dolphin/Source/Core/VideoCommon/VertexShaderManager.cpp

799 lines
27 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cfloat>
#include <cmath>
#include <cstring>
#include <sstream>
#include <string>
#include "Common/BitSet.h"
#include "Common/ChunkFile.h"
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
alignas(16) static float g_fProjectionMatrix[16];
// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static BitSet32 nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max
static Matrix44 s_viewportCorrection;
static Matrix33 s_viewRotationMatrix;
static Matrix33 s_viewInvRotationMatrix;
static float s_fViewTranslationVector[3];
static float s_fViewRotation[2];
VertexShaderConstants VertexShaderManager::constants;
bool VertexShaderManager::dirty;
struct ProjectionHack
{
float sign;
float value;
ProjectionHack() {}
ProjectionHack(float new_sign, float new_value) : sign(new_sign), value(new_value) {}
};
namespace
{
// Control Variables
static ProjectionHack g_ProjHack1;
static ProjectionHack g_ProjHack2;
} // Namespace
static float PHackValue(std::string sValue)
{
float f = 0;
bool fp = false;
const char* cStr = sValue.c_str();
char* c = new char[strlen(cStr) + 1];
std::istringstream sTof("");
for (unsigned int i = 0; i <= strlen(cStr); ++i)
{
if (i == 20)
{
c[i] = '\0';
break;
}
c[i] = (cStr[i] == ',') ? '.' : *(cStr + i);
if (c[i] == '.')
fp = true;
}
cStr = c;
sTof.str(cStr);
sTof >> f;
if (!fp)
f /= 0xF4240;
delete[] c;
return f;
}
// Due to the BT.601 standard which the GameCube is based on being a compromise
// between PAL and NTSC, neither standard gets square pixels. They are each off
// by ~9% in opposite directions.
// Just in case any game decides to take this into account, we do both these
// tests with a large amount of slop.
static bool AspectIs4_3(float width, float height)
{
float aspect = fabsf(width / height);
return fabsf(aspect - 4.0f / 3.0f) < 4.0f / 3.0f * 0.11; // within 11% of 4:3
}
static bool AspectIs16_9(float width, float height)
{
float aspect = fabsf(width / height);
return fabsf(aspect - 16.0f / 9.0f) < 16.0f / 9.0f * 0.11; // within 11% of 16:9
}
void UpdateProjectionHack(int iPhackvalue[], std::string sPhackvalue[])
{
float fhackvalue1 = 0, fhackvalue2 = 0;
float fhacksign1 = 1.0, fhacksign2 = 1.0;
const char* sTemp[2];
if (iPhackvalue[0] == 1)
{
NOTICE_LOG(VIDEO, "\t\t--- Orthographic Projection Hack ON ---");
fhacksign1 *= (iPhackvalue[1] == 1) ? -1.0f : fhacksign1;
sTemp[0] = (iPhackvalue[1] == 1) ? " * (-1)" : "";
fhacksign2 *= (iPhackvalue[2] == 1) ? -1.0f : fhacksign2;
sTemp[1] = (iPhackvalue[2] == 1) ? " * (-1)" : "";
fhackvalue1 = PHackValue(sPhackvalue[0]);
NOTICE_LOG(VIDEO, "- zNear Correction = (%f + zNear)%s", fhackvalue1, sTemp[0]);
fhackvalue2 = PHackValue(sPhackvalue[1]);
NOTICE_LOG(VIDEO, "- zFar Correction = (%f + zFar)%s", fhackvalue2, sTemp[1]);
}
// Set the projections hacks
g_ProjHack1 = ProjectionHack(fhacksign1, fhackvalue1);
g_ProjHack2 = ProjectionHack(fhacksign2, fhackvalue2);
}
// Viewport correction:
// In D3D, the viewport rectangle must fit within the render target.
// Say you want a viewport at (ix, iy) with size (iw, ih),
// but your viewport must be clamped at (ax, ay) with size (aw, ah).
