0, 0, static_cast<int>(output_width), static_cast<int>(dst_height), src_rect.left,
src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
static_cast<int>(src_texture->GetWidth()),
static_cast<int>(src_texture->GetHeight()));
draw.EndRenderPass();
// Render pass transitions to TRANSFER_SRC.
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Copy from encoding texture to download buffer.
m_encoding_download_texture->CopyFromImage(command_buffer, m_encoding_render_texture->GetImage(),
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, output_width,
dst_height, 0, 0);
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
// Finally, copy to guest memory. This may have a different stride.
m_encoding_download_texture->ReadTexels(0, 0, output_width, dst_height, dst_ptr, dst_stride);
}
void TextureConverter::DecodeYUYVTextureFromMemory(VKTexture* dst_texture, const void* src_ptr,
u32 src_width, u32 src_stride, u32 src_height)
{
// Copies (and our decoding step) cannot be done inside a render pass.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
// Pack each row without any padding in the texel buffer.
size_t upload_stride = src_width * sizeof(u16);
size_t upload_size = upload_stride * src_height;
// Reserve space in the texel buffer for storing the raw image.
if (!ReserveTexelBufferStorage(upload_size, sizeof(u16)))
return;
// Handle pitch differences here.
if (src_stride != upload_stride)
{
const u8* src_row_ptr = reinterpret_cast<const u8*>(src_ptr);
u8* dst_row_ptr = m_texel_buffer->GetCurrentHostPointer();
size_t copy_size = std::min(upload_stride, static_cast<size_t>(src_stride));
for (u32 row = 0; row < src_height; row++)
{
std::memcpy(dst_row_ptr, src_row_ptr, copy_size);
src_row_ptr += src_stride;
dst_row_ptr += upload_stride;
}
}
else
{
std::memcpy(m_texel_buffer->GetCurrentHostPointer(), src_ptr, upload_size);
}
VkDeviceSize texel_buffer_offset = m_texel_buffer->GetCurrentOffset();
m_texel_buffer->CommitMemory(upload_size);
dst_texture->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// We divide the offset by 4 here because we're fetching RGBA8 elements.
// The stride is in RGBA8 elements, so we divide by two because our data is two bytes per pixel.
struct PSUniformBlock
{
int buffer_offset;
int src_stride;
};
PSUniformBlock push_constants = {static_cast<int>(texel_buffer_offset / sizeof(u32)),
static_cast<int>(src_width / 2)};
// Convert from the YUYV data now in the intermediate texture to RGBA in the destination.
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION),
m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(),
VK_NULL_HANDLE, m_yuyv_to_rgb_shader);
VkRect2D region = {{0, 0}, {src_width, src_height}};
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
draw.SetViewportAndScissor(0, 0, static_cast<int>(src_width), static_cast<int>(src_height));
draw.SetPSTexelBuffer(m_texel_buffer_view_rgba8_unorm);
draw.SetPushConstants(&push_constants, sizeof(push_constants));
draw.DrawWithoutVertexBuffer(4);
draw.EndRenderPass();
}
bool TextureConverter::SupportsTextureDecoding(TextureFormat format, TLUTFormat palette_format)
{
auto key = std::make_pair(format, palette_format);
auto iter = m_decoding_pipelines.find(key);
if (iter != m_decoding_pipelines.end())
return iter->second.valid;
TextureDecodingPipeline pipeline;
pipeline.base_info = TextureConversionShader::GetDecodingShaderInfo(format);
pipeline.compute_shader = VK_NULL_HANDLE;
pipeline.valid = false;
if (!pipeline.base_info)
{
m_decoding_pipelines.emplace(key, pipeline);
return false;
}
std::string shader_source =
TextureConversionShader::GenerateDecodingShader(format, palette_format, APIType::Vulkan);
pipeline.compute_shader = Util::CompileAndCreateComputeShader(shader_source);
if (pipeline.compute_shader == VK_NULL_HANDLE)
{
m_decoding_pipelines.emplace(key, pipeline);
return false;
}
pipeline.valid = true;
m_decoding_pipelines.emplace(key, pipeline);
return true;
}
void TextureConverter::DecodeTexture(VkCommandBuffer command_buffer,
TextureCache::TCacheEntry* entry, u32 dst_level,
const u8* data, size_t data_size, TextureFormat format,
u32 width, u32 height, u32 aligned_width, u32 aligned_height,
u32 row_stride, const u8* palette, TLUTFormat palette_format)
{
VKTexture* destination_texture = static_cast<VKTexture*>(entry->texture.get());
auto key = std::make_pair(format, palette_format);
auto iter = m_decoding_pipelines.find(key);
if (iter == m_decoding_pipelines.end())
return;
struct PushConstants
{
u32 dst_size[2];
u32 src_size[2];
u32 src_offset;
u32 src_row_stride;
u32 palette_offset;
};
// Copy to GPU-visible buffer, aligned to the data type
auto info = iter->second;
u32 bytes_per_buffer_elem =
TextureConversionShader::GetBytesPerBufferElement(info.base_info->buffer_format);
// Calculate total data size, including palette.
