mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 16:19:28 +01:00
c792961000
Previously the logging was a in a little bit of a disarray. Some things were in namespaces, and other things were not. Given this code will feature a bit of restructuring during the transition over to fmt, this is a good time to unify it under a single namespace and also remove functions and types from the global namespace. Now, all functions and types are under the Common::Log namespace. The only outliers being, of course, the preprocessor macros.
998 lines
39 KiB
C++
998 lines
39 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstring>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
#include "Common/StringUtil.h"
|
|
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
#include "VideoCommon/DriverDetails.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
std::unique_ptr<VulkanContext> g_vulkan_context;
|
|
|
|
VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device)
|
|
: m_instance(instance), m_physical_device(physical_device)
|
|
{
|
|
// Read device physical memory properties, we need it for allocating buffers
|
|
vkGetPhysicalDeviceProperties(physical_device, &m_device_properties);
|
|
vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties);
|
|
|
|
// Would any drivers be this silly? I hope not...
|
|
m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(
|
|
m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
|
|
m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(
|
|
m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
|
|
m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(
|
|
m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1));
|
|
m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(
|
|
m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1));
|
|
}
|
|
|
|
VulkanContext::~VulkanContext()
|
|
{
|
|
if (m_device != VK_NULL_HANDLE)
|
|
vkDestroyDevice(m_device, nullptr);
|
|
|
|
if (m_debug_report_callback != VK_NULL_HANDLE)
|
|
DisableDebugReports();
|
|
|
|
vkDestroyInstance(m_instance, nullptr);
|
|
}
|
|
|
|
bool VulkanContext::CheckValidationLayerAvailablility()
|
|
{
|
|
u32 extension_count = 0;
|
|
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
|
|
return false;
|
|
}
|
|
|
|
std::vector<VkExtensionProperties> extension_list(extension_count);
|
|
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data());
|
|
ASSERT(res == VK_SUCCESS);
|
|
|
|
u32 layer_count = 0;
|
|
res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
|
|
return false;
|
|
}
|
|
|
|
std::vector<VkLayerProperties> layer_list(layer_count);
|
|
res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data());
|
|
ASSERT(res == VK_SUCCESS);
|
|
|
|
// Check for both VK_EXT_debug_report and VK_LAYER_LUNARG_standard_validation
|
|
return (std::find_if(extension_list.begin(), extension_list.end(),
|
|
[](const auto& it) {
|
|
return strcmp(it.extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0;
|
|
}) != extension_list.end() &&
|
|
std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) {
|
|
return strcmp(it.layerName, "VK_LAYER_LUNARG_standard_validation") == 0;
|
|
}) != layer_list.end());
|
|
}
|
|
|
|
VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report,
|
|
bool enable_validation_layer)
|
|
{
|
|
std::vector<const char*> enabled_extensions;
|
|
if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report))
|
|
return VK_NULL_HANDLE;
|
|
|
|
VkApplicationInfo app_info = {};
|
|
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
|
app_info.pNext = nullptr;
|
|
app_info.pApplicationName = "Dolphin Emulator";
|
|
app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0);
|
|
app_info.pEngineName = "Dolphin Emulator";
|
|
app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0);
|
|
app_info.apiVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
|
|
// Try for Vulkan 1.1 if the loader supports it.
|
|
if (vkEnumerateInstanceVersion)
|
|
{
|
|
u32 supported_api_version = 0;
|
|
VkResult res = vkEnumerateInstanceVersion(&supported_api_version);
|
|
if (res == VK_SUCCESS && (VK_VERSION_MAJOR(supported_api_version) > 1 ||
|
|
VK_VERSION_MINOR(supported_api_version) >= 1))
|
|
{
|
|
// The device itself may not support 1.1, so we check that before using any 1.1 functionality.