// Just multiply the projection matrix with the following to get the same
// effect:
// [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ]
// [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ]
// [ 0 0 1 0 ]
// [ 0 0 0 1 ]
static void ViewportCorrectionMatrix(Matrix44& result)
{
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
// TODO: Directly use the floats instead of rounding them?
float intendedX = xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff;
float intendedY = xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff;
float intendedWd = 2.0f * xfmem.viewport.wd;
float intendedHt = -2.0f * xfmem.viewport.ht;
if (intendedWd < 0.f)
{
intendedX += intendedWd;
intendedWd = -intendedWd;
}
if (intendedHt < 0.f)
{
intendedY += intendedHt;
intendedHt = -intendedHt;
}
// fit to EFB size
float X = (intendedX >= 0.f) ? intendedX : 0.f;
float Y = (intendedY >= 0.f) ? intendedY : 0.f;
float Wd = (X + intendedWd <= EFB_WIDTH) ? intendedWd : (EFB_WIDTH - X);
float Ht = (Y + intendedHt <= EFB_HEIGHT) ? intendedHt : (EFB_HEIGHT - Y);
Matrix44::LoadIdentity(result);
if (Wd == 0 || Ht == 0)
return;
result.data[4 * 0 + 0] = intendedWd / Wd;
result.data[4 * 0 + 3] = (intendedWd - 2.f * (X - intendedX)) / Wd - 1.f;
result.data[4 * 1 + 1] = intendedHt / Ht;
result.data[4 * 1 + 3] = (-intendedHt + 2.f * (Y - intendedY)) / Ht + 1.f;
}
void VertexShaderManager::Init()
{
// Initialize state tracking variables
nTransformMatricesChanged[0] = -1;
nTransformMatricesChanged[1] = -1;
nNormalMatricesChanged[0] = -1;
nNormalMatricesChanged[1] = -1;
nPostTransformMatricesChanged[0] = -1;
nPostTransformMatricesChanged[1] = -1;
nLightsChanged[0] = -1;
nLightsChanged[1] = -1;
nMaterialsChanged = BitSet32(0);
bTexMatricesChanged[0] = false;
bTexMatricesChanged[1] = false;
bPosNormalMatrixChanged = false;
bProjectionChanged = true;
bViewportChanged = false;
memset(&xfmem, 0, sizeof(xfmem));
memset(&constants, 0, sizeof(constants));
ResetView();
// TODO: should these go inside ResetView()?
Matrix44::LoadIdentity(s_viewportCorrection);
memset(g_fProjectionMatrix, 0, sizeof(g_fProjectionMatrix));
for (int i = 0; i < 4; ++i)
g_fProjectionMatrix[i * 5] = 1.0f;
dirty = true;
}
void VertexShaderManager::Shutdown()
{
}
void VertexShaderManager::Dirty()
{
// This function is called after a savestate is loaded.
// Any constants that can changed based on settings should be re-calculated
bProjectionChanged = true;
dirty = true;
}
// Syncs the shader constant buffers with xfmem
// TODO: A cleaner way to control the matrices without making a mess in the parameters field
void VertexShaderManager::SetConstants()
{
if (nTransformMatricesChanged[0] >= 0)
{
int startn = nTransformMatricesChanged[0] / 4;
int endn = (nTransformMatricesChanged[1] + 3) / 4;
memcpy(constants.transformmatrices[startn], &xfmem.posMatrices[startn * 4],
(endn - startn) * sizeof(float4));
dirty = true;
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
}
if (nNormalMatricesChanged[0] >= 0)
{
int startn = nNormalMatricesChanged[0] / 3;
int endn = (nNormalMatricesChanged[1] + 2) / 3;
for (int i = startn; i < endn; i++)
{
memcpy(constants.normalmatrices[i], &xfmem.normalMatrices[3 * i], 12);
}
dirty = true;
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
}
if (nPostTransformMatricesChanged[0] >= 0)
{
int startn = nPostTransformMatricesChanged[0] / 4;
int endn = (nPostTransformMatricesChanged[1] + 3) / 4;
memcpy(constants.posttransformmatrices[startn], &xfmem.postMatrices[startn * 4],
(endn - startn) * sizeof(float4));
dirty = true;
nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1;
}
if (nLightsChanged[0] >= 0)
{
// TODO: Outdated comment
// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
int istart = nLightsChanged[0] / 0x10;
int iend = (nLightsChanged[1] + 15) / 0x10;
for (int i = istart; i < iend; ++i)
{
const Light& light = xfmem.lights[i];
VertexShaderConstants::Light& dstlight = constants.lights[i];
// xfmem.light.color is packed as abgr in u8[4], so we have to swap the order
dstlight.color[0] = light.color[3];
dstlight.color[1] = light.color[2];
dstlight.color[2] = light.color[1];
dstlight.color[3] = light.color[0];
dstlight.cosatt[0] = light.cosatt[0];
dstlight.cosatt[1] = light.cosatt[1];
dstlight.cosatt[2] = light.cosatt[2];
if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f &&
fabs(light.distatt[2]) < 0.00001f)
{
// dist attenuation, make sure not equal to 0!!!