// Only copy palette if it is required.
u32 total_upload_size = static_cast<u32>(data_size);
u32 palette_size = iter->second.base_info->palette_size;
u32 palette_offset = total_upload_size;
bool has_palette = palette_size > 0;
if (has_palette)
{
// Align to u16.
if ((total_upload_size % sizeof(u16)) != 0)
{
total_upload_size++;
palette_offset++;
}
total_upload_size += palette_size;
}
// Allocate space for upload, if it fails, execute the buffer.
if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem))
{
Util::ExecuteCurrentCommandsAndRestoreState(true, false);
if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem))
PanicAlert("Failed to reserve memory for encoded texture upload");
}
// Copy/commit upload buffer.
u32 texel_buffer_offset = static_cast<u32>(m_texel_buffer->GetCurrentOffset());
Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(),
m_texel_buffer->GetBuffer(), VK_ACCESS_SHADER_READ_BIT,
VK_ACCESS_HOST_WRITE_BIT, texel_buffer_offset, total_upload_size,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_HOST_BIT);
std::memcpy(m_texel_buffer->GetCurrentHostPointer(), data, data_size);
if (has_palette)
std::memcpy(m_texel_buffer->GetCurrentHostPointer() + palette_offset, palette, palette_size);
m_texel_buffer->CommitMemory(total_upload_size);
Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(),
m_texel_buffer->GetBuffer(), VK_ACCESS_HOST_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT, texel_buffer_offset, total_upload_size,
VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
// Determine uniforms.
PushConstants constants = {
{width, height},
{aligned_width, aligned_height},
texel_buffer_offset / bytes_per_buffer_elem,
row_stride / bytes_per_buffer_elem,
static_cast<u32>((texel_buffer_offset + palette_offset) / sizeof(u16))};
// Determine view to use for texel buffers.
VkBufferView data_view = VK_NULL_HANDLE;
switch (iter->second.base_info->buffer_format)
{
case TextureConversionShader::BUFFER_FORMAT_R8_UINT:
data_view = m_texel_buffer_view_r8_uint;
break;
case TextureConversionShader::BUFFER_FORMAT_R16_UINT:
data_view = m_texel_buffer_view_r16_uint;
break;
case TextureConversionShader::BUFFER_FORMAT_R32G32_UINT:
data_view = m_texel_buffer_view_r32g32_uint;
break;
case TextureConversionShader::BUFFER_FORMAT_RGBA8_UINT:
data_view = m_texel_buffer_view_rgba8_uint;
break;
default:
break;
}
// Dispatch compute to temporary texture.
ComputeShaderDispatcher dispatcher(command_buffer,
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_COMPUTE),
iter->second.compute_shader);
m_decoding_texture->TransitionToLayout(command_buffer, Texture2D::ComputeImageLayout::WriteOnly);
dispatcher.SetPushConstants(&constants, sizeof(constants));
dispatcher.SetStorageImage(m_decoding_texture->GetView(), m_decoding_texture->GetLayout());
dispatcher.SetTexelBuffer(0, data_view);
if (has_palette)
dispatcher.SetTexelBuffer(1, m_texel_buffer_view_r16_uint);
auto groups = TextureConversionShader::GetDispatchCount(iter->second.base_info, aligned_width,
aligned_height);
dispatcher.Dispatch(groups.first, groups.second, 1);
// Copy from temporary texture to final destination.
Texture2D* vulkan_tex_identifier = destination_texture->GetRawTexIdentifier();
m_decoding_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vulkan_tex_identifier->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy image_copy = {{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
{0, 0, 0},
{VK_IMAGE_ASPECT_COLOR_BIT, dst_level, 0, 1},
{0, 0, 0},
{width, height, 1}};
vkCmdCopyImage(command_buffer, m_decoding_texture->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, vulkan_tex_identifier->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
}
bool TextureConverter::CreateTexelBuffer()
{
// Prefer an 8MB buffer if possible, but use less if the device doesn't support this.