|
|
app_info.apiVersion = VK_MAKE_VERSION(1, 1, 0);
|
|
}
|
|
}
|
|
|
|
VkInstanceCreateInfo instance_create_info = {};
|
|
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
|
instance_create_info.pNext = nullptr;
|
|
instance_create_info.flags = 0;
|
|
instance_create_info.pApplicationInfo = &app_info;
|
|
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
|
|
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
|
|
instance_create_info.enabledLayerCount = 0;
|
|
instance_create_info.ppEnabledLayerNames = nullptr;
|
|
|
|
// Enable debug layer on debug builds
|
|
if (enable_validation_layer)
|
|
{
|
|
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
|
|
instance_create_info.enabledLayerCount = 1;
|
|
instance_create_info.ppEnabledLayerNames = layer_names;
|
|
}
|
|
|
|
VkInstance instance;
|
|
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
|
|
return nullptr;
|
|
}
|
|
|
|
return instance;
|
|
}
|
|
|
|
bool VulkanContext::SelectInstanceExtensions(std::vector<const char*>* extension_list,
|
|
WindowSystemType wstype, bool enable_debug_report)
|
|
{
|
|
u32 extension_count = 0;
|
|
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
|
|
return false;
|
|
}
|
|
|
|
if (extension_count == 0)
|
|
{
|
|
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by instance.");
|
|
return false;
|
|
}
|
|
|
|
std::vector<VkExtensionProperties> available_extension_list(extension_count);
|
|
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count,
|
|
available_extension_list.data());
|
|
ASSERT(res == VK_SUCCESS);
|
|
|
|
for (const auto& extension_properties : available_extension_list)
|
|
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
|
|
|
|
auto AddExtension = [&](const char* name, bool required) {
|
|
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
|
|
[&](const VkExtensionProperties& properties) {
|
|
return !strcmp(name, properties.extensionName);
|
|
}) != available_extension_list.end())
|
|
{
|
|
INFO_LOG(VIDEO, "Enabling extension: %s", name);
|
|
extension_list->push_back(name);
|
|
return true;
|
|
}
|
|
|
|
if (required)
|
|
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
|
|
|
|
return false;
|
|
};
|
|
|
|
// Common extensions
|
|
if (wstype != WindowSystemType::Headless && !AddExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#if defined(VK_USE_PLATFORM_WIN32_KHR)
|
|
if (wstype == WindowSystemType::Windows &&
|
|
!AddExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#if defined(VK_USE_PLATFORM_XLIB_KHR)
|
|
if (wstype == WindowSystemType::X11 && !AddExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
|
|
if (wstype == WindowSystemType::Android &&
|
|
!AddExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true))
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#if defined(VK_USE_PLATFORM_MACOS_MVK)
|
|
if (wstype == WindowSystemType::MacOS && !AddExtension(VK_MVK_MACOS_SURFACE_EXTENSION_NAME, true))
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
// VK_EXT_debug_report
|
|
if (enable_debug_report && !AddExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, false))
|
|
WARN_LOG(VIDEO, "Vulkan: Debug report requested, but extension is not available.");
|
|
|
|
AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false);
|
|
AddExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance)
|
|
{
|
|
u32 gpu_count = 0;
|
|
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
|
|
return {};
|
|
}
|
|
|
|
GPUList gpus;
|
|
gpus.resize(gpu_count);
|
|
|
|
res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data());
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
|
|
return {};
|
|
}
|
|
|
|
return gpus;
|
|
}
|
|
|
|
void VulkanContext::PopulateBackendInfo(VideoConfig* config)
|
|
{
|
|
config->backend_info.api_type = APIType::Vulkan;
|
|
config->backend_info.bSupports3DVision = false; // D3D-exclusive.
|
|
config->backend_info.bSupportsOversizedViewports = true; // Assumed support.
|
|
config->backend_info.bSupportsEarlyZ = true; // Assumed support.
|
|
config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support.
|
|
config->backend_info.bSupportsBindingLayout = false; // Assumed support.
|
|
config->backend_info.bSupportsPaletteConversion = true; // Assumed support.
|
|
config->backend_info.bSupportsClipControl = true; // Assumed support.
|
|
config->backend_info.bSupportsMultithreading = true; // Assumed support.
|
|
config->backend_info.bSupportsComputeShaders = true; // Assumed support.
|
|
config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support.
|
|
config->backend_info.bSupportsBitfield = true; // Assumed support.
|
|
config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support.
|
|
config->backend_info.bSupportsShaderBinaries = true; // Assumed support.
|
|
config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches.
|
|
config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support.
|
|
config->backend_info.bSupportsPostProcessing = true; // Assumed support.
|
|
config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support.
|
|
config->backend_info.bSupportsCopyToVram = true; // Assumed support.
|
|
config->backend_info.bSupportsReversedDepthRange = true; // Assumed support.
|
|
config->backend_info.bSupportsExclusiveFullscreen = false; // Dependent on OS and features.
|
|
config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features.
|
|
config->backend_info.bSupportsGeometryShaders = false; // Dependent on features.
|
|
config->backend_info.bSupportsGSInstancing = false; // Dependent on features.
|
|
config->backend_info.bSupportsBBox = false; // Dependent on features.
