2483 lines
70 KiB
C++
Executable File

//
//Copyright (C) 2016 Google, Inc.
//Copyright (C) 2016 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of Google, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
//
// This is a set of mutually recursive methods implementing the HLSL grammar.
// Generally, each returns
// - through an argument: a type specifically appropriate to which rule it
// recognized
// - through the return value: true/false to indicate whether or not it
// recognized its rule
//
// As much as possible, only grammar recognition should happen in this file,
// with all other work being farmed out to hlslParseHelper.cpp, which in turn
// will build the AST.
//
// The next token, yet to be "accepted" is always sitting in 'token'.
// When a method says it accepts a rule, that means all tokens involved
// in the rule will have been consumed, and none left in 'token'.
//
#include "hlslTokens.h"
#include "hlslGrammar.h"
namespace glslang {
// Root entry point to this recursive decent parser.
// Return true if compilation unit was successfully accepted.
bool HlslGrammar::parse()
{
advanceToken();
return acceptCompilationUnit();
}
void HlslGrammar::expected(const char* syntax)
{
parseContext.error(token.loc, "Expected", syntax, "");
}
void HlslGrammar::unimplemented(const char* error)
{
parseContext.error(token.loc, "Unimplemented", error, "");
}
// Only process the next token if it is an identifier.
// Return true if it was an identifier.
bool HlslGrammar::acceptIdentifier(HlslToken& idToken)
{
if (peekTokenClass(EHTokIdentifier)) {
idToken = token;
advanceToken();
return true;
}
return false;
}
// compilationUnit
// : list of externalDeclaration
//
bool HlslGrammar::acceptCompilationUnit()
{
TIntermNode* unitNode = nullptr;
while (! peekTokenClass(EHTokNone)) {
// externalDeclaration
TIntermNode* declarationNode;
if (! acceptDeclaration(declarationNode))
return false;
// hook it up
unitNode = intermediate.growAggregate(unitNode, declarationNode);
}
// set root of AST
intermediate.setTreeRoot(unitNode);
return true;
}
// sampler_state
// : LEFT_BRACE [sampler_state_assignment ... ] RIGHT_BRACE
//
// sampler_state_assignment
// : sampler_state_identifier EQUAL value SEMICOLON
//
// sampler_state_identifier
// : ADDRESSU
// | ADDRESSV
// | ADDRESSW
// | BORDERCOLOR
// | FILTER
// | MAXANISOTROPY
// | MAXLOD
// | MINLOD
// | MIPLODBIAS
//
bool HlslGrammar::acceptSamplerState()
{
// TODO: this should be genericized to accept a list of valid tokens and
// return token/value pairs. Presently it is specific to texture values.
if (! acceptTokenClass(EHTokLeftBrace))
return true;
parseContext.warn(token.loc, "unimplemented", "immediate sampler state", "");
do {
// read state name
HlslToken state;
if (! acceptIdentifier(state))
break; // end of list
// FXC accepts any case
TString stateName = *state.string;
std::transform(stateName.begin(), stateName.end(), stateName.begin(), ::tolower);
if (! acceptTokenClass(EHTokAssign)) {
expected("assign");
return false;
}
if (stateName == "minlod" || stateName == "maxlod") {
if (! peekTokenClass(EHTokIntConstant)) {
expected("integer");
return false;
}
TIntermTyped* lod = nullptr;
if (! acceptLiteral(lod)) // should never fail, since we just looked for an integer
return false;
} else if (stateName == "maxanisotropy") {
if (! peekTokenClass(EHTokIntConstant)) {
expected("integer");
return false;
}
TIntermTyped* maxAnisotropy = nullptr;
if (! acceptLiteral(maxAnisotropy)) // should never fail, since we just looked for an integer
return false;
} else if (stateName == "filter") {
HlslToken filterMode;
if (! acceptIdentifier(filterMode)) {
expected("filter mode");
return false;
}
} else if (stateName == "addressu" || stateName == "addressv" || stateName == "addressw") {
HlslToken addrMode;
if (! acceptIdentifier(addrMode)) {
expected("texture address mode");
return false;
}
} else if (stateName == "miplodbias") {
TIntermTyped* lodBias = nullptr;
if (! acceptLiteral(lodBias)) {
expected("lod bias");
return false;
}
} else if (stateName == "bordercolor") {
return false;
} else {
expected("texture state");
return false;
}
// SEMICOLON
if (! acceptTokenClass(EHTokSemicolon)) {
expected("semicolon");
return false;
}
} while (true);
if (! acceptTokenClass(EHTokRightBrace))
return false;
return true;
}
// sampler_declaration_dx9
// : SAMPLER identifier EQUAL sampler_type sampler_state
//
bool HlslGrammar::acceptSamplerDeclarationDX9(TType& /*type*/)
{
if (! acceptTokenClass(EHTokSampler))
return false;
// TODO: remove this when DX9 style declarations are implemented.
unimplemented("Direct3D 9 sampler declaration");
// read sampler name
HlslToken name;
if (! acceptIdentifier(name)) {
expected("sampler name");
return false;
}
if (! acceptTokenClass(EHTokAssign)) {
expected("=");
return false;
}
return false;
}
// declaration
// : sampler_declaration_dx9 post_decls SEMICOLON
// | fully_specified_type declarator_list SEMICOLON
// | fully_specified_type identifier function_parameters post_decls compound_statement // function definition
// | fully_specified_type identifier sampler_state post_decls compound_statement // sampler definition
// | typedef declaration
//
// declarator_list
// : declarator COMMA declarator COMMA declarator... // zero or more declarators
//
// declarator
// : identifier array_specifier post_decls
// | identifier array_specifier post_decls EQUAL assignment_expression
// | identifier function_parameters post_decls // function prototype
//
// Parsing has to go pretty far in to know whether it's a variable, prototype, or
// function definition, so the implementation below doesn't perfectly divide up the grammar
// as above. (The 'identifier' in the first item in init_declarator list is the
// same as 'identifier' for function declarations.)
//
// 'node' could get populated if the declaration creates code, like an initializer
// or a function body.
//
bool HlslGrammar::acceptDeclaration(TIntermNode*& node)
{
node = nullptr;
bool list = false;
// typedef
bool typedefDecl = acceptTokenClass(EHTokTypedef);
TType type;
// DX9 sampler declaration use a different syntax
if (acceptSamplerDeclarationDX9(type))
return true;
// fully_specified_type
if (! acceptFullySpecifiedType(type))
return false;
if (type.getQualifier().storage == EvqTemporary && parseContext.symbolTable.atGlobalLevel()) {
if (type.getBasicType() == EbtSampler) {
// Sampler/textures are uniform by default (if no explicit qualifier is present) in
// HLSL. This line silently converts samplers *explicitly* declared static to uniform,
// which is incorrect but harmless.
type.getQualifier().storage = EvqUniform;
} else {
type.getQualifier().storage = EvqGlobal;
}
}
// identifier
HlslToken idToken;
while (acceptIdentifier(idToken)) {
// function_parameters
TFunction* function = new TFunction(idToken.string, type);
if (acceptFunctionParameters(*function)) {
// post_decls
acceptPostDecls(type);
// compound_statement (function body definition) or just a prototype?
if (peekTokenClass(EHTokLeftBrace)) {
if (list)
parseContext.error(idToken.loc, "function body can't be in a declarator list", "{", "");
if (typedefDecl)
parseContext.error(idToken.loc, "function body can't be in a typedef", "{", "");
return acceptFunctionDefinition(*function, node);
} else {
if (typedefDecl)
parseContext.error(idToken.loc, "function typedefs not implemented", "{", "");
parseContext.handleFunctionDeclarator(idToken.loc, *function, true);
}
} else {
// a variable declaration
// array_specifier
TArraySizes* arraySizes = nullptr;
acceptArraySpecifier(arraySizes);
// samplers accept immediate sampler state
if (type.getBasicType() == EbtSampler) {
if (! acceptSamplerState())
return false;
}
// post_decls
acceptPostDecls(type);
// EQUAL assignment_expression
TIntermTyped* expressionNode = nullptr;
if (acceptTokenClass(EHTokAssign)) {
if (typedefDecl)
parseContext.error(idToken.loc, "can't have an initializer", "typedef", "");
if (! acceptAssignmentExpression(expressionNode)) {
expected("initializer");
return false;
}
}
if (typedefDecl)
parseContext.declareTypedef(idToken.loc, *idToken.string, type, arraySizes);
else {
// Declare the variable and add any initializer code to the AST.