dstlight.distatt[0] = .00001f;
}
else
{
dstlight.distatt[0] = light.distatt[0];
}
dstlight.distatt[1] = light.distatt[1];
dstlight.distatt[2] = light.distatt[2];
dstlight.pos[0] = light.dpos[0];
dstlight.pos[1] = light.dpos[1];
dstlight.pos[2] = light.dpos[2];
double norm = double(light.ddir[0]) * double(light.ddir[0]) +
double(light.ddir[1]) * double(light.ddir[1]) +
double(light.ddir[2]) * double(light.ddir[2]);
norm = 1.0 / sqrt(norm);
float norm_float = static_cast<float>(norm);
dstlight.dir[0] = light.ddir[0] * norm_float;
dstlight.dir[1] = light.ddir[1] * norm_float;
dstlight.dir[2] = light.ddir[2] * norm_float;
}
dirty = true;
nLightsChanged[0] = nLightsChanged[1] = -1;
}
for (int i : nMaterialsChanged)
{
u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i];
constants.materials[i][0] = (data >> 24) & 0xFF;
constants.materials[i][1] = (data >> 16) & 0xFF;
constants.materials[i][2] = (data >> 8) & 0xFF;
constants.materials[i][3] = data & 0xFF;
dirty = true;
}
nMaterialsChanged = BitSet32(0);
if (bPosNormalMatrixChanged)
{
bPosNormalMatrixChanged = false;
const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4];
const float* norm =
&xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)];
memcpy(constants.posnormalmatrix, pos, 3 * sizeof(float4));
memcpy(constants.posnormalmatrix[3], norm, 3 * sizeof(float));
memcpy(constants.posnormalmatrix[4], norm + 3, 3 * sizeof(float));
memcpy(constants.posnormalmatrix[5], norm + 6, 3 * sizeof(float));
dirty = true;
}
if (bTexMatricesChanged[0])
{
bTexMatricesChanged[0] = false;
const float* pos_matrix_ptrs[] = {
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4]};
for (size_t i = 0; i < ArraySize(pos_matrix_ptrs); ++i)
{
memcpy(constants.texmatrices[3 * i], pos_matrix_ptrs[i], 3 * sizeof(float4));
}
dirty = true;
}
if (bTexMatricesChanged[1])
{
bTexMatricesChanged[1] = false;
const float* pos_matrix_ptrs[] = {
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4]};
for (size_t i = 0; i < ArraySize(pos_matrix_ptrs); ++i)
{
memcpy(constants.texmatrices[3 * i + 12], pos_matrix_ptrs[i], 3 * sizeof(float4));
}
dirty = true;
}
if (bViewportChanged)
{
bViewportChanged = false;
// The console GPU places the pixel center at 7/12 unless antialiasing
// is enabled, while D3D and OpenGL place it at 0.5. See the comment
// in VertexShaderGen.cpp for details.
// NOTE: If we ever emulate antialiasing, the sample locations set by
// BP registers 0x01-0x04 need to be considered here.
const float pixel_center_correction = 7.0f / 12.0f - 0.5f;
const float pixel_size_x = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.wd);
const float pixel_size_y = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.ht);
constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x;
constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y;
dirty = true;
// This is so implementation-dependent that we can't have it here.
g_renderer->SetViewport();
// Update projection if the viewport isn't 1:1 useable
if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports)
{
ViewportCorrectionMatrix(s_viewportCorrection);
bProjectionChanged = true;
}
}
if (bProjectionChanged)
{
bProjectionChanged = false;
float* rawProjection = xfmem.projection.rawProjection;
switch (xfmem.projection.type)
{
case GX_PERSPECTIVE:
g_fProjectionMatrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW;
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = rawProjection[1];
g_fProjectionMatrix[3] = 0.0f;
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH;
g_fProjectionMatrix[6] = rawProjection[3];
g_fProjectionMatrix[7] = 0.0f;
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = rawProjection[4];
g_fProjectionMatrix[11] = rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
// Hack to fix depth clipping precision issues (such as Sonic Adventure UI)
g_fProjectionMatrix[14] = -(1.0f + FLT_EPSILON);
g_fProjectionMatrix[15] = 0.0f;
// Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
if (!SConfig::GetInstance().bWii)
{
bool viewport_is_4_3 = AspectIs4_3(xfmem.viewport.wd, xfmem.viewport.ht);
if (AspectIs16_9(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
Core::g_aspect_wide = true; // Projection is 16:9 and viewport is 4:3, we are rendering
// an anamorphic widescreen picture
else if (AspectIs4_3(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
Core::g_aspect_wide =
false; // Project and viewports are both 4:3, we are rendering a normal image.