// This buffer is potentially going to be addressed as R8s in the future, so we assume
// that one element is one byte.
m_texel_buffer_size =
std::min(TEXTURE_CONVERSION_TEXEL_BUFFER_SIZE,
static_cast<size_t>(g_vulkan_context->GetDeviceLimits().maxTexelBufferElements));
m_texel_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
m_texel_buffer_size, m_texel_buffer_size);
if (!m_texel_buffer)
return false;
// Create views of the formats that we will be using.
m_texel_buffer_view_r8_uint = CreateTexelBufferView(VK_FORMAT_R8_UINT);
m_texel_buffer_view_r16_uint = CreateTexelBufferView(VK_FORMAT_R16_UINT);
m_texel_buffer_view_r32g32_uint = CreateTexelBufferView(VK_FORMAT_R32G32_UINT);
m_texel_buffer_view_rgba8_unorm = CreateTexelBufferView(VK_FORMAT_R8G8B8A8_UNORM);
m_texel_buffer_view_rgba8_uint = CreateTexelBufferView(VK_FORMAT_R8G8B8A8_UINT);
return m_texel_buffer_view_r8_uint != VK_NULL_HANDLE &&
m_texel_buffer_view_r16_uint != VK_NULL_HANDLE &&
m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE &&
m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE &&
m_texel_buffer_view_rgba8_uint != VK_NULL_HANDLE;
}
VkBufferView TextureConverter::CreateTexelBufferView(VkFormat format) const
{
// Create a view of the whole buffer, we'll offset our texel load into it
VkBufferViewCreateInfo view_info = {
VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0, // VkBufferViewCreateFlags flags
m_texel_buffer->GetBuffer(), // VkBuffer buffer
format, // VkFormat format
0, // VkDeviceSize offset
m_texel_buffer_size // VkDeviceSize range
};
VkBufferView view;
VkResult res = vkCreateBufferView(g_vulkan_context->GetDevice(), &view_info, nullptr, &view);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateBufferView failed: ");
return VK_NULL_HANDLE;
}
return view;
}
bool TextureConverter::CompilePaletteConversionShaders()
{
static const char PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE[] = R"(
layout(std140, push_constant) uniform PCBlock
{
float multiplier;
int texture_buffer_offset;
} PC;
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp1;
layout(location = 0) in vec3 f_uv0;
layout(location = 0) out vec4 ocol0;
int Convert3To8(int v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
int Convert4To8(int v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
int Convert5To8(int v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
int Convert6To8(int v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
}
float4 DecodePixel_RGB5A3(int val)
{
int r,g,b,a;
if ((val&0x8000) > 0)
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return float4(r, g, b, a) / 255.0;
}
float4 DecodePixel_RGB565(int val)
{
int r, g, b, a;
r = Convert5To8((val >> 11) & 0x1f);
g = Convert6To8((val >> 5) & 0x3f);
b = Convert5To8((val) & 0x1f);
a = 0xFF;
return float4(r, g, b, a) / 255.0;
}
float4 DecodePixel_IA8(int val)
{
int i = val & 0xFF;
int a = val >> 8;
return float4(i, i, i, a) / 255.0;
}
void main()
{
int src = int(round(texture(samp0, f_uv0).r * PC.multiplier));
src = int(texelFetch(samp1, src + PC.texture_buffer_offset).r);
src = ((src << 8) & 0xFF00) | (src >> 8);
ocol0 = DECODE(src);
}
)";
std::string palette_ia8_program = StringFromFormat("%s\n%s", "#define DECODE DecodePixel_IA8",
PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
std::string palette_rgb565_program = StringFromFormat(
"%s\n%s", "#define DECODE DecodePixel_RGB565", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
std::string palette_rgb5a3_program = StringFromFormat(
"%s\n%s", "#define DECODE DecodePixel_RGB5A3", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
m_palette_conversion_shaders[static_cast<int>(TLUTFormat::IA8)] =
Util::CompileAndCreateFragmentShader(palette_ia8_program);
m_palette_conversion_shaders[static_cast<int>(TLUTFormat::RGB565)] =
Util::CompileAndCreateFragmentShader(palette_rgb565_program);
m_palette_conversion_shaders[static_cast<int>(TLUTFormat::RGB5A3)] =
Util::CompileAndCreateFragmentShader(palette_rgb5a3_program);
return m_palette_conversion_shaders[static_cast<int>(TLUTFormat::IA8)] != VK_NULL_HANDLE &&
m_palette_conversion_shaders[static_cast<int>(TLUTFormat::RGB565)] != VK_NULL_HANDLE &&
m_palette_conversion_shaders[static_cast<int>(TLUTFormat::RGB5A3)] != VK_NULL_HANDLE;
}
VkShaderModule TextureConverter::CompileEncodingShader(const EFBCopyParams& params)
{
const char* shader = TextureConversionShader::GenerateEncodingShader(params, APIType::Vulkan);
VkShaderModule module = Util::CompileAndCreateFragmentShader(shader);
if (module == VK_NULL_HANDLE)