// The top-level node is always made into an aggregate, as that's
// historically how the AST has been.
node = intermediate.growAggregate(node,
parseContext.declareVariable(idToken.loc, *idToken.string, type,
arraySizes, expressionNode),
idToken.loc);
}
}
if (acceptTokenClass(EHTokComma)) {
list = true;
continue;
}
};
// The top-level node is a sequence.
if (node != nullptr)
node->getAsAggregate()->setOperator(EOpSequence);
// SEMICOLON
if (! acceptTokenClass(EHTokSemicolon)) {
expected(";");
return false;
}
return true;
}
// control_declaration
// : fully_specified_type identifier EQUAL expression
//
bool HlslGrammar::acceptControlDeclaration(TIntermNode*& node)
{
node = nullptr;
// fully_specified_type
TType type;
if (! acceptFullySpecifiedType(type))
return false;
// identifier
HlslToken idToken;
if (! acceptIdentifier(idToken)) {
expected("identifier");
return false;
}
// EQUAL
TIntermTyped* expressionNode = nullptr;
if (! acceptTokenClass(EHTokAssign)) {
expected("=");
return false;
}
// expression
if (! acceptExpression(expressionNode)) {
expected("initializer");
return false;
}
node = parseContext.declareVariable(idToken.loc, *idToken.string, type, 0, expressionNode);
return true;
}
// fully_specified_type
// : type_specifier
// | type_qualifier type_specifier
//
bool HlslGrammar::acceptFullySpecifiedType(TType& type)
{
// type_qualifier
TQualifier qualifier;
qualifier.clear();
acceptQualifier(qualifier);
// type_specifier
if (! acceptType(type))
return false;
type.getQualifier() = qualifier;
return true;
}
// type_qualifier
// : qualifier qualifier ...
//
// Zero or more of these, so this can't return false.
//
void HlslGrammar::acceptQualifier(TQualifier& qualifier)
{
do {
switch (peek()) {
case EHTokStatic:
// normal glslang default
break;
case EHTokExtern:
// TODO: no meaning in glslang?
break;
case EHTokShared:
// TODO: hint
break;
case EHTokGroupShared:
qualifier.storage = EvqShared;
break;
case EHTokUniform:
qualifier.storage = EvqUniform;
break;
case EHTokConst:
qualifier.storage = EvqConst;
break;
case EHTokVolatile:
qualifier.volatil = true;
break;
case EHTokLinear:
qualifier.storage = EvqVaryingIn;
qualifier.smooth = true;
break;
case EHTokCentroid:
qualifier.centroid = true;
break;
case EHTokNointerpolation:
qualifier.flat = true;
break;
case EHTokNoperspective:
qualifier.nopersp = true;
break;
case EHTokSample:
qualifier.sample = true;
break;
case EHTokRowMajor:
qualifier.layoutMatrix = ElmRowMajor;
break;
case EHTokColumnMajor:
qualifier.layoutMatrix = ElmColumnMajor;
break;
case EHTokPrecise:
qualifier.noContraction = true;
break;
case EHTokIn:
qualifier.storage = EvqIn;
break;
case EHTokOut:
qualifier.storage = EvqOut;
break;
case EHTokInOut:
qualifier.storage = EvqInOut;
break;
default:
return;
}
advanceToken();
} while (true);
}
// template_type
// : FLOAT
// | DOUBLE
// | INT
// | DWORD
// | UINT
// | BOOL
//
bool HlslGrammar::acceptTemplateType(TBasicType& basicType)
{
switch (peek()) {
case EHTokFloat:
basicType = EbtFloat;
break;
case EHTokDouble:
basicType = EbtDouble;
break;
case EHTokInt:
case EHTokDword:
basicType = EbtInt;
break;
case EHTokUint:
basicType = EbtUint;
break;
case EHTokBool:
basicType = EbtBool;
break;
default:
return false;
}
advanceToken();
return true;
}
// vector_template_type
// : VECTOR
// | VECTOR LEFT_ANGLE template_type COMMA integer_literal RIGHT_ANGLE
//
bool HlslGrammar::acceptVectorTemplateType(TType& type)
{
if (! acceptTokenClass(EHTokVector))
return false;
if (! acceptTokenClass(EHTokLeftAngle)) {
// in HLSL, 'vector' alone means float4.
new(&type) TType(EbtFloat, EvqTemporary, 4);
return true;
}
TBasicType basicType;
if (! acceptTemplateType(basicType)) {
expected("scalar type");
return false;
}
// COMMA
if (! acceptTokenClass(EHTokComma)) {
expected(",");
return false;
}
// integer
if (! peekTokenClass(EHTokIntConstant)) {
expected("literal integer");
return false;
}
TIntermTyped* vecSize;
if (! acceptLiteral(vecSize))
return false;
const int vecSizeI = vecSize->getAsConstantUnion()->getConstArray()[0].getIConst();
new(&type) TType(basicType, EvqTemporary, vecSizeI);
if (vecSizeI == 1)
type.makeVector();
if (!acceptTokenClass(EHTokRightAngle)) {
expected("right angle bracket");
return false;
}
return true;
}
// matrix_template_type
// : MATRIX
// | MATRIX LEFT_ANGLE template_type COMMA integer_literal COMMA integer_literal RIGHT_ANGLE
//
bool HlslGrammar::acceptMatrixTemplateType(TType& type)
{
if (! acceptTokenClass(EHTokMatrix))
return false;
if (! acceptTokenClass(EHTokLeftAngle)) {
// in HLSL, 'matrix' alone means float4x4.
new(&type) TType(EbtFloat, EvqTemporary, 0, 4, 4);
return true;
}
TBasicType basicType;
if (! acceptTemplateType(basicType)) {
expected("scalar type");
return false;
}
// COMMA
if (! acceptTokenClass(EHTokComma)) {
expected(",");
return false;
}
// integer rows
if (! peekTokenClass(EHTokIntConstant)) {
expected("literal integer");
return false;
}
TIntermTyped* rows;
if (! acceptLiteral(rows))
return false;
// COMMA
if (! acceptTokenClass(EHTokComma)) {
expected(",");
return false;
}
// integer cols
if (! peekTokenClass(EHTokIntConstant)) {
expected("literal integer");
return false;
}
TIntermTyped* cols;
if (! acceptLiteral(cols))
return false;
new(&type) TType(basicType, EvqTemporary, 0,
cols->getAsConstantUnion()->getConstArray()[0].getIConst(),
rows->getAsConstantUnion()->getConstArray()[0].getIConst());
if (!acceptTokenClass(EHTokRightAngle)) {
expected("right angle bracket");
return false;
}
return true;
}
// sampler_type
// : SAMPLER
// | SAMPLER1D
// | SAMPLER2D
// | SAMPLER3D
// | SAMPLERCUBE
// | SAMPLERSTATE
// | SAMPLERCOMPARISONSTATE
bool HlslGrammar::acceptSamplerType(TType& type)
{
// read sampler type
const EHlslTokenClass samplerType = peek();
TSamplerDim dim = EsdNone;
switch (samplerType) {
case EHTokSampler: break;
case EHTokSampler1d: dim = Esd1D; break;
case EHTokSampler2d: dim = Esd2D; break;
case EHTokSampler3d: dim = Esd3D; break;
case EHTokSamplerCube: dim = EsdCube; break;
case EHTokSamplerState: break;
case EHTokSamplerComparisonState: break;
default:
return false; // not a sampler declaration
}
advanceToken(); // consume the sampler type keyword
TArraySizes* arraySizes = nullptr; // TODO: array
bool shadow = false; // TODO: shadow
TSampler sampler;
sampler.setPureSampler(shadow);
type.shallowCopy(TType(sampler, EvqUniform, arraySizes));
return true;
}
// texture_type
// | BUFFER
// | TEXTURE1D
// | TEXTURE1DARRAY
// | TEXTURE2D
// | TEXTURE2DARRAY
// | TEXTURE3D
// | TEXTURECUBE
// | TEXTURECUBEARRAY
// | TEXTURE2DMS
// | TEXTURE2DMSARRAY
bool HlslGrammar::acceptTextureType(TType& type)
{
const EHlslTokenClass textureType = peek();
TSamplerDim dim = EsdNone;
bool array = false;
bool ms = false;
switch (textureType) {
case EHTokBuffer: dim = EsdBuffer; break;
case EHTokTexture1d: dim = Esd1D; break;
case EHTokTexture1darray: dim = Esd1D; array = true; break;
case EHTokTexture2d: dim = Esd2D; break;
case EHTokTexture2darray: dim = Esd2D; array = true; break;
case EHTokTexture3d: dim = Esd3D; break;
case EHTokTextureCube: dim = EsdCube; break;
case EHTokTextureCubearray: dim = EsdCube; array = true; break;
case EHTokTexture2DMS: dim = Esd2D; ms = true; break;
case EHTokTexture2DMSarray: dim = Esd2D; array = true; ms = true; break;
default:
return false; // not a texture declaration
}
advanceToken(); // consume the texture object keyword
TType txType(EbtFloat, EvqUniform, 4); // default type is float4
TIntermTyped* msCount = nullptr;
// texture type: required for multisample types!