}
SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
break;
case GX_ORTHOGRAPHIC:
g_fProjectionMatrix[0] = rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = 0.0f;
g_fProjectionMatrix[3] = rawProjection[1];
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = rawProjection[2];
g_fProjectionMatrix[6] = 0.0f;
g_fProjectionMatrix[7] = rawProjection[3];
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = (g_ProjHack1.value + rawProjection[4]) *
((g_ProjHack1.sign == 0) ? 1.0f : g_ProjHack1.sign);
g_fProjectionMatrix[11] = (g_ProjHack2.value + rawProjection[5]) *
((g_ProjHack2.sign == 0) ? 1.0f : g_ProjHack2.sign);
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
g_fProjectionMatrix[14] = 0.0f;
// Hack to fix depth clipping precision issues (such as Sonic Unleashed UI)
g_fProjectionMatrix[15] = 1.0f + FLT_EPSILON;
SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
SETSTAT_FT(stats.proj_0, rawProjection[0]);
SETSTAT_FT(stats.proj_1, rawProjection[1]);
SETSTAT_FT(stats.proj_2, rawProjection[2]);
SETSTAT_FT(stats.proj_3, rawProjection[3]);
SETSTAT_FT(stats.proj_4, rawProjection[4]);
SETSTAT_FT(stats.proj_5, rawProjection[5]);
break;
default:
ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type);
}
PRIM_LOG("Projection: %f %f %f %f %f %f\n", rawProjection[0], rawProjection[1],
rawProjection[2], rawProjection[3], rawProjection[4], rawProjection[5]);
if (g_ActiveConfig.bFreeLook && xfmem.projection.type == GX_PERSPECTIVE)
{
Matrix44 mtxA;
Matrix44 mtxB;
Matrix44 viewMtx;
Matrix44::Translate(mtxA, s_fViewTranslationVector);
Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix);
Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation
Matrix44::Set(mtxB, g_fProjectionMatrix);
Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view
Matrix44::Multiply(s_viewportCorrection, mtxA, mtxB); // mtxB = viewportCorrection x mtxA
memcpy(constants.projection, mtxB.data, 4 * sizeof(float4));
}
else
{
Matrix44 projMtx;
Matrix44::Set(projMtx, g_fProjectionMatrix);
Matrix44 correctedMtx;
Matrix44::Multiply(s_viewportCorrection, projMtx, correctedMtx);
memcpy(constants.projection, correctedMtx.data, 4 * sizeof(float4));
}
dirty = true;
}
}
void VertexShaderManager::InvalidateXFRange(int start, int end)
{
if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 + 12) ||
((u32)start >=
XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 &&
(u32)start < XFMEM_NORMALMATRICES +
((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 + 9))
{
bPosNormalMatrixChanged = true;
}
if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 + 12))
{
bTexMatricesChanged[0] = true;
}
if (((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 + 12))
{
bTexMatricesChanged[1] = true;
}
if (start < XFMEM_POSMATRICES_END)
{
if (nTransformMatricesChanged[0] == -1)
{
nTransformMatricesChanged[0] = start;
nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
}
else
{
if (nTransformMatricesChanged[0] > start)
nTransformMatricesChanged[0] = start;
if (nTransformMatricesChanged[1] < end)
nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
}
}
if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES)
{
int _start = start < XFMEM_NORMALMATRICES ? 0 : start - XFMEM_NORMALMATRICES;
int _end = end < XFMEM_NORMALMATRICES_END ? end - XFMEM_NORMALMATRICES :
XFMEM_NORMALMATRICES_END - XFMEM_NORMALMATRICES;
if (nNormalMatricesChanged[0] == -1)
{
nNormalMatricesChanged[0] = _start;
nNormalMatricesChanged[1] = _end;
}
else
{
if (nNormalMatricesChanged[0] > _start)
nNormalMatricesChanged[0] = _start;
if (nNormalMatricesChanged[1] < _end)
nNormalMatricesChanged[1] = _end;
}
}
if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES)
{
int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start - XFMEM_POSTMATRICES;
int _end = end < XFMEM_POSTMATRICES_END ? end - XFMEM_POSTMATRICES :
XFMEM_POSTMATRICES_END - XFMEM_POSTMATRICES;
if (nPostTransformMatricesChanged[0] == -1)