PanicAlert("Failed to compile texture encoding shader.");
return module;
}
VkShaderModule TextureConverter::GetEncodingShader(const EFBCopyParams& params)
{
auto iter = m_encoding_shaders.find(params);
if (iter != m_encoding_shaders.end())
return iter->second;
VkShaderModule shader = CompileEncodingShader(params);
m_encoding_shaders.emplace(params, shader);
return shader;
}
bool TextureConverter::CreateEncodingRenderPass()
{
VkAttachmentDescription attachments[] = {
{0, ENCODING_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkAttachmentReference color_attachment_references[] = {
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkSubpassDescription subpass_descriptions[] = {{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1,
color_attachment_references, nullptr, nullptr, 0,
nullptr}};
VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
static_cast<u32>(ArraySize(attachments)),
attachments,
static_cast<u32>(ArraySize(subpass_descriptions)),
subpass_descriptions,
0,
nullptr};
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr,
&m_encoding_render_pass);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (Encode) failed: ");
return false;
}
return true;
}
bool TextureConverter::CreateEncodingTexture()
{
m_encoding_render_texture = Texture2D::Create(
ENCODING_TEXTURE_WIDTH, ENCODING_TEXTURE_HEIGHT, 1, 1, ENCODING_TEXTURE_FORMAT,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
if (!m_encoding_render_texture)
return false;
VkImageView framebuffer_attachments[] = {m_encoding_render_texture->GetView()};
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
m_encoding_render_pass,
static_cast<u32>(ArraySize(framebuffer_attachments)),
framebuffer_attachments,
m_encoding_render_texture->GetWidth(),
m_encoding_render_texture->GetHeight(),
m_encoding_render_texture->GetLayers()};
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
&m_encoding_render_framebuffer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
return false;
}
return true;
}
bool TextureConverter::CreateEncodingDownloadTexture()
{
m_encoding_download_texture =
StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, ENCODING_TEXTURE_WIDTH,
ENCODING_TEXTURE_HEIGHT, ENCODING_TEXTURE_FORMAT);
return m_encoding_download_texture && m_encoding_download_texture->Map();
}
bool TextureConverter::CreateDecodingTexture()
{
m_decoding_texture = Texture2D::Create(
DECODING_TEXTURE_WIDTH, DECODING_TEXTURE_HEIGHT, 1, 1, VK_FORMAT_R8G8B8A8_UNORM,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
if (!m_decoding_texture)
return false;
VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}};
VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
m_decoding_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
m_decoding_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
&clear_value, 1, &clear_range);
return true;
}
bool TextureConverter::CompileYUYVConversionShaders()
{
static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2DArray source;
layout(location = 0) in vec3 uv0;
layout(location = 1) in vec4 col0;
layout(location = 0) out vec4 ocol0;
const vec3 y_const = vec3(0.257,0.504,0.098);
const vec3 u_const = vec3(-0.148,-0.291,0.439);
const vec3 v_const = vec3(0.439,-0.368,-0.071);
const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);
void main()
{
vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c01 = (c0 + c1) * 0.5;
ocol0 = vec4(dot(c1, y_const),
dot(c01,u_const),
dot(c0,y_const),
dot(c01, v_const)) + const3;
}
)";
static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"(
layout(std140, push_constant) uniform PCBlock
{
int buffer_offset;
int src_stride;
} PC;
TEXEL_BUFFER_BINDING(0) uniform samplerBuffer source;
layout(location = 0) in vec3 uv0;
layout(location = 0) out vec4 ocol0;
void main()
{
ivec2 uv = ivec2(gl_FragCoord.xy);
int buffer_pos = PC.buffer_offset + uv.y * PC.src_stride + (uv.x / 2);
vec4 c0 = texelFetch(source, buffer_pos);
float y = mix(c0.r, c0.b, (uv.x & 1) == 1);
float yComp = 1.164 * (y - 0.0625);
float uComp = c0.g - 0.5;
float vComp = c0.a - 0.5;
ocol0 = vec4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
1.0);
}
)";
std::string header = g_shader_cache->GetUtilityShaderHeader();
std::string source = header + RGB_TO_YUYV_SHADER_SOURCE;
m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source);
source = header + YUYV_TO_RGB_SHADER_SOURCE;
m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source);
return m_rgb_to_yuyv_shader != VK_NULL_HANDLE && m_yuyv_to_rgb_shader != VK_NULL_HANDLE;
}
} // namespace Vulkan