if (acceptTokenClass(EHTokLeftAngle)) {
if (! acceptType(txType)) {
expected("scalar or vector type");
return false;
}
const TBasicType basicRetType = txType.getBasicType() ;
if (basicRetType != EbtFloat && basicRetType != EbtUint && basicRetType != EbtInt) {
unimplemented("basic type in texture");
return false;
}
if (!txType.isScalar() && !txType.isVector()) {
expected("scalar or vector type");
return false;
}
if (txType.getVectorSize() != 1 && txType.getVectorSize() != 4) {
// TODO: handle vec2/3 types
expected("vector size not yet supported in texture type");
return false;
}
if (ms && acceptTokenClass(EHTokComma)) {
// read sample count for multisample types, if given
if (! peekTokenClass(EHTokIntConstant)) {
expected("multisample count");
return false;
}
if (! acceptLiteral(msCount)) // should never fail, since we just found an integer
return false;
}
if (! acceptTokenClass(EHTokRightAngle)) {
expected("right angle bracket");
return false;
}
} else if (ms) {
expected("texture type for multisample");
return false;
}
TArraySizes* arraySizes = nullptr;
const bool shadow = txType.isScalar() || (txType.isVector() && txType.getVectorSize() == 1);
TSampler sampler;
sampler.setTexture(txType.getBasicType(), dim, array, shadow, ms);
type.shallowCopy(TType(sampler, EvqUniform, arraySizes));
return true;
}
// If token is for a type, update 'type' with the type information,
// and return true and advance.
// Otherwise, return false, and don't advance
bool HlslGrammar::acceptType(TType& type)
{
switch (peek()) {
case EHTokVector:
return acceptVectorTemplateType(type);
break;
case EHTokMatrix:
return acceptMatrixTemplateType(type);
break;
case EHTokSampler: // fall through
case EHTokSampler1d: // ...
case EHTokSampler2d: // ...
case EHTokSampler3d: // ...
case EHTokSamplerCube: // ...
case EHTokSamplerState: // ...
case EHTokSamplerComparisonState: // ...
return acceptSamplerType(type);
break;
case EHTokBuffer: // fall through
case EHTokTexture1d: // ...
case EHTokTexture1darray: // ...
case EHTokTexture2d: // ...
case EHTokTexture2darray: // ...
case EHTokTexture3d: // ...
case EHTokTextureCube: // ...
case EHTokTextureCubearray: // ...
case EHTokTexture2DMS: // ...
case EHTokTexture2DMSarray: // ...
return acceptTextureType(type);
break;
case EHTokStruct:
return acceptStruct(type);
break;
case EHTokIdentifier:
// An identifier could be for a user-defined type.
// Note we cache the symbol table lookup, to save for a later rule
// when this is not a type.
token.symbol = parseContext.symbolTable.find(*token.string);
if (token.symbol && token.symbol->getAsVariable() && token.symbol->getAsVariable()->isUserType()) {
type.shallowCopy(token.symbol->getType());
advanceToken();
return true;
} else
return false;
case EHTokVoid:
new(&type) TType(EbtVoid);
break;
case EHTokFloat:
new(&type) TType(EbtFloat);
break;
case EHTokFloat1:
new(&type) TType(EbtFloat);
type.makeVector();
break;
case EHTokFloat2:
new(&type) TType(EbtFloat, EvqTemporary, 2);
break;
case EHTokFloat3:
new(&type) TType(EbtFloat, EvqTemporary, 3);
break;
case EHTokFloat4:
new(&type) TType(EbtFloat, EvqTemporary, 4);
break;
case EHTokDouble:
new(&type) TType(EbtDouble);
break;
case EHTokDouble1:
new(&type) TType(EbtDouble);
type.makeVector();
break;
case EHTokDouble2:
new(&type) TType(EbtDouble, EvqTemporary, 2);
break;
case EHTokDouble3:
new(&type) TType(EbtDouble, EvqTemporary, 3);
break;
case EHTokDouble4:
new(&type) TType(EbtDouble, EvqTemporary, 4);
break;
case EHTokInt:
case EHTokDword:
new(&type) TType(EbtInt);
break;
case EHTokInt1:
new(&type) TType(EbtInt);
type.makeVector();
break;
case EHTokInt2:
new(&type) TType(EbtInt, EvqTemporary, 2);
break;
case EHTokInt3:
new(&type) TType(EbtInt, EvqTemporary, 3);
break;
case EHTokInt4:
new(&type) TType(EbtInt, EvqTemporary, 4);
break;
case EHTokUint:
new(&type) TType(EbtUint);
break;
case EHTokUint1:
new(&type) TType(EbtUint);
type.makeVector();
break;
case EHTokUint2:
new(&type) TType(EbtUint, EvqTemporary, 2);
break;
case EHTokUint3:
new(&type) TType(EbtUint, EvqTemporary, 3);
break;
case EHTokUint4:
new(&type) TType(EbtUint, EvqTemporary, 4);
break;
case EHTokBool:
new(&type) TType(EbtBool);
break;
case EHTokBool1:
new(&type) TType(EbtBool);
type.makeVector();
break;
case EHTokBool2:
new(&type) TType(EbtBool, EvqTemporary, 2);
break;
case EHTokBool3:
new(&type) TType(EbtBool, EvqTemporary, 3);
break;
case EHTokBool4:
new(&type) TType(EbtBool, EvqTemporary, 4);
break;
case EHTokInt1x1:
new(&type) TType(EbtInt, EvqTemporary, 0, 1, 1);
break;
case EHTokInt1x2:
new(&type) TType(EbtInt, EvqTemporary, 0, 2, 1);
break;
case EHTokInt1x3:
new(&type) TType(EbtInt, EvqTemporary, 0, 3, 1);
break;
case EHTokInt1x4:
new(&type) TType(EbtInt, EvqTemporary, 0, 4, 1);
break;
case EHTokInt2x1:
new(&type) TType(EbtInt, EvqTemporary, 0, 1, 2);
break;
case EHTokInt2x2:
new(&type) TType(EbtInt, EvqTemporary, 0, 2, 2);
break;
case EHTokInt2x3:
new(&type) TType(EbtInt, EvqTemporary, 0, 3, 2);
break;
case EHTokInt2x4:
new(&type) TType(EbtInt, EvqTemporary, 0, 4, 2);
break;
case EHTokInt3x1:
new(&type) TType(EbtInt, EvqTemporary, 0, 1, 3);
break;
case EHTokInt3x2:
new(&type) TType(EbtInt, EvqTemporary, 0, 2, 3);
break;
case EHTokInt3x3:
new(&type) TType(EbtInt, EvqTemporary, 0, 3, 3);
break;
case EHTokInt3x4:
new(&type) TType(EbtInt, EvqTemporary, 0, 4, 3);
break;
case EHTokInt4x1:
new(&type) TType(EbtInt, EvqTemporary, 0, 1, 4);
break;
case EHTokInt4x2:
new(&type) TType(EbtInt, EvqTemporary, 0, 2, 4);
break;
case EHTokInt4x3:
new(&type) TType(EbtInt, EvqTemporary, 0, 3, 4);
break;
case EHTokInt4x4:
new(&type) TType(EbtInt, EvqTemporary, 0, 4, 4);
break;
case EHTokUint1x1:
new(&type) TType(EbtUint, EvqTemporary, 0, 1, 1);
break;
case EHTokUint1x2:
new(&type) TType(EbtUint, EvqTemporary, 0, 2, 1);
break;
case EHTokUint1x3:
new(&type) TType(EbtUint, EvqTemporary, 0, 3, 1);
break;
case EHTokUint1x4:
new(&type) TType(EbtUint, EvqTemporary, 0, 4, 1);
break;
case EHTokUint2x1:
new(&type) TType(EbtUint, EvqTemporary, 0, 1, 2);
break;
case EHTokUint2x2:
new(&type) TType(EbtUint, EvqTemporary, 0, 2, 2);
break;
case EHTokUint2x3:
new(&type) TType(EbtUint, EvqTemporary, 0, 3, 2);
break;
case EHTokUint2x4:
new(&type) TType(EbtUint, EvqTemporary, 0, 4, 2);
break;
case EHTokUint3x1:
new(&type) TType(EbtUint, EvqTemporary, 0, 1, 3);
break;
case EHTokUint3x2:
new(&type) TType(EbtUint, EvqTemporary, 0, 2, 3);
break;
case EHTokUint3x3:
new(&type) TType(EbtUint, EvqTemporary, 0, 3, 3);
break;
case EHTokUint3x4:
new(&type) TType(EbtUint, EvqTemporary, 0, 4, 3);
break;
case EHTokUint4x1:
new(&type) TType(EbtUint, EvqTemporary, 0, 1, 4);
break;
case EHTokUint4x2:
new(&type) TType(EbtUint, EvqTemporary, 0, 2, 4);
break;
case EHTokUint4x3:
new(&type) TType(EbtUint, EvqTemporary, 0, 3, 4);
break;
case EHTokUint4x4:
new(&type) TType(EbtUint, EvqTemporary, 0, 4, 4);
break;
case EHTokBool1x1:
new(&type) TType(EbtBool, EvqTemporary, 0, 1, 1);
break;
case EHTokBool1x2:
new(&type) TType(EbtBool, EvqTemporary, 0, 2, 1);
break;
case EHTokBool1x3:
new(&type) TType(EbtBool, EvqTemporary, 0, 3, 1);
break;
case EHTokBool1x4:
new(&type) TType(EbtBool, EvqTemporary, 0, 4, 1);
break;
case EHTokBool2x1:
new(&type) TType(EbtBool, EvqTemporary, 0, 1, 2);
break;
case EHTokBool2x2:
new(&type) TType(EbtBool, EvqTemporary, 0, 2, 2);
break;
case EHTokBool2x3:
new(&type) TType(EbtBool, EvqTemporary, 0, 3, 2);
break;
case EHTokBool2x4:
new(&type) TType(EbtBool, EvqTemporary, 0, 4, 2);
break;
case EHTokBool3x1:
new(&type) TType(EbtBool, EvqTemporary, 0, 1, 3);
break;
case EHTokBool3x2:
new(&type) TType(EbtBool, EvqTemporary, 0, 2, 3);
break;
case EHTokBool3x3:
new(&type) TType(EbtBool, EvqTemporary, 0, 3, 3);
break;
case EHTokBool3x4:
new(&type) TType(EbtBool, EvqTemporary, 0, 4, 3);
break;
case EHTokBool4x1:
new(&type) TType(EbtBool, EvqTemporary, 0, 1, 4);
break;
case EHTokBool4x2:
new(&type) TType(EbtBool, EvqTemporary, 0, 2, 4);
break;
case EHTokBool4x3:
new(&type) TType(EbtBool, EvqTemporary, 0, 3, 4);
break;
case EHTokBool4x4:
new(&type) TType(EbtBool, EvqTemporary, 0, 4, 4);
break;
case EHTokFloat1x1:
new(&type) TType(EbtFloat, EvqTemporary, 0, 1, 1);
break;
case EHTokFloat1x2:
new(&type) TType(EbtFloat, EvqTemporary, 0, 2, 1);
break;
case EHTokFloat1x3:
new(&type) TType(EbtFloat, EvqTemporary, 0, 3, 1);
break;
case EHTokFloat1x4:
new(&type) TType(EbtFloat, EvqTemporary, 0, 4, 1);
break;
case EHTokFloat2x1:
new(&type) TType(EbtFloat, EvqTemporary, 0, 1, 2);
break;
case EHTokFloat2x2:
new(&type) TType(EbtFloat, EvqTemporary, 0, 2, 2);
break;
case EHTokFloat2x3:
new(&type) TType(EbtFloat, EvqTemporary, 0, 3, 2);
break;
case EHTokFloat2x4:
new(&type) TType(EbtFloat, EvqTemporary, 0, 4, 2);
break;
case EHTokFloat3x1:
new(&type) TType(EbtFloat, EvqTemporary, 0, 1, 3);
break;
case EHTokFloat3x2:
new(&type) TType(EbtFloat, EvqTemporary, 0, 2, 3);
break;
case EHTokFloat3x3:
new(&type) TType(EbtFloat, EvqTemporary, 0, 3, 3);
break;
case EHTokFloat3x4:
new(&type) TType(EbtFloat, EvqTemporary, 0, 4, 3);
break;
case EHTokFloat4x1:
new(&type) TType(EbtFloat, EvqTemporary, 0, 1, 4);
break;
case EHTokFloat4x2:
new(&type) TType(EbtFloat, EvqTemporary, 0, 2, 4);
break;
case EHTokFloat4x3:
new(&type) TType(EbtFloat, EvqTemporary, 0, 3, 4);
break;
case EHTokFloat4x4:
new(&type) TType(EbtFloat, EvqTemporary, 0, 4, 4);
break;
case EHTokDouble1x1:
new(&type) TType(EbtDouble, EvqTemporary, 0, 1, 1);
break;
case EHTokDouble1x2:
new(&type) TType(EbtDouble, EvqTemporary, 0, 2, 1);
break;
case EHTokDouble1x3:
new(&type) TType(EbtDouble, EvqTemporary, 0, 3, 1);
break;
case EHTokDouble1x4:
new(&type) TType(EbtDouble, EvqTemporary, 0, 4, 1);
break;
case EHTokDouble2x1:
new(&type) TType(EbtDouble, EvqTemporary, 0, 1, 2);
break;
case EHTokDouble2x2:
new(&type) TType(EbtDouble, EvqTemporary, 0, 2, 2);
break;
case EHTokDouble2x3:
new(&type) TType(EbtDouble, EvqTemporary, 0, 3, 2);
break;
case EHTokDouble2x4:
new(&type) TType(EbtDouble, EvqTemporary, 0, 4, 2);
break;
case EHTokDouble3x1:
new(&type) TType(EbtDouble, EvqTemporary, 0, 1, 3);
break;
case EHTokDouble3x2:
new(&type) TType(EbtDouble, EvqTemporary, 0, 2, 3);
break;
case EHTokDouble3x3:
new(&type) TType(EbtDouble, EvqTemporary, 0, 3, 3);
break;
case EHTokDouble3x4:
new(&type) TType(EbtDouble, EvqTemporary, 0, 4, 3);
break;
case EHTokDouble4x1:
new(&type) TType(EbtDouble, EvqTemporary, 0, 1, 4);
break;
case EHTokDouble4x2:
new(&type) TType(EbtDouble, EvqTemporary, 0, 2, 4);
break;
case EHTokDouble4x3:
new(&type) TType(EbtDouble, EvqTemporary, 0, 3, 4);
break;
case EHTokDouble4x4:
new(&type) TType(EbtDouble, EvqTemporary, 0, 4, 4);
break;
default:
return false;
}
advanceToken();
return true;
}
// struct
// : STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
// | STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE
//
bool HlslGrammar::acceptStruct(TType& type)
{
// STRUCT
if (! acceptTokenClass(EHTokStruct))
return false;
// IDENTIFIER
TString structName = "";
if (peekTokenClass(EHTokIdentifier)) {
structName = *token.string;
advanceToken();
}
// LEFT_BRACE
if (! acceptTokenClass(EHTokLeftBrace)) {
expected("{");
return false;
}
// struct_declaration_list
TTypeList* typeList;
if (! acceptStructDeclarationList(typeList)) {
expected("struct member declarations");
return false;
}
// RIGHT_BRACE
if (! acceptTokenClass(EHTokRightBrace)) {
expected("}");
return false;
}
// create the user-defined type
new(&type) TType(typeList, structName);
// If it was named, which means it can be reused later, add
// it to the symbol table.