|
|
config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features.
|
|
config->backend_info.bSupportsSSAA = false; // Dependent on features.
|
|
config->backend_info.bSupportsDepthClamp = false; // Dependent on features.
|
|
config->backend_info.bSupportsST3CTextures = false; // Dependent on features.
|
|
config->backend_info.bSupportsBPTCTextures = false; // Dependent on features.
|
|
config->backend_info.bSupportsLogicOp = false; // Dependent on features.
|
|
config->backend_info.bSupportsLargePoints = false; // Dependent on features.
|
|
config->backend_info.bSupportsFramebufferFetch = false; // No support.
|
|
}
|
|
|
|
void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list)
|
|
{
|
|
config->backend_info.Adapters.clear();
|
|
for (VkPhysicalDevice physical_device : gpu_list)
|
|
{
|
|
VkPhysicalDeviceProperties properties;
|
|
vkGetPhysicalDeviceProperties(physical_device, &properties);
|
|
config->backend_info.Adapters.push_back(properties.deviceName);
|
|
}
|
|
}
|
|
|
|
void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu,
|
|
const VkPhysicalDeviceProperties& properties,
|
|
const VkPhysicalDeviceFeatures& features)
|
|
{
|
|
config->backend_info.MaxTextureSize = properties.limits.maxImageDimension2D;
|
|
config->backend_info.bUsesLowerLeftOrigin = false;
|
|
config->backend_info.bSupportsDualSourceBlend = (features.dualSrcBlend == VK_TRUE);
|
|
config->backend_info.bSupportsGeometryShaders = (features.geometryShader == VK_TRUE);
|
|
config->backend_info.bSupportsGSInstancing = (features.geometryShader == VK_TRUE);
|
|
config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics =
|
|
(features.fragmentStoresAndAtomics == VK_TRUE);
|
|
config->backend_info.bSupportsSSAA = (features.sampleRateShading == VK_TRUE);
|
|
config->backend_info.bSupportsLogicOp = (features.logicOp == VK_TRUE);
|
|
|
|
// Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported.
|
|
// Seems this is needed for gl_Layer.
|
|
if (!features.shaderTessellationAndGeometryPointSize)
|
|
{
|
|
config->backend_info.bSupportsGeometryShaders = VK_FALSE;
|
|
config->backend_info.bSupportsGSInstancing = VK_FALSE;
|
|
}
|
|
|
|
// Depth clamping implies shaderClipDistance and depthClamp
|
|
config->backend_info.bSupportsDepthClamp =
|
|
(features.depthClamp == VK_TRUE && features.shaderClipDistance == VK_TRUE);
|
|
|
|
// textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need.
|
|
const bool supports_bc = features.textureCompressionBC == VK_TRUE;
|
|
config->backend_info.bSupportsST3CTextures = supports_bc;
|
|
config->backend_info.bSupportsBPTCTextures = supports_bc;
|
|
|
|
// Some devices don't support point sizes >1 (e.g. Adreno).
|
|
// If we can't use a point size above our maximum IR, use triangles instead for EFB pokes.
|
|
// This means a 6x increase in the size of the vertices, though.
|
|
config->backend_info.bSupportsLargePoints = features.largePoints &&
|
|
properties.limits.pointSizeRange[0] <= 1.0f &&
|
|
properties.limits.pointSizeRange[1] >= 16;
|
|
|
|
// Our usage of primitive restart appears to be broken on AMD's binary drivers.
|
|
// Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4.
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART))
|
|
config->backend_info.bSupportsPrimitiveRestart = false;
|
|
|
|
// Reversed depth range is broken on some drivers, or is broken when used in combination
|
|
// with depth clamping. Fall back to inverted depth range for these.
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_REVERSED_DEPTH_RANGE))
|
|
config->backend_info.bSupportsReversedDepthRange = false;
|
|
}
|
|
|
|
void VulkanContext::PopulateBackendInfoMultisampleModes(
|
|
VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties)
|
|
{
|
|
// Query image support for the EFB texture formats.
|
|
VkImageFormatProperties efb_color_properties = {};
|
|
vkGetPhysicalDeviceImageFormatProperties(
|
|
gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties);
|
|
VkImageFormatProperties efb_depth_properties = {};
|
|
vkGetPhysicalDeviceImageFormatProperties(
|
|
gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties);
|
|
|
|
// We can only support MSAA if it's supported on our render target formats.
|
|
VkSampleCountFlags supported_sample_counts = properties.limits.framebufferColorSampleCounts &
|
|
properties.limits.framebufferDepthSampleCounts &
|
|
efb_color_properties.sampleCounts &
|
|
efb_depth_properties.sampleCounts;
|
|
|
|
// No AA
|
|
config->backend_info.AAModes.clear();
|
|
config->backend_info.AAModes.emplace_back(1);
|
|
|
|
// 2xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT)
|
|
config->backend_info.AAModes.emplace_back(2);
|
|
|
|
// 4xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT)
|
|
config->backend_info.AAModes.emplace_back(4);
|
|
|
|
// 8xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT)
|
|
config->backend_info.AAModes.emplace_back(8);
|
|
|
|
// 16xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT)
|
|
config->backend_info.AAModes.emplace_back(16);
|
|
|
|
// 32xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT)
|
|
config->backend_info.AAModes.emplace_back(32);
|
|
|
|
// 64xMSAA/SSAA
|
|
if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT)
|
|
config->backend_info.AAModes.emplace_back(64);
|
|
}
|
|
|
|
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu,
|
|
VkSurfaceKHR surface,
|
|
bool enable_debug_reports,
|
|
bool enable_validation_layer)
|
|
{
|
|
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
|
|
|
|
// Initialize DriverDetails so that we can check for bugs to disable features if needed.
|
|
context->InitDriverDetails();
|
|
context->PopulateShaderSubgroupSupport();
|
|
|
|
// Enable debug reports if the "Host GPU" log category is enabled.
|
|
if (enable_debug_reports)
|
|
context->EnableDebugReports();
|
|
|
|
// Attempt to create the device.
|
|
if (!context->CreateDevice(surface, enable_validation_layer))
|
|
{
|
|
// Since we are destroying the instance, we're also responsible for destroying the surface.
|
|
if (surface != VK_NULL_HANDLE)
|
|
vkDestroySurfaceKHR(instance, surface, nullptr);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
return context;
|
|
}
|
|
|
|
bool VulkanContext::SelectDeviceExtensions(bool enable_surface)
|
|
{
|
|
u32 extension_count = 0;
|
|
VkResult res =
|
|
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
|
|
return false;
|
|
}
|
|
|
|
if (extension_count == 0)
|
|
{
|
|
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by device.");
|
|
return false;
|
|
}
|
|
|
|
std::vector<VkExtensionProperties> available_extension_list(extension_count);
|
|
res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count,
|
|
available_extension_list.data());
|
|
ASSERT(res == VK_SUCCESS);
|
|
|
|
for (const auto& extension_properties : available_extension_list)
|
|
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
|
|
|
|
auto AddExtension = [&](const char* name, bool required) {
|
|
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
|
|
[&](const VkExtensionProperties& properties) {
|
|
return !strcmp(name, properties.extensionName);
|
|
}) != available_extension_list.end())
|
|
{
|
|
INFO_LOG(VIDEO, "Enabling extension: %s", name);
|
|
m_device_extensions.push_back(name);
|
|
return true;
|
|
}
|
|
|
|
if (required)
|
|
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
|
|
|
|
return false;
|
|
};
|
|
|
|
if (enable_surface && !AddExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
|
|
return false;
|
|
|
|
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
|
|
// VK_EXT_full_screen_exclusive
|
|
if (AddExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, true))
|
|
INFO_LOG(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen.");
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
bool VulkanContext::SelectDeviceFeatures()
|
|
{
|
|
VkPhysicalDeviceProperties properties;
|
|
vkGetPhysicalDeviceProperties(m_physical_device, &properties);
|
|
|
|
VkPhysicalDeviceFeatures available_features;
|
|
vkGetPhysicalDeviceFeatures(m_physical_device, &available_features);
|
|
|
|
// Not having geometry shaders or wide lines will cause issues with rendering.
|
|
if (!available_features.geometryShader && !available_features.wideLines)
|
|
WARN_LOG(VIDEO, "Vulkan: Missing both geometryShader and wideLines features.");
|
|
if (!available_features.largePoints)
|
|
WARN_LOG(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower.");
|
|
if (!available_features.occlusionQueryPrecise)
|
|
WARN_LOG(VIDEO, "Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate.");
|
|
|
|
// Enable the features we use.
|
|
m_device_features.dualSrcBlend = available_features.dualSrcBlend;
|
|
m_device_features.geometryShader = available_features.geometryShader;
|
|
m_device_features.samplerAnisotropy = available_features.samplerAnisotropy;
|
|
m_device_features.logicOp = available_features.logicOp;
|
|
m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics;
|
|
m_device_features.sampleRateShading = available_features.sampleRateShading;
|
|
m_device_features.largePoints = available_features.largePoints;
|
|
m_device_features.shaderStorageImageMultisample =
|
|
available_features.shaderStorageImageMultisample;
|
|
m_device_features.shaderTessellationAndGeometryPointSize =
|
|
available_features.shaderTessellationAndGeometryPointSize;
|
|
m_device_features.occlusionQueryPrecise = available_features.occlusionQueryPrecise;
|
|
m_device_features.shaderClipDistance = available_features.shaderClipDistance;
|
|
m_device_features.depthClamp = available_features.depthClamp;
|
|
m_device_features.textureCompressionBC = available_features.textureCompressionBC;
|
|
return true;
|
|
}
|
|
|
|
bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
|
|
{
|
|
u32 queue_family_count;
|
|
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
|
|
if (queue_family_count == 0)
|
|
{
|
|
ERROR_LOG(VIDEO, "No queue families found on specified vulkan physical device.");
|
|
return false;
|
|
}
|
|
|
|
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count,
|
|
queue_family_properties.data());
|
|
INFO_LOG(VIDEO, "%u vulkan queue families", queue_family_count);
|
|
|
|
// Find graphics and present queues.
|
|
m_graphics_queue_family_index = queue_family_count;
|
|
m_present_queue_family_index = queue_family_count;
|
|
for (uint32_t i = 0; i < queue_family_count; i++)
|
|
{
|
|
VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT;
|
|
if (graphics_supported)
|
|
{
|
|
m_graphics_queue_family_index = i;
|
|
// Quit now, no need for a present queue.
|
|
if (!surface)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (surface)
|
|
{
|
|
VkBool32 present_supported;
|
|
VkResult res =
|
|
vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
|
|
return false;
|
|
}
|
|
|
|
if (present_supported)
|
|
{
|
|
m_present_queue_family_index = i;
|
|
}
|
|
|
|
// Prefer one queue family index that does both graphics and present.
|
|
if (graphics_supported && present_supported)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (m_graphics_queue_family_index == queue_family_count)
|
|
{
|
|
ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable graphics queue.");
|
|
return false;
|
|
}
|
|
if (surface && m_present_queue_family_index == queue_family_count)
|
|
{
|
|
ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable present queue.");
|
|
return false;
|
|
}
|
|
|
|
VkDeviceCreateInfo device_info = {};
|
|
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
|
device_info.pNext = nullptr;
|
|
device_info.flags = 0;
|
|
|
|
static constexpr float queue_priorities[] = {1.0f};
|
|
VkDeviceQueueCreateInfo graphics_queue_info = {};
|
|
graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
graphics_queue_info.pNext = nullptr;
|
|
graphics_queue_info.flags = 0;
|
|
graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index;
|
|
graphics_queue_info.queueCount = 1;
|
|
graphics_queue_info.pQueuePriorities = queue_priorities;
|
|
|
|
VkDeviceQueueCreateInfo present_queue_info = {};
|
|
present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
present_queue_info.pNext = nullptr;
|
|
present_queue_info.flags = 0;
|
|
present_queue_info.queueFamilyIndex = m_present_queue_family_index;
|
|
present_queue_info.queueCount = 1;
|
|
present_queue_info.pQueuePriorities = queue_priorities;
|
|
|
|
std::array<VkDeviceQueueCreateInfo, 2> queue_infos = {{
|
|
graphics_queue_info,
|
|
present_queue_info,
|
|
}};
|
|
|
|
device_info.queueCreateInfoCount = 1;
|
|
if (m_graphics_queue_family_index != m_present_queue_family_index)
|
|
{
|
|
device_info.queueCreateInfoCount = 2;
|
|
}
|
|
device_info.pQueueCreateInfos = queue_infos.data();
|
|
|
|
if (!SelectDeviceExtensions(surface != VK_NULL_HANDLE))
|
|
return false;
|
|
|
|
// convert std::string list to a char pointer list which we can feed in
|
|
std::vector<const char*> extension_name_pointers;
|
|
for (const std::string& name : m_device_extensions)
|
|
extension_name_pointers.push_back(name.c_str());
|
|
|
|
device_info.enabledLayerCount = 0;
|
|
device_info.ppEnabledLayerNames = nullptr;
|
|
device_info.enabledExtensionCount = static_cast<uint32_t>(extension_name_pointers.size());
|
|
device_info.ppEnabledExtensionNames = extension_name_pointers.data();
|
|
|
|
// Check for required features before creating.
|
|
if (!SelectDeviceFeatures())
|
|
return false;
|
|
|
|
device_info.pEnabledFeatures = &m_device_features;
|
|
|
|
// Enable debug layer on debug builds
|
|
if (enable_validation_layer)
|
|
{
|
|
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
|
|
device_info.enabledLayerCount = 1;
|
|
device_info.ppEnabledLayerNames = layer_names;
|
|
}
|
|
|
|
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
|
|
return false;
|
|
}
|
|
|
|
// With the device created, we can fill the remaining entry points.
|
|
if (!LoadVulkanDeviceFunctions(m_device))
|
|
return false;
|
|
|
|
// Grab the graphics and present queues.
|
|
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
|
|
if (surface)
|
|
{
|
|
vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
|
|
VkDebugReportObjectTypeEXT objectType,
|
|
uint64_t object, size_t location,
|
|
int32_t messageCode,
|
|
const char* pLayerPrefix,
|
|
const char* pMessage, void* pUserData)
|
|
{
|
|
std::string log_message =
|
|
StringFromFormat("Vulkan debug report: (%s) %s", pLayerPrefix ? pLayerPrefix : "", pMessage);
|
|
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
|
|
GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LERROR, "%s", log_message.c_str());
|
|
else if (flags & (VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT))
|
|
GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LWARNING, "%s", log_message.c_str());
|
|
else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)
|
|
GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LINFO, "%s", log_message.c_str());
|
|
else
|
|
GENERIC_LOG(Common::Log::HOST_GPU, Common::Log::LDEBUG, "%s", log_message.c_str());
|
|
|
|
return VK_FALSE;
|
|
}
|
|
|
|
bool VulkanContext::EnableDebugReports()
|
|
{
|
|
// Already enabled?
|
|
if (m_debug_report_callback != VK_NULL_HANDLE)
|
|
return true;
|
|
|
|
// Check for presence of the functions before calling
|
|
if (!vkCreateDebugReportCallbackEXT || !vkDestroyDebugReportCallbackEXT ||
|
|
!vkDebugReportMessageEXT)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
VkDebugReportCallbackCreateInfoEXT callback_info = {
|
|
VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, nullptr,
|
|
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
|
|
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
|
|
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
|
|
DebugReportCallback, nullptr};
|
|
|
|
VkResult res =
|
|
vkCreateDebugReportCallbackEXT(m_instance, &callback_info, nullptr, &m_debug_report_callback);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateDebugReportCallbackEXT failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void VulkanContext::DisableDebugReports()
|
|
{
|
|
if (m_debug_report_callback != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyDebugReportCallbackEXT(m_instance, m_debug_report_callback, nullptr);
|
|
m_debug_report_callback = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
std::optional<u32> VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties,
|
|
bool strict, bool* is_coherent)
|
|
{
|
|
static constexpr u32 ALL_MEMORY_PROPERTY_FLAGS = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
|
|
const u32 mask = strict ? ALL_MEMORY_PROPERTY_FLAGS : properties;
|
|
|
|
for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++)
|
|
{
|
|
if ((bits & (1 << i)) != 0)
|
|
{
|
|
const VkMemoryPropertyFlags type_flags =
|
|
m_device_memory_properties.memoryTypes[i].propertyFlags;
|
|
const VkMemoryPropertyFlags supported = type_flags & mask;
|
|
if (supported == properties)
|
|
{
|
|
if (is_coherent)
|
|
*is_coherent = (type_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent)
|
|
{
|
|
static constexpr VkMemoryPropertyFlags COHERENT_FLAGS =
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
|
|
// Try for coherent memory. Some drivers (looking at you, Adreno) have the cached type before the
|
|
// uncached type, so use a strict check first.
|
|
std::optional<u32> type_index = GetMemoryType(bits, COHERENT_FLAGS, true, is_coherent);
|
|
if (type_index)
|
|
return type_index.value();
|
|
|
|
// Try for coherent memory, with any other bits set.
|
|
type_index = GetMemoryType(bits, COHERENT_FLAGS, false, is_coherent);
|
|
if (type_index)
|
|
{
|
|
WARN_LOG(VIDEO,
|
|
"Strict check for upload memory properties failed, this may affect performance");
|
|
return type_index.value();
|
|
}
|
|
|
|
// Fall back to non-coherent memory.
|
|
WARN_LOG(
|
|
VIDEO,
|
|
"Vulkan: Failed to find a coherent memory type for uploads, this will affect performance.");
|
|
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
|
|
if (type_index)
|
|
return type_index.value();
|
|
|
|
// Shouldn't happen, there should be at least one host-visible heap.
|
|
PanicAlert("Unable to get memory type for upload.");
|
|
return 0;
|
|
}
|
|
|
|
u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent)
|
|
{
|
|
std::optional<u32> type_index;
|
|
|
|
// Mali driver appears to be significantly slower for readbacks when using cached memory.
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY))
|
|
{
|
|
type_index = GetMemoryType(
|
|
bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, true,
|
|
is_coherent);
|
|
if (type_index)
|
|
return type_index.value();
|
|
}
|
|
|
|
// Optimal config uses cached+coherent.
|
|
type_index =
|
|
GetMemoryType(bits,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
true, is_coherent);
|
|
if (type_index)
|
|
return type_index.value();
|
|
|
|
// Otherwise, prefer cached over coherent if we must choose one.
|
|
type_index =
|
|
GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
false, is_coherent);
|
|
if (type_index)
|
|
return type_index.value();
|
|
|
|
WARN_LOG(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect "
|
|
"performance.");
|
|
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
|
|
*is_coherent = false;
|
|
if (type_index)
|
|
return type_index.value();
|
|
|
|
// We should have at least one host visible memory type...
|
|
PanicAlert("Unable to get memory type for upload.");
|
|
return 0;
|
|
}
|
|
|
|
bool VulkanContext::SupportsDeviceExtension(const char* name) const
|
|
{
|
|
return std::any_of(m_device_extensions.begin(), m_device_extensions.end(),
|
|
[name](const std::string& extension) { return extension == name; });
|
|
}
|
|
|
|
void VulkanContext::InitDriverDetails()
|
|
{
|
|
DriverDetails::Vendor vendor;
|
|
DriverDetails::Driver driver;
|
|
|
|
// String comparisons aren't ideal, but there doesn't seem to be any other way to tell
|
|
// which vendor a driver is for. These names are based on the reports submitted to
|
|
// vulkan.gpuinfo.org, as of 19/09/2017.
|
|
std::string device_name = m_device_properties.deviceName;
|
|
u32 vendor_id = m_device_properties.vendorID;
|
|
if (vendor_id == 0x10DE)
|
|
{
|
|
// Currently, there is only the official NV binary driver.
|
|
// "NVIDIA" does not appear in the device name.
|
|
vendor = DriverDetails::VENDOR_NVIDIA;
|
|
driver = DriverDetails::DRIVER_NVIDIA;
|
|
}
|
|
else if (vendor_id == 0x1002 || vendor_id == 0x1022 ||
|
|
device_name.find("AMD") != std::string::npos)
|
|
{
|
|
// RADV always advertises its name in the device string.
|
|
// If not RADV, assume the AMD binary driver.
|
|
if (device_name.find("RADV") != std::string::npos)
|
|
{
|
|
vendor = DriverDetails::VENDOR_MESA;
|
|
driver = DriverDetails::DRIVER_R600;
|
|
}
|
|
else
|
|
{
|
|
vendor = DriverDetails::VENDOR_ATI;
|
|
driver = DriverDetails::DRIVER_ATI;
|
|
}
|
|
}
|
|
else if (vendor_id == 0x8086 || vendor_id == 0x8087 ||
|
|
device_name.find("Intel") != std::string::npos)
|
|
{
|
|
// Apart from the driver version, Intel does not appear to provide a way to
|
|
// differentiate between anv and the binary driver (Skylake+). Assume to be
|
|
// using anv if we not running on Windows.
|
|
#ifdef WIN32
|
|
vendor = DriverDetails::VENDOR_INTEL;
|
|
driver = DriverDetails::DRIVER_INTEL;
|
|
#else
|
|
vendor = DriverDetails::VENDOR_MESA;
|
|
driver = DriverDetails::DRIVER_I965;
|
|
#endif
|
|
}
|
|
else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos)
|
|
{
|
|
// Currently only the Qualcomm binary driver exists for Adreno.
|
|
vendor = DriverDetails::VENDOR_QUALCOMM;
|
|
driver = DriverDetails::DRIVER_QUALCOMM;
|
|
}
|
|
else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos)
|
|
{
|
|
// Currently only the ARM binary driver exists for Mali.
|
|
vendor = DriverDetails::VENDOR_ARM;
|
|
driver = DriverDetails::DRIVER_ARM;
|
|
}
|
|
else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos)
|
|
{
|
|
// Currently only the binary driver exists for PowerVR.
|
|
vendor = DriverDetails::VENDOR_IMGTEC;
|
|
driver = DriverDetails::DRIVER_IMGTEC;
|
|
}
|
|
else
|
|
{
|
|
WARN_LOG(VIDEO, "Unknown Vulkan driver vendor, please report it to us.");
|
|
WARN_LOG(VIDEO, "Vendor ID: 0x%X, Device Name: %s", vendor_id, device_name.c_str());
|
|
vendor = DriverDetails::VENDOR_UNKNOWN;
|
|
driver = DriverDetails::DRIVER_UNKNOWN;
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
// Vulkan on macOS goes through Metal, and is not susceptible to the same bugs
|
|
// as the vendor's native Vulkan drivers. We use a different driver fields to
|
|
// differentiate MoltenVK.
|
|
driver = DriverDetails::DRIVER_PORTABILITY;
|
|
#endif
|
|
|
|
DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver,
|
|
static_cast<double>(m_device_properties.driverVersion),
|
|
DriverDetails::Family::UNKNOWN);
|
|
}
|
|
|
|
void VulkanContext::PopulateShaderSubgroupSupport()
|
|
{
|
|
// Vulkan 1.1 support is required for vkGetPhysicalDeviceProperties2(), but we can't rely on the
|
|
// function pointer alone.
|
|
if (!vkGetPhysicalDeviceProperties2 || (VK_VERSION_MAJOR(m_device_properties.apiVersion) == 1 &&
|
|
VK_VERSION_MINOR(m_device_properties.apiVersion) < 1))
|
|
{
|
|
return;
|
|
}
|
|
|
|
VkPhysicalDeviceProperties2 device_properties_2 = {};
|
|
device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
|
|
|
|
VkPhysicalDeviceSubgroupProperties subgroup_properties = {};
|
|
subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
|
|
device_properties_2.pNext = &subgroup_properties;
|
|
|
|
vkGetPhysicalDeviceProperties2(m_physical_device, &device_properties_2);
|
|
|
|
m_shader_subgroup_size = subgroup_properties.subgroupSize;
|
|
|
|
// We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot,
|
|
// subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax).
|
|
constexpr VkSubgroupFeatureFlags required_operations = VK_SUBGROUP_FEATURE_BASIC_BIT |
|
|
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
|
|
VK_SUBGROUP_FEATURE_BALLOT_BIT;
|
|
m_supports_shader_subgroup_operations =
|
|
(subgroup_properties.supportedOperations & required_operations) == required_operations &&
|
|
subgroup_properties.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
}
|
|
|
|
bool VulkanContext::SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface)
|
|
{
|
|
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
|
|
if (!surface || !vkGetPhysicalDeviceSurfaceCapabilities2KHR ||
|
|
!SupportsDeviceExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
VkPhysicalDeviceSurfaceInfo2KHR si = {};
|
|
si.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR;
|
|
si.surface = surface;
|
|
|
|
auto platform_info = GetPlatformExclusiveFullscreenInfo(wsi);
|
|
si.pNext = &platform_info;
|
|
|
|
VkSurfaceCapabilities2KHR caps = {};
|
|
caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR;
|
|
|
|
VkSurfaceCapabilitiesFullScreenExclusiveEXT fullscreen_caps = {};
|
|
fullscreen_caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT;
|
|
fullscreen_caps.fullScreenExclusiveSupported = VK_TRUE;
|
|
caps.pNext = &fullscreen_caps;
|
|
|
|
VkResult res = vkGetPhysicalDeviceSurfaceCapabilities2KHR(m_physical_device, &si, &caps);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilities2KHR failed:");
|
|
return false;
|
|
}
|
|
|
|
return fullscreen_caps.fullScreenExclusiveSupported;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifdef WIN32
|
|
VkSurfaceFullScreenExclusiveWin32InfoEXT
|
|
VulkanContext::GetPlatformExclusiveFullscreenInfo(const WindowSystemInfo& wsi)
|
|
{
|
|
VkSurfaceFullScreenExclusiveWin32InfoEXT info = {};
|
|
info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT;
|
|
info.hmonitor =
|
|
MonitorFromWindow(static_cast<HWND>(wsi.render_surface), MONITOR_DEFAULTTOPRIMARY);
|
|
return info;
|
|
}
|
|
#endif
|
|
|
|
} // namespace Vulkan
|