{
nPostTransformMatricesChanged[0] = _start;
nPostTransformMatricesChanged[1] = _end;
}
else
{
if (nPostTransformMatricesChanged[0] > _start)
nPostTransformMatricesChanged[0] = _start;
if (nPostTransformMatricesChanged[1] < _end)
nPostTransformMatricesChanged[1] = _end;
}
}
if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS)
{
int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start - XFMEM_LIGHTS;
int _end = end < XFMEM_LIGHTS_END ? end - XFMEM_LIGHTS : XFMEM_LIGHTS_END - XFMEM_LIGHTS;
if (nLightsChanged[0] == -1)
{
nLightsChanged[0] = _start;
nLightsChanged[1] = _end;
}
else
{
if (nLightsChanged[0] > _start)
nLightsChanged[0] = _start;
if (nLightsChanged[1] < _end)
nLightsChanged[1] = _end;
}
}
}
void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
{
if (g_main_cp_state.matrix_index_a.Hex != Value)
{
VertexManagerBase::Flush();
if (g_main_cp_state.matrix_index_a.PosNormalMtxIdx != (Value & 0x3f))
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = true;
g_main_cp_state.matrix_index_a.Hex = Value;
}
}
void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
{
if (g_main_cp_state.matrix_index_b.Hex != Value)
{
VertexManagerBase::Flush();
bTexMatricesChanged[1] = true;
g_main_cp_state.matrix_index_b.Hex = Value;
}
}
void VertexShaderManager::SetViewportChanged()
{
bViewportChanged = true;
}
void VertexShaderManager::SetProjectionChanged()
{
bProjectionChanged = true;
}
void VertexShaderManager::SetMaterialColorChanged(int index)
{
nMaterialsChanged[index] = true;
}
void VertexShaderManager::TranslateView(float x, float y, float z)
{
float result[3];
float vector[3] = {x, z, y};
Matrix33::Multiply(s_viewInvRotationMatrix, vector, result);
for (size_t i = 0; i < ArraySize(result); i++)
s_fViewTranslationVector[i] += result[i];
bProjectionChanged = true;
}
void VertexShaderManager::RotateView(float x, float y)
{
s_fViewRotation[0] += x;
s_fViewRotation[1] += y;
Matrix33 mx;
Matrix33 my;
Matrix33::RotateX(mx, s_fViewRotation[1]);
Matrix33::RotateY(my, s_fViewRotation[0]);
Matrix33::Multiply(mx, my, s_viewRotationMatrix);
// reverse rotation
Matrix33::RotateX(mx, -s_fViewRotation[1]);
Matrix33::RotateY(my, -s_fViewRotation[0]);
Matrix33::Multiply(my, mx, s_viewInvRotationMatrix);
bProjectionChanged = true;
}
void VertexShaderManager::ResetView()
{
memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector));
Matrix33::LoadIdentity(s_viewRotationMatrix);
Matrix33::LoadIdentity(s_viewInvRotationMatrix);
s_fViewRotation[0] = s_fViewRotation[1] = 0.0f;
bProjectionChanged = true;
}
void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx)
{
const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4];
// We use the projection matrix calculated by VertexShaderManager, because it
// includes any free look transformations.
// Make sure VertexShaderManager::SetConstants() has been called first.
const float* proj_matrix = &g_fProjectionMatrix[0];
const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] +
data[2] * world_matrix[2] + world_matrix[3],
data[0] * world_matrix[4] + data[1] * world_matrix[5] +
data[2] * world_matrix[6] + world_matrix[7],
data[0] * world_matrix[8] + data[1] * world_matrix[9] +
data[2] * world_matrix[10] + world_matrix[11]};
out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11];
out[3] =
t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
}
void VertexShaderManager::DoState(PointerWrap& p)
{
p.Do(g_fProjectionMatrix);
p.Do(s_viewportCorrection);
p.Do(s_viewRotationMatrix);
p.Do(s_viewInvRotationMatrix);
p.Do(s_fViewTranslationVector);
p.Do(s_fViewRotation);
p.Do(nTransformMatricesChanged);
p.Do(nNormalMatricesChanged);
p.Do(nPostTransformMatricesChanged);
p.Do(nLightsChanged);
p.Do(nMaterialsChanged);
p.Do(bTexMatricesChanged);
p.Do(bPosNormalMatrixChanged);
p.Do(bProjectionChanged);
p.Do(bViewportChanged);
p.Do(constants);
if (p.GetMode() == PointerWrap::MODE_READ)
{
Dirty();
}
}