if (structName.size() > 0) {
TVariable* userTypeDef = new TVariable(&structName, type, true);
if (! parseContext.symbolTable.insert(*userTypeDef))
parseContext.error(token.loc, "redefinition", structName.c_str(), "struct");
}
return true;
}
// struct_declaration_list
// : struct_declaration SEMI_COLON struct_declaration SEMI_COLON ...
//
// struct_declaration
// : fully_specified_type struct_declarator COMMA struct_declarator ...
//
// struct_declarator
// : IDENTIFIER post_decls
// | IDENTIFIER array_specifier post_decls
//
bool HlslGrammar::acceptStructDeclarationList(TTypeList*& typeList)
{
typeList = new TTypeList();
do {
// success on seeing the RIGHT_BRACE coming up
if (peekTokenClass(EHTokRightBrace))
return true;
// struct_declaration
// fully_specified_type
TType memberType;
if (! acceptFullySpecifiedType(memberType)) {
expected("member type");
return false;
}
// struct_declarator COMMA struct_declarator ...
do {
// peek IDENTIFIER
if (! peekTokenClass(EHTokIdentifier)) {
expected("member name");
return false;
}
// add it to the list of members
TTypeLoc member = { new TType(EbtVoid), token.loc };
member.type->shallowCopy(memberType);
member.type->setFieldName(*token.string);
typeList->push_back(member);
// accept IDENTIFIER
advanceToken();
// array_specifier
TArraySizes* arraySizes = nullptr;
acceptArraySpecifier(arraySizes);
if (arraySizes)
typeList->back().type->newArraySizes(*arraySizes);
acceptPostDecls(*member.type);
// success on seeing the SEMICOLON coming up
if (peekTokenClass(EHTokSemicolon))
break;
// COMMA
if (! acceptTokenClass(EHTokComma)) {
expected(",");
return false;
}
} while (true);
// SEMI_COLON
if (! acceptTokenClass(EHTokSemicolon)) {
expected(";");
return false;
}
} while (true);
}
// function_parameters
// : LEFT_PAREN parameter_declaration COMMA parameter_declaration ... RIGHT_PAREN
// | LEFT_PAREN VOID RIGHT_PAREN
//
bool HlslGrammar::acceptFunctionParameters(TFunction& function)
{
// LEFT_PAREN
if (! acceptTokenClass(EHTokLeftParen))
return false;
// VOID RIGHT_PAREN
if (! acceptTokenClass(EHTokVoid)) {
do {
// parameter_declaration
if (! acceptParameterDeclaration(function))
break;
// COMMA
if (! acceptTokenClass(EHTokComma))
break;
} while (true);
}
// RIGHT_PAREN
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
return false;
}
return true;
}
// parameter_declaration
// : fully_specified_type post_decls
// | fully_specified_type identifier array_specifier post_decls
//
bool HlslGrammar::acceptParameterDeclaration(TFunction& function)
{
// fully_specified_type
TType* type = new TType;
if (! acceptFullySpecifiedType(*type))
return false;
// identifier
HlslToken idToken;
acceptIdentifier(idToken);
// array_specifier
TArraySizes* arraySizes = nullptr;
acceptArraySpecifier(arraySizes);
if (arraySizes)
type->newArraySizes(*arraySizes);
// post_decls
acceptPostDecls(*type);
parseContext.paramFix(*type);
TParameter param = { idToken.string, type };
function.addParameter(param);
return true;
}
// Do the work to create the function definition in addition to
// parsing the body (compound_statement).
bool HlslGrammar::acceptFunctionDefinition(TFunction& function, TIntermNode*& node)
{
TFunction* functionDeclarator = parseContext.handleFunctionDeclarator(token.loc, function, false /* not prototype */);
// This does a pushScope()
node = parseContext.handleFunctionDefinition(token.loc, *functionDeclarator);
// compound_statement
TIntermNode* functionBody = nullptr;
if (acceptCompoundStatement(functionBody)) {
node = intermediate.growAggregate(node, functionBody);
intermediate.setAggregateOperator(node, EOpFunction, functionDeclarator->getType(), token.loc);
node->getAsAggregate()->setName(functionDeclarator->getMangledName().c_str());
parseContext.popScope();
return true;
}
return false;
}
// Accept an expression with parenthesis around it, where
// the parenthesis ARE NOT expression parenthesis, but the
// syntactically required ones like in "if ( expression )".
//
// Also accepts a declaration expression; "if (int a = expression)".
//
// Note this one is not set up to be speculative; as it gives
// errors if not found.
//
bool HlslGrammar::acceptParenExpression(TIntermTyped*& expression)
{
// LEFT_PAREN
if (! acceptTokenClass(EHTokLeftParen))
expected("(");
bool decl = false;
TIntermNode* declNode = nullptr;
decl = acceptControlDeclaration(declNode);
if (decl) {
if (declNode == nullptr || declNode->getAsTyped() == nullptr) {
expected("initialized declaration");
return false;
} else
expression = declNode->getAsTyped();
} else {
// no declaration
if (! acceptExpression(expression)) {
expected("expression");
return false;
}
}
// RIGHT_PAREN
if (! acceptTokenClass(EHTokRightParen))
expected(")");
return true;
}
// The top-level full expression recognizer.
//
// expression
// : assignment_expression COMMA assignment_expression COMMA assignment_expression ...
//
bool HlslGrammar::acceptExpression(TIntermTyped*& node)
{
node = nullptr;
// assignment_expression
if (! acceptAssignmentExpression(node))
return false;
if (! peekTokenClass(EHTokComma))
return true;
do {
// ... COMMA
TSourceLoc loc = token.loc;
advanceToken();
// ... assignment_expression
TIntermTyped* rightNode = nullptr;
if (! acceptAssignmentExpression(rightNode)) {
expected("assignment expression");
return false;
}
node = intermediate.addComma(node, rightNode, loc);
if (! peekTokenClass(EHTokComma))
return true;
} while (true);
}
// initializer
// : LEFT_BRACE initializer_list RIGHT_BRACE
//
// initializer_list
// : assignment_expression COMMA assignment_expression COMMA ...
//
bool HlslGrammar::acceptInitializer(TIntermTyped*& node)
{
// LEFT_BRACE
if (! acceptTokenClass(EHTokLeftBrace))
return false;
// initializer_list
TSourceLoc loc = token.loc;
node = nullptr;
do {
// assignment_expression
TIntermTyped* expr;
if (! acceptAssignmentExpression(expr)) {
expected("assignment expression in initializer list");
return false;
}
node = intermediate.growAggregate(node, expr, loc);
// COMMA
if (acceptTokenClass(EHTokComma))
continue;
// RIGHT_BRACE
if (acceptTokenClass(EHTokRightBrace))
return true;
expected(", or }");
return false;
} while (true);
}
// Accept an assignment expression, where assignment operations
// associate right-to-left. That is, it is implicit, for example
//
// a op (b op (c op d))
//
// assigment_expression
// : binary_expression op binary_expression op binary_expression ...
// | initializer
//
bool HlslGrammar::acceptAssignmentExpression(TIntermTyped*& node)
{
// initializer
if (peekTokenClass(EHTokLeftBrace)) {
if (acceptInitializer(node))
return true;
expected("initializer");
return false;
}
// binary_expression
if (! acceptBinaryExpression(node, PlLogicalOr))
return false;
// assignment operation?
TOperator assignOp = HlslOpMap::assignment(peek());
if (assignOp == EOpNull)
return true;
// assignment op
TSourceLoc loc = token.loc;
advanceToken();
// binary_expression
// But, done by recursing this function, which automatically
// gets the right-to-left associativity.
TIntermTyped* rightNode = nullptr;
if (! acceptAssignmentExpression(rightNode)) {
expected("assignment expression");
return false;
}
node = intermediate.addAssign(assignOp, node, rightNode, loc);
if (! peekTokenClass(EHTokComma))
return true;
return true;
}
// Accept a binary expression, for binary operations that
// associate left-to-right. This is, it is implicit, for example
//
// ((a op b) op c) op d
//
// binary_expression
// : expression op expression op expression ...
//
// where 'expression' is the next higher level in precedence.
//
bool HlslGrammar::acceptBinaryExpression(TIntermTyped*& node, PrecedenceLevel precedenceLevel)
{
if (precedenceLevel > PlMul)
return acceptUnaryExpression(node);
// assignment_expression
if (! acceptBinaryExpression(node, (PrecedenceLevel)(precedenceLevel + 1)))
return false;
TOperator op = HlslOpMap::binary(peek());
PrecedenceLevel tokenLevel = HlslOpMap::precedenceLevel(op);
if (tokenLevel < precedenceLevel)
return true;
do {
// ... op
TSourceLoc loc = token.loc;
advanceToken();
// ... expression
TIntermTyped* rightNode = nullptr;
if (! acceptBinaryExpression(rightNode, (PrecedenceLevel)(precedenceLevel + 1))) {
expected("expression");
return false;
}
node = intermediate.addBinaryMath(op, node, rightNode, loc);
if (! peekTokenClass(EHTokComma))
return true;
} while (true);
}
// unary_expression
// : (type) unary_expression
// | + unary_expression
// | - unary_expression
// | ! unary_expression
// | ~ unary_expression
// | ++ unary_expression
// | -- unary_expression
// | postfix_expression
//
bool HlslGrammar::acceptUnaryExpression(TIntermTyped*& node)
{
// (type) unary_expression
// Have to look two steps ahead, because this could be, e.g., a
// postfix_expression instead, since that also starts with at "(".
if (acceptTokenClass(EHTokLeftParen)) {
TType castType;
if (acceptType(castType)) {
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
return false;
}
// We've matched "(type)" now, get the expression to cast
TSourceLoc loc = token.loc;
if (! acceptUnaryExpression(node))
return false;
// Hook it up like a constructor
TFunction* constructorFunction = parseContext.handleConstructorCall(loc, castType);
if (constructorFunction == nullptr) {
expected("type that can be constructed");
return false;
}
TIntermTyped* arguments = nullptr;
parseContext.handleFunctionArgument(constructorFunction, arguments, node);
node = parseContext.handleFunctionCall(loc, constructorFunction, arguments);
return true;
} else {
// This isn't a type cast, but it still started "(", so if it is a
// unary expression, it can only be a postfix_expression, so try that.
// Back it up first.
recedeToken();
return acceptPostfixExpression(node);
}
}
// peek for "op unary_expression"
TOperator unaryOp = HlslOpMap::preUnary(peek());
// postfix_expression (if no unary operator)
if (unaryOp == EOpNull)
return acceptPostfixExpression(node);
// op unary_expression
TSourceLoc loc = token.loc;
advanceToken();
if (! acceptUnaryExpression(node))
return false;
// + is a no-op
if (unaryOp == EOpAdd)
return true;
node = intermediate.addUnaryMath(unaryOp, node, loc);
return node != nullptr;
}
// postfix_expression
// : LEFT_PAREN expression RIGHT_PAREN
// | literal
// | constructor
// | identifier
// | function_call
// | postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET
// | postfix_expression DOT IDENTIFIER
// | postfix_expression INC_OP
// | postfix_expression DEC_OP
//
bool HlslGrammar::acceptPostfixExpression(TIntermTyped*& node)
{
// Not implemented as self-recursive:
// The logical "right recursion" is done with an loop at the end
// idToken will pick up either a variable or a function name in a function call
HlslToken idToken;
// Find something before the postfix operations, as they can't operate
// on nothing. So, no "return true", they fall through, only "return false".
if (acceptTokenClass(EHTokLeftParen)) {
// LEFT_PAREN expression RIGHT_PAREN
if (! acceptExpression(node)) {
expected("expression");
return false;
}
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
return false;
}
} else if (acceptLiteral(node)) {
// literal (nothing else to do yet), go on to the
} else if (acceptConstructor(node)) {
// constructor (nothing else to do yet)
} else if (acceptIdentifier(idToken)) {
// identifier or function_call name
if (! peekTokenClass(EHTokLeftParen)) {
node = parseContext.handleVariable(idToken.loc, idToken.symbol, token.string);
} else if (acceptFunctionCall(idToken, node)) {
// function_call (nothing else to do yet)
} else {
expected("function call arguments");
return false;
}
} else {
// nothing found, can't post operate
return false;
}
// Something was found, chain as many postfix operations as exist.
do {
TSourceLoc loc = token.loc;
TOperator postOp = HlslOpMap::postUnary(peek());
// Consume only a valid post-unary operator, otherwise we are done.
switch (postOp) {
case EOpIndexDirectStruct:
case EOpIndexIndirect:
case EOpPostIncrement:
case EOpPostDecrement:
advanceToken();
break;
default:
return true;
}
// We have a valid post-unary operator, process it.
switch (postOp) {
case EOpIndexDirectStruct:
{
// DOT IDENTIFIER
// includes swizzles and struct members
HlslToken field;
if (! acceptIdentifier(field)) {
expected("swizzle or member");
return false;
}
TIntermTyped* base = node; // preserve for method function calls
node = parseContext.handleDotDereference(field.loc, node, *field.string);
// In the event of a method node, we look for an open paren and accept the function call.
if (node->getAsMethodNode() != nullptr && peekTokenClass(EHTokLeftParen)) {
if (! acceptFunctionCall(field, node, base)) {
expected("function parameters");
return false;
}
}
break;
}
case EOpIndexIndirect:
{
// LEFT_BRACKET integer_expression RIGHT_BRACKET
TIntermTyped* indexNode = nullptr;
if (! acceptExpression(indexNode) ||
! peekTokenClass(EHTokRightBracket)) {
expected("expression followed by ']'");
return false;
}
advanceToken();
node = parseContext.handleBracketDereference(indexNode->getLoc(), node, indexNode);
break;
}
case EOpPostIncrement:
// INC_OP
// fall through
case EOpPostDecrement:
// DEC_OP
node = intermediate.addUnaryMath(postOp, node, loc);
break;
default:
assert(0);
break;
}
} while (true);
}
// constructor
// : type argument_list
//
bool HlslGrammar::acceptConstructor(TIntermTyped*& node)
{
// type
TType type;
if (acceptType(type)) {
TFunction* constructorFunction = parseContext.handleConstructorCall(token.loc, type);
if (constructorFunction == nullptr)
return false;
// arguments
TIntermTyped* arguments = nullptr;
if (! acceptArguments(constructorFunction, arguments)) {
expected("constructor arguments");
return false;
}
// hook it up
node = parseContext.handleFunctionCall(arguments->getLoc(), constructorFunction, arguments);
return true;
}
return false;
}
// The function_call identifier was already recognized, and passed in as idToken.
//
// function_call
// : [idToken] arguments
//
bool HlslGrammar::acceptFunctionCall(HlslToken idToken, TIntermTyped*& node, TIntermTyped* base)
{
// arguments
TFunction* function = new TFunction(idToken.string, TType(EbtVoid));
TIntermTyped* arguments = nullptr;
// methods have an implicit first argument of the calling object.
if (base != nullptr)
parseContext.handleFunctionArgument(function, arguments, base);
if (! acceptArguments(function, arguments))
return false;
node = parseContext.handleFunctionCall(idToken.loc, function, arguments);
return true;
}
// arguments
// : LEFT_PAREN expression COMMA expression COMMA ... RIGHT_PAREN
//
// The arguments are pushed onto the 'function' argument list and
// onto the 'arguments' aggregate.
//
bool HlslGrammar::acceptArguments(TFunction* function, TIntermTyped*& arguments)
{
// LEFT_PAREN
if (! acceptTokenClass(EHTokLeftParen))
return false;
do {
// expression
TIntermTyped* arg;
if (! acceptAssignmentExpression(arg))
break;
// hook it up
parseContext.handleFunctionArgument(function, arguments, arg);
// COMMA
if (! acceptTokenClass(EHTokComma))
break;
} while (true);
// RIGHT_PAREN
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
return false;
}
return true;
}
bool HlslGrammar::acceptLiteral(TIntermTyped*& node)
{
switch (token.tokenClass) {
case EHTokIntConstant:
node = intermediate.addConstantUnion(token.i, token.loc, true);
break;
case EHTokFloatConstant:
node = intermediate.addConstantUnion(token.d, EbtFloat, token.loc, true);
break;
case EHTokDoubleConstant:
node = intermediate.addConstantUnion(token.d, EbtDouble, token.loc, true);
break;
case EHTokBoolConstant:
node = intermediate.addConstantUnion(token.b, token.loc, true);
break;
default:
return false;
}
advanceToken();
return true;
}
// compound_statement
// : LEFT_CURLY statement statement ... RIGHT_CURLY
//
bool HlslGrammar::acceptCompoundStatement(TIntermNode*& retStatement)
{
TIntermAggregate* compoundStatement = nullptr;
// LEFT_CURLY
if (! acceptTokenClass(EHTokLeftBrace))
return false;
// statement statement ...
TIntermNode* statement = nullptr;
while (acceptStatement(statement)) {
TIntermBranch* branch = statement ? statement->getAsBranchNode() : nullptr;
if (branch != nullptr && (branch->getFlowOp() == EOpCase ||
branch->getFlowOp() == EOpDefault)) {
// hook up individual subsequences within a switch statement
parseContext.wrapupSwitchSubsequence(compoundStatement, statement);
compoundStatement = nullptr;
} else {
// hook it up to the growing compound statement
compoundStatement = intermediate.growAggregate(compoundStatement, statement);
}
}
if (compoundStatement)
compoundStatement->setOperator(EOpSequence);
retStatement = compoundStatement;
// RIGHT_CURLY
return acceptTokenClass(EHTokRightBrace);
}
bool HlslGrammar::acceptScopedStatement(TIntermNode*& statement)
{
parseContext.pushScope();
bool result = acceptStatement(statement);
parseContext.popScope();
return result;
}
bool HlslGrammar::acceptScopedCompoundStatement(TIntermNode*& statement)
{
parseContext.pushScope();
bool result = acceptCompoundStatement(statement);
parseContext.popScope();
return result;
}
// statement
// : attributes attributed_statement
//
// attributed_statement
// : compound_statement
// | SEMICOLON
// | expression SEMICOLON
// | declaration_statement
// | selection_statement
// | switch_statement
// | case_label
// | iteration_statement
// | jump_statement
//
bool HlslGrammar::acceptStatement(TIntermNode*& statement)
{
statement = nullptr;
// attributes
acceptAttributes();
// attributed_statement
switch (peek()) {
case EHTokLeftBrace:
return acceptScopedCompoundStatement(statement);
case EHTokIf:
return acceptSelectionStatement(statement);
case EHTokSwitch:
return acceptSwitchStatement(statement);
case EHTokFor:
case EHTokDo:
case EHTokWhile:
return acceptIterationStatement(statement);
case EHTokContinue:
case EHTokBreak:
case EHTokDiscard:
case EHTokReturn:
return acceptJumpStatement(statement);
case EHTokCase:
return acceptCaseLabel(statement);
case EHTokDefault:
return acceptDefaultLabel(statement);
case EHTokSemicolon:
return acceptTokenClass(EHTokSemicolon);
case EHTokRightBrace:
// Performance: not strictly necessary, but stops a bunch of hunting early,
// and is how sequences of statements end.
return false;
default:
{
// declaration
if (acceptDeclaration(statement))
return true;
// expression
TIntermTyped* node;
if (acceptExpression(node))
statement = node;
else
return false;
// SEMICOLON (following an expression)
if (! acceptTokenClass(EHTokSemicolon)) {
expected(";");
return false;
}
}
}
return true;
}
// attributes
// : list of zero or more of: LEFT_BRACKET attribute RIGHT_BRACKET
//
// attribute:
// : UNROLL
// | UNROLL LEFT_PAREN literal RIGHT_PAREN
// | FASTOPT
// | ALLOW_UAV_CONDITION
// | BRANCH
// | FLATTEN
// | FORCECASE
// | CALL
//
void HlslGrammar::acceptAttributes()
{
// For now, accept the [ XXX(X) ] syntax, but drop.
// TODO: subset to correct set? Pass on?
do {
// LEFT_BRACKET?
if (! acceptTokenClass(EHTokLeftBracket))
return;
// attribute
if (peekTokenClass(EHTokIdentifier)) {
// 'token.string' is the attribute
advanceToken();
} else if (! peekTokenClass(EHTokRightBracket)) {
expected("identifier");
advanceToken();
}
// (x)
if (acceptTokenClass(EHTokLeftParen)) {
TIntermTyped* node;
if (! acceptLiteral(node))
expected("literal");
// 'node' has the literal in it
if (! acceptTokenClass(EHTokRightParen))
expected(")");
}
// RIGHT_BRACKET
if (acceptTokenClass(EHTokRightBracket))
continue;
expected("]");
return;
} while (true);
}
// selection_statement
// : IF LEFT_PAREN expression RIGHT_PAREN statement
// : IF LEFT_PAREN expression RIGHT_PAREN statement ELSE statement
//
bool HlslGrammar::acceptSelectionStatement(TIntermNode*& statement)
{
TSourceLoc loc = token.loc;
// IF
if (! acceptTokenClass(EHTokIf))
return false;
// so that something declared in the condition is scoped to the lifetimes
// of the then-else statements
parseContext.pushScope();
// LEFT_PAREN expression RIGHT_PAREN
TIntermTyped* condition;
if (! acceptParenExpression(condition))
return false;
// create the child statements
TIntermNodePair thenElse = { nullptr, nullptr };
// then statement
if (! acceptScopedStatement(thenElse.node1)) {
expected("then statement");
return false;
}
// ELSE
if (acceptTokenClass(EHTokElse)) {
// else statement
if (! acceptScopedStatement(thenElse.node2)) {
expected("else statement");
return false;
}
}
// Put the pieces together
statement = intermediate.addSelection(condition, thenElse, loc);
parseContext.popScope();
return true;
}
// switch_statement
// : SWITCH LEFT_PAREN expression RIGHT_PAREN compound_statement
//
bool HlslGrammar::acceptSwitchStatement(TIntermNode*& statement)
{
// SWITCH
TSourceLoc loc = token.loc;
if (! acceptTokenClass(EHTokSwitch))
return false;
// LEFT_PAREN expression RIGHT_PAREN
parseContext.pushScope();
TIntermTyped* switchExpression;
if (! acceptParenExpression(switchExpression)) {
parseContext.popScope();
return false;
}
// compound_statement
parseContext.pushSwitchSequence(new TIntermSequence);
bool statementOkay = acceptCompoundStatement(statement);
if (statementOkay)
statement = parseContext.addSwitch(loc, switchExpression, statement ? statement->getAsAggregate() : nullptr);
parseContext.popSwitchSequence();
parseContext.popScope();
return statementOkay;
}
// iteration_statement
// : WHILE LEFT_PAREN condition RIGHT_PAREN statement
// | DO LEFT_BRACE statement RIGHT_BRACE WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
// | FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN statement
//
// Non-speculative, only call if it needs to be found; WHILE or DO or FOR already seen.
bool HlslGrammar::acceptIterationStatement(TIntermNode*& statement)
{
TSourceLoc loc = token.loc;
TIntermTyped* condition = nullptr;
EHlslTokenClass loop = peek();
assert(loop == EHTokDo || loop == EHTokFor || loop == EHTokWhile);
// WHILE or DO or FOR
advanceToken();
switch (loop) {
case EHTokWhile:
// so that something declared in the condition is scoped to the lifetime
// of the while sub-statement
parseContext.pushScope();
parseContext.nestLooping();
// LEFT_PAREN condition RIGHT_PAREN
if (! acceptParenExpression(condition))
return false;
// statement
if (! acceptScopedStatement(statement)) {
expected("while sub-statement");
return false;
}
parseContext.unnestLooping();
parseContext.popScope();
statement = intermediate.addLoop(statement, condition, nullptr, true, loc);
return true;
case EHTokDo:
parseContext.nestLooping();
if (! acceptTokenClass(EHTokLeftBrace))
expected("{");
// statement
if (! peekTokenClass(EHTokRightBrace) && ! acceptScopedStatement(statement)) {
expected("do sub-statement");
return false;
}
if (! acceptTokenClass(EHTokRightBrace))
expected("}");
// WHILE
if (! acceptTokenClass(EHTokWhile)) {
expected("while");
return false;
}
// LEFT_PAREN condition RIGHT_PAREN
TIntermTyped* condition;
if (! acceptParenExpression(condition))
return false;
if (! acceptTokenClass(EHTokSemicolon))
expected(";");
parseContext.unnestLooping();
statement = intermediate.addLoop(statement, condition, 0, false, loc);
return true;
case EHTokFor:
{
// LEFT_PAREN
if (! acceptTokenClass(EHTokLeftParen))
expected("(");
// so that something declared in the condition is scoped to the lifetime
// of the for sub-statement
parseContext.pushScope();
// initializer
TIntermNode* initNode = nullptr;
if (! acceptControlDeclaration(initNode)) {
TIntermTyped* initExpr = nullptr;
acceptExpression(initExpr);
initNode = initExpr;
}
// SEMI_COLON
if (! acceptTokenClass(EHTokSemicolon))
expected(";");
parseContext.nestLooping();
// condition SEMI_COLON
acceptExpression(condition);
if (! acceptTokenClass(EHTokSemicolon))
expected(";");
// iterator SEMI_COLON
TIntermTyped* iterator = nullptr;
acceptExpression(iterator);
if (! acceptTokenClass(EHTokRightParen))
expected(")");
// statement
if (! acceptScopedStatement(statement)) {
expected("for sub-statement");
return false;
}
statement = intermediate.addForLoop(statement, initNode, condition, iterator, true, loc);
parseContext.popScope();
parseContext.unnestLooping();
return true;
}
default:
return false;
}
}
// jump_statement
// : CONTINUE SEMICOLON
// | BREAK SEMICOLON
// | DISCARD SEMICOLON
// | RETURN SEMICOLON
// | RETURN expression SEMICOLON
//
bool HlslGrammar::acceptJumpStatement(TIntermNode*& statement)
{
EHlslTokenClass jump = peek();
switch (jump) {
case EHTokContinue:
case EHTokBreak:
case EHTokDiscard:
case EHTokReturn:
advanceToken();
break;
default:
// not something we handle in this function
return false;
}
switch (jump) {
case EHTokContinue:
statement = intermediate.addBranch(EOpContinue, token.loc);
break;
case EHTokBreak:
statement = intermediate.addBranch(EOpBreak, token.loc);
break;
case EHTokDiscard:
statement = intermediate.addBranch(EOpKill, token.loc);
break;
case EHTokReturn:
{
// expression
TIntermTyped* node;
if (acceptExpression(node)) {
// hook it up
statement = intermediate.addBranch(EOpReturn, node, token.loc);
} else
statement = intermediate.addBranch(EOpReturn, token.loc);
break;
}
default:
assert(0);
return false;
}
// SEMICOLON
if (! acceptTokenClass(EHTokSemicolon))
expected(";");
return true;
}
// case_label
// : CASE expression COLON
//
bool HlslGrammar::acceptCaseLabel(TIntermNode*& statement)
{
TSourceLoc loc = token.loc;
if (! acceptTokenClass(EHTokCase))
return false;
TIntermTyped* expression;
if (! acceptExpression(expression)) {
expected("case expression");
return false;
}
if (! acceptTokenClass(EHTokColon)) {
expected(":");
return false;
}
statement = parseContext.intermediate.addBranch(EOpCase, expression, loc);
return true;
}
// default_label
// : DEFAULT COLON
//
bool HlslGrammar::acceptDefaultLabel(TIntermNode*& statement)
{
TSourceLoc loc = token.loc;
if (! acceptTokenClass(EHTokDefault))
return false;
if (! acceptTokenClass(EHTokColon)) {
expected(":");
return false;
}
statement = parseContext.intermediate.addBranch(EOpDefault, loc);
return true;
}
// array_specifier
// : LEFT_BRACKET integer_expression RGHT_BRACKET post_decls // optional
//
void HlslGrammar::acceptArraySpecifier(TArraySizes*& arraySizes)
{
arraySizes = nullptr;
if (! acceptTokenClass(EHTokLeftBracket))
return;
TSourceLoc loc = token.loc;
TIntermTyped* sizeExpr;
if (! acceptAssignmentExpression(sizeExpr)) {
expected("array-sizing expression");
return;
}
if (! acceptTokenClass(EHTokRightBracket)) {
expected("]");
return;
}
TArraySize arraySize;
parseContext.arraySizeCheck(loc, sizeExpr, arraySize);
arraySizes = new TArraySizes;
arraySizes->addInnerSize(arraySize);
}
// post_decls
// : COLON semantic // optional
// COLON PACKOFFSET LEFT_PAREN ... RIGHT_PAREN // optional
// COLON REGISTER // optional
// annotations // optional
//
void HlslGrammar::acceptPostDecls(TType& type)
{
do {
// COLON
if (acceptTokenClass(EHTokColon)) {
HlslToken idToken;
if (acceptTokenClass(EHTokPackOffset)) {
if (! acceptTokenClass(EHTokLeftParen)) {
expected("(");
return;
}
acceptTokenClass(EHTokIdentifier);
acceptTokenClass(EHTokDot);
acceptTokenClass(EHTokIdentifier);
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
break;
}
// TODO: process the packoffset information
} else if (! acceptIdentifier(idToken)) {
expected("semantic or packoffset or register");
return;
} else if (*idToken.string == "register") {
if (! acceptTokenClass(EHTokLeftParen)) {
expected("(");
return;
}
acceptTokenClass(EHTokIdentifier);
acceptTokenClass(EHTokComma);
acceptTokenClass(EHTokIdentifier);
acceptTokenClass(EHTokLeftBracket);
if (peekTokenClass(EHTokIntConstant))
advanceToken();
acceptTokenClass(EHTokRightBracket);
if (! acceptTokenClass(EHTokRightParen)) {
expected(")");
break;
}
// TODO: process the register information
} else {
// semantic, in idToken.string
parseContext.handleSemantic(type, *idToken.string);
}
} else if (acceptTokenClass(EHTokLeftAngle)) {
// TODO: process annotations, just accepting them for now
do {
if (peekTokenClass(EHTokNone))
return;
if (acceptTokenClass(EHTokRightAngle))
break;
advanceToken();
} while (true);
} else
break;
} while (true);
}
} // end namespace